SK280623B6 - Recombinant dna plasmid vector, mammalian cell transformed with this vector, recombinant human erythropoietin, and method of its production - Google Patents

Recombinant dna plasmid vector, mammalian cell transformed with this vector, recombinant human erythropoietin, and method of its production Download PDF

Info

Publication number
SK280623B6
SK280623B6 SK465-98A SK46598A SK280623B6 SK 280623 B6 SK280623 B6 SK 280623B6 SK 46598 A SK46598 A SK 46598A SK 280623 B6 SK280623 B6 SK 280623B6
Authority
SK
Slovakia
Prior art keywords
epo
dna
cell
recombinant
cells
Prior art date
Application number
SK465-98A
Other languages
Slovak (sk)
Other versions
SK46598A3 (en
Inventor
Edward Fritsch
Rodney M. Hewick
Kenneth Jacobs
Randal J. Kaufman
Original Assignee
Genetics Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetics Institute filed Critical Genetics Institute
Publication of SK280623B6 publication Critical patent/SK280623B6/en
Publication of SK46598A3 publication Critical patent/SK46598A3/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention refers to a recombinant DNA plasmid vector containing cDNA encoding human EPO of clone lambda HEPOFL13 (ATCC 40153) and mammalian cell transformed with this vector. Recombinant human erythropoietin characterised by the presence of O-linked glycosilation, obtainable by the steps of (a) culturing in a suitable medium CHO cells containing a DNA sequence encoding human erythropoietin said DNA sequence operatively linked to an expression control sequence and (b) recovering and separating the EPO from the cells and the medium. The recombinant human erythropoietin can be characterised by a glycosilation pattern comprising fucose, which glyocosilation pattern comprises relative molar levels of hexoses to N acetylglucosamine (Nacglc) of 1.4 : 1, specifically galactose : Nacglc = 0.9 : 1 and mannose : Nacglc = 0.5 : 1.

Description

Oblasť technikyTechnical field

Vynález sa týka rekombinantného DNA plazmidového vektora, obsahujúceho cDNA kódujúcu ľudský erytropoetín, cicavčej bunky transformovanej transferom tohto vektora, rekombinantného ľudského erytropoetínu pripraviteľného v týchto bunkách postupom in vitro a spôsobu jeho výroby.The invention relates to a recombinant DNA plasmid vector comprising a cDNA encoding human erythropoietin, a mammalian cell transformed with the transfer of the vector, a recombinant human erythropoietin prepared in these cells by an in vitro process, and a method for producing the same.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Erytropoetín (ďalej označovaný ako EPO) je cirkulujúci glykoproteín, ktorý stimuluje tvorbu erytrocytov vo vyšších organizmoch, pozri Camot a spol., Compt. Rend., 143 : 384 (1906). Sám osebe je EPO niekedy označovaný ako erytropoesis stimulujúci faktor.Erythropoietin (hereafter referred to as EPO) is a circulating glycoprotein that stimulates erythrocyte production in higher organisms, see Camot et al., Compt. Rend., 143: 384 (1906). As such, EPO is sometimes referred to as an erythropoesis stimulating factor.

Čas životnosti ľudských erytrocytov je asi 120 dní. Asi 1/120 celkových erytrocytov je denne odbúraná v retikulo-endoteliálnom systému. Súčasne je denne produkovaný relatívne konštantný počet erytrocytov, aby bola stále udržaná určitá hladina erytrocytov (Guyton, Textbook of Medical Physiology, str. 56 až 60, W.B. Saunders Co., Philadelphia 1976).The lifetime of human erythrocytes is about 120 days. About 1/120 of total erythrocytes are degraded daily in the reticulo-endothelial system. At the same time, a relatively constant number of erythrocytes is produced daily to maintain a certain level of erythrocytes (Guyton, Textbook of Medical Physiology, pp. 56-60, W. B. Saunders Co., Philadelphia 1976).

Erytrocyty sú produkované zrcním a diferenciáciou erytroblastov v kosťovej dreni a EPO je faktor, ktorý pôsobí na menej diferencované bunky a indukuje ich diferenciáciu k erytrocytom (Guyton).Erythrocytes are produced by mirroring and differentiating erythroblasts in bone marrow and EPO is a factor that acts on less differentiated cells and induces their differentiation to erythrocytes (Guyton).

EPO je sľubný terapeutický prostriedok pre klinickú liečbu anémie alebo konkrétne renálnej anémie. V praktickej terapii nie je používanie EPO dosiaľ bežné pre jeho malú dostupnosť.EPO is a promising therapeutic agent for the clinical treatment of anemia or, in particular, renal anemia. In practical therapy, the use of EPO is not yet common because of its low availability.

Na použitie EPO ako terapeutického prostriedku je potrebné uvážiť možné problémy antigenicity, a preto je výhodné pripravovať EPO zo suroviny ľudského pôvodu. Je možné napríklad použiť ľudskú krv alebo moč pacientov, postihnutých aplastickou anémiou alebo podobnými chorobami, ktoré spôsobujú vylučovanie veľkého množstva EPO. Tieto suroviny však sú k dispozícii v obmedzenom množstve, pozri napríklad White a spol., Rec.Progr.Horm.Res., 16; 219 (1960), Espada a spol., Biochem.Med., 3; 475 (1970), Fisher, Pharmacol. Rev., 459 (1972) a Gordon, Vítam. Horm. (N.Y.) 31; 105 (1973), ktoré sú tu zahrnuté ako odkazy.For the use of EPO as a therapeutic agent, consideration should be given to possible antigenicity problems and it is therefore preferable to prepare EPO from a raw material of human origin. For example, human blood or urine of patients suffering from aplastic anemia or similar diseases that cause the secretion of large amounts of EPO may be used. However, these raw materials are available in limited quantities, see, for example, White et al., Rec.Progr.Horm.Res., 16; 219 (1960), Espada et al., Biochem. Med., 3; 475 (1970), Fisher Pharmacol. Rev., 459 (1972) and Gordon, Welcome. Horm. (N.Y.) 31; 105 (1973), which are incorporated herein by reference.

Príprava EPO produktov sa obyčajne robila koncentráciou a čistením moču pacientov, majúcich vysokú úroveň EPO, napríklad pacientov, postihnutých aplastickou anémiou a podobnými chorobami, pozri napríklad patenty USA č. 4397840, 4303650 a 3865801. Obmedzená zásoba takého moču je prekážkou praktického použitia EPO a preto je veľmi žiaduce pripravovať EPO produkty z moču zdravých osôb. Problém použitia moču zdravých ľudí spočíva v jej nízkom obsahu EPO v porovnaní s anemickými pacientmi. Moč zdravých jedincov obsahuje určité inhibičné faktory, ktoré v dostatočne vysokej koncentrácii pôsobia proti erytropoéze, takže dostatočný terapeutický účinok môže byť pri EPO, získaného z takého moču, dosiahnutý iba pri použití nasledujúceho významného postupu čistenia.The preparation of EPO products has usually been done by concentrating and purifying the urine of patients having a high level of EPO, for example, patients suffering from aplastic anemia and the like, see, for example, U.S. Pat. 4397840, 4303650 and 3865801. The limited supply of such urine is an obstacle to the practical use of EPO and it is therefore highly desirable to prepare EPO products from the urine of healthy persons. The problem of urine use in healthy people is its low EPO content compared to anemic patients. The urine of healthy individuals contains certain inhibitory factors that counteract erythropoiesis at a sufficiently high concentration so that a sufficient therapeutic effect can only be achieved with EPO obtained from such urine using the following significant purification procedure.

EPO je možné rovnako regenerovať z ovčej krvnej plazmy a separácia EPO z tejto krvnej plazmy poskytla dostatočne potentné a stabilné vodorozpustné preparáty, pozri Goldwasser, Control Cellular Dif.Develop., diel A, str. 487 až 494, Alan R.Liss, Inc., N.Y. (1981). Dá sa však očakávať, že ovčí EPO bude pre ľudí antigénny.EPO can also be regenerated from sheep blood plasma, and separation of EPO from this blood plasma yielded sufficiently potent and stable water-soluble preparations. See Goldwasser, Control Cellular Dif.Develop., Vol. A, p. 487-494, Alan R.Liss, Inc., N.Y. (1981). However, sheep EPO can be expected to be antigenic to humans.

Bežné izolačné a čistiace metódy pri použití prírodných zdrojov EPO teda nie sú adekvátne masovej produkcii tohto žiadaného terapeutického prostriedku.Thus, conventional isolation and purification methods using natural EPO sources are not adequate for mass production of this desired therapeutic agent.

Sugimoto a spol. v patente USA č. 4377513 opisujú jeden zo spôsobov masovej produkcie EPO, zahŕňajúci multiplikácic in vivo ľudských lymfoblastoidných buniek, zahŕňajúcich Namalwa, BALL-1, NALL-1, TALL-1 a JBL.Sugimoto et al. U.S. Pat. No. 4377513 disclose one method of mass production of EPO, comprising multiplying in vivo human lymphoblastoid cells, including Namalwa, BALL-1, NALL-1, TALL-1, and JBL.

Správy o produkcii EPO inými metódami genetického inžinierstva sa objavili v štandardnej literatúre. Nebol však zatiaľ publikovaný reprodukovateľný spôsob výroby ani chemická charakteristika produktu. Predmet tohto vynálezu naproti tomu predstavuje reprodukovateľný spôsob masovej produkcie proteínov, majúcich biologické vlastnosti ľudského EPO. Týmto spôsobom je možné rovnako produkovať proteiny, ktoré sa môžu chemicky líšiť od autentického ľudského EPO a súčasne mať podobné (a v niektorých prípadoch zlepšené) vlastnosti. Pre jednoduchosť sú tu všetky proteiny, majúce biologické vlastnosti ľudského EPO, označované ako EPO bez ohľadu na to, či s nim sú alebo nie sú chemicky identické.Reports of EPO production by other genetic engineering methods have appeared in the standard literature. However, no reproducible method of manufacture or chemical characterization of the product has been published. In contrast, the present invention provides a reproducible method for mass production of proteins having the biological properties of human EPO. In this way, it is also possible to produce proteins which may be chemically different from authentic human EPO while having similar (and in some cases improved) properties. For simplicity, all proteins having the biological properties of human EPO are referred to herein as EPO regardless of whether or not they are chemically identical to them.

Podstata vynálezuSUMMARY OF THE INVENTION

Predmetom vynálezu je rekombinantný DNA plazmidový vektor, obsahujúci cDNA kódujúci ľudský EPO klonu lambda HEPOFL13 (ATCC 40153) a ďalej cicavčia bunka transformovaná týmto transfer vektorom. Uvedenou cicavčou bunkou je výhodne 3T3, C127 alebo CHO bunka.The present invention provides a recombinant DNA plasmid vector comprising a cDNA encoding a human EPO clone of lambda HEPOFL13 (ATCC 40153) and further a mammalian cell transformed with this transfer vector. Said mammalian cell is preferably a 3T3, C127 or CHO cell.

Cicavčia bunka podľa vynálezu výhodne obsahuje plazmid, ktorý obsahuje celú DNA hovädzieho papilloma vírusu a cDNA sekvenciu z tabuľky 3 kódujúcu ľudský EPO. Touto bunkou môže byť bunka C127 alebo 3T3. EPO DNA v tejto bunke je výhodne pod transkripčnou kontrolou myšieho metalotionen promótora. Vo výhodnom rozpracovaní taká bunka obsahuje plazmid, obsahujúci DNA z pdBPV-MMTneo(342-12) (ATCC 37224).Preferably, the mammalian cell of the invention comprises a plasmid that contains all bovine papilloma virus DNA and the cDNA sequence of Table 3 encoding human EPO. The cell may be a C127 or a 3T3 cell. The EPO DNA in this cell is preferably under the transcriptional control of the mouse metallothionene promoter. In a preferred embodiment, such a cell comprises a plasmid containing DNA from pdBPV-MMTneo (342-12) (ATCC 37224).

Predmetom vynálezu je ďalej tiež rekombinantný ľudský erytropoetín, charakterizovaný prítomnosťou O-napojenej glykozylácie, pripraviteľný stupňamiThe present invention further provides recombinant human erythropoietin, characterized by the presence of O-linked glycosylation, obtainable by the steps of

a) kultivácie CHO buniek obsahujúcich DNA sekvenciu kódujúcu ľudský erytropoetín vo vhodnom médie, kde uvedená DNA sekvencia je operatívne pripojená k expresnej kontrolnej sekvencií a(a) culturing CHO cells comprising a DNA sequence encoding human erythropoietin in a suitable medium, wherein said DNA sequence is operably linked to an expression control sequence; and

b) získania a oddelenia EPO z buniek a média.b) recovering and separating EPO from the cells and the medium.

Rekombinantný ľudský erytropoetín podľa vynálezu výhodne obsahuje glykozylové zvyšky zahŕňajúce zvyšky fúkózy. Prednostný erytropoetín podľa vynálezu je charakterizovaný glykozylačným profilom, zahŕňajúcim vzájomný molárny pomer hexóz k N-acetylglukózamínu (Nacglc)The recombinant human erythropoietin of the invention preferably comprises glycosyl residues including fucose residues. A preferred erythropoietin of the invention is characterized by a glycosylation profile including a relative molar ratio of hexoses to N-acetylglucosamine (Nacglc)

1,4 : 1, konkrétne galaktózy. Nacglc = 0,9 : 1 a manózy: Nacglc = 0,5 : 1. Taký erytropoetín tiež prednostne obsahuje N-acetylga-laktózamín.1.4: 1, specifically galactose. Nacglc = 0.9: 1 and mannose: Nacglc = 0.5: 1. Such erythropoietin also preferably contains N-acetylgalactosamine.

Konečne je predmetom vynálezu tiež spôsob výroby rekombinantného ľudského erytropoetínu (hEPO), ktorý zahŕňa stupneFinally, the present invention also provides a process for the production of recombinant human erythropoietin (hEPO), comprising the steps of:

a) kultivácie CHO buniek, ktoré obsahujú DNA sekvenciu kódujúcu hEPO operatívne pripojenú k expresnej kontrolnej sekvencií, vo vhodnom médie a(a) culturing CHO cells containing a DNA sequence encoding hEPO operably linked to an expression control sequence in a suitable medium; and

b) získania a separácie produkovaného rekombinantného hEPO z buniek a média, ktorého podstata spočíva v tom, že sa používajú CHO bunky majúce schopnosť poskytovať N- a O-pripojenú glykozyláciu so zavedením fúkózy a N-acetylgalaktóamínu, pričom z buniek a média sa získa a oddelí rekombinantný hEPO s N- a O-pripojenou glykozyláciou.(b) recovering and separating the produced recombinant hEPO from the cells and the medium, which comprises using CHO cells having the ability to provide N- and O-linked glycosylation with the introduction of fucose and N-acetylgalactosamine, and recovering from the cells and the medium; separates recombinant hEPO with N- and O-linked glycosylation.

Predložený vynález sa teda týka klonovania génu, ktorý exprimuje prekvapivo vysoké hladiny ľudského EPO, jeho expresie a masovej produkcie aktívneho ľudského EPO in vitro. Sú tiež opísané vhodné expresné vektory pre produk ciu EPO, expresné bunky, schémy čistenia a príbuzné procesy.Thus, the present invention relates to the cloning of a gene that expresses surprisingly high levels of human EPO, its expression, and mass production of active human EPO in vitro. Suitable expression vectors for EPO production, expression cells, purification schemes, and related processes are also described.

Ako je podrobnejšie ďalej opísané, bol EPO získaný v čiastočne čistenej forme a bol ďalej čistený do homogenity a štiepený trypsínom za vzniku špecifických fragmentov. Tieto fragmenty boli čistené a sekvenovanč. EPO oligonukleotidy boli navrhnuté a syntetizované na základe týchto sekvencii, tieto oligonukletidy boli použité na skríning ľudskej genomickej knižnice, z ktorej bol izolovaný EPO gén.As described in more detail below, EPO was obtained in partially purified form and was further purified to homogeneity and digested with trypsin to form specific fragments. These fragments were purified and sequenced. EPO oligonucleotides were designed and synthesized based on these sequences, these oligonucleotides were used to screen the human genomic library from which the EPO gene was isolated.

EPO gén bol overený na základe svojej DNA sekvencie, ktorá zodpovedala mnohým zo sekvenovaných tryptických proteínových fragmentov. Časť genomického klonu potom bola použitá na demonštráciu pri hybridizácii, že EPO mRNA by mohla byť detegovaná v ľudskej fetálnej mRNA (starej 20 týždňov). Bola pripravená cDNA knižnica z pečene ľudského plodu a bola skrínovaná. Boli získané tri EPO cDNA klony (po skríningu > 750 000 rekombinantov). Dva z týchto klonov boli stanovené ako majúce plnú dĺžku podľa kompletnej kódujúcej sekvencie a v podstate 5-koníec a 3-koniec netranslatovanej sekvencie. Tieto cDNA boli exprimované v SV-40 vírusom transformovaných opičích bunkách (COS-1 bunková línia: Gluzman, Celí 23: 175182 (1981)) a bunkách vaječníkov čínskych chrčkov (bunková línia CHO; Urlaub G. a Chasin L.A. Proc.Natl.Acad.Sci. USA 77:4216-4280 (1980)). EPO, produkovaný z COS buniek, je biologicky aktívny EPO in vitro a in vivo. EPO, produkovaný z CHO buniek, je tiež biologicky aktívny in vitro a in vivo. EPO cDNA kloň má zaujímavý otvorený čítací rámček 14-15 aminokyselín (aminoacids -aa) s iniciátorom a terminátorom z 20 až 30 nukleotidov (nt) proti smeru kódujúcej oblasti. Reprezentatívna vzorka E. coli, transfektovaná klonovaným EPO génom, bola uložená v Američan Type Culture Collection, Rockville, Maryland a je dostupná pod prírastkovým číslom ATCC 40153.The EPO gene was verified based on its DNA sequence that corresponded to many of the sequenced tryptic protein fragments. A portion of the genomic clone was then used to demonstrate hybridization that EPO mRNA could be detected in human fetal mRNA (20 weeks old). A human fetal liver cDNA library was prepared and screened. Three EPO cDNA clones were obtained (after screening> 750,000 recombinants). Two of these clones were determined to be full-length according to the complete coding sequence and essentially the 5-end and 3-end of the untranslated sequence. These cDNAs were expressed in SV-40 virus transformed monkey cells (COS-1 cell line: Gluzman, Cell 23: 175182 (1981)) and Chinese Hamster Ovary cells (CHO cell line; Urlaub G. and Chasin LA Proc.Natl.Acad) Sci., USA 77: 4216-4280 (1980)). EPO, produced from COS cells, is biologically active EPO in vitro and in vivo. EPO produced from CHO cells is also biologically active in vitro and in vivo. The EPO cDNA clone has an interesting open reading frame of 14-15 amino acids (aminoacids -aa) with an initiator and terminator of 20 to 30 nucleotides (nt) upstream of the coding region. A representative sample of E. coli, transfected with the cloned EPO gene, was deposited with the American Type Culture Collection, Rockville, Maryland and is available under accession number ATCC 40153.

Prehľad obrázkov na výkresochBRIEF DESCRIPTION OF THE DRAWINGS

Tabuľka 1 je sekvencia 87 párov báz exónu ľudského EPO génu;Table 1 is the 87 exon base pair sequence of the human EPO gene;

- obr. 1 ilustruje detekciu EPO mRNA v ľudskej fetálnej pečeňovej mRNA;FIG. 1 illustrates the detection of EPO mRNA in human fetal liver mRNA;

- tabuľka 2 ilustruje aminokyselinovú sekvenciu EPO pratému, odvodenú z nukleotidovej sekvencie lambdaHEPOFL13;Table 2 illustrates the amino acid sequence of EPO primed, derived from the nucleotide sequence of lambdaHEPOFL13;

- tabuľka 3 ilustruje nukleotidovú sekvenciu EPO cDNA v lambda-HEPOFL13 (uvedená schematicky na obr. 2) a z nej odvodenú aminokyselinovú sekvenciu;Table 3 illustrates the nucleotide sequence of EPO cDNA in lambda-HEPOFL13 (shown schematically in Figure 2) and the amino acid sequence derived therefrom;

- obr. 3 ilustruje relatívne polohy DNA inzertov štyroch nezávislých ľudských EPO genómických klonov;FIG. 3 illustrates the relative positions of the DNA inserts of the four independent human EPO genomic clones;

- obr. 4 predstavuje mapu zjavnej intrónovej a exónovej štruktúry ľudského EPO génu;FIG. 4 is a map of the apparent intron and exon structure of the human EPO gene;

- tabuľka 4 ilustruje DNA sekvenciu EPO génu, ilustrovanú na obr. 4B;Table 4 illustrates the DNA sequence of the EPO gene illustrated in FIG. 4B;

- obr. 5A, 5B a 5C ilustrujú konštrukciu vektora 91023(B);FIG. 5A, 5B and 5C illustrate the construction of vector 91023 (B);

- obr. 6 ilustruje SDS polyakrylamidovú gélovú analýzu EPO, produkovaného v COS-1 bunkách, v porovnaní s natívnym EPO,FIG. 6 illustrates SDS polyacrylamide gel analysis of EPO produced in COS-1 cells compared to native EPO,

- tabuľka 6 ilustruje nukleotidovú a aminokyselinovú sekvenciu EPO klonu, lambda-HEPOFL8;Table 6 illustrates the nucleotide and amino acid sequence of the EPO clone, lambda-HEPOFL8;

- tabuľka 7 ilustruje nukleotidovú a aminokyselinovú sekvenciu EPO klonu, lambda-HEPOFL13;Table 7 illustrates the nucleotide and amino acid sequence of the EPO clone, lambda-HEPOFL13;

- obr. 7 je schematickou ilustráciou plazmidu pRKl-4 a obr. 8 je schematickou ilustráciou plazmidu pdBPV-MMTneo(342-12).FIG. 7 is a schematic illustration of plasmid pRK1-4; and FIG. 8 is a schematic illustration of the plasmid pdBPV-MMTneo (342-12).

Predložený vynález sa týka klonovania EPO génov a produkcie EPO in vitro expresiou týchto génov.The present invention relates to the cloning of EPO genes and the production of EPO in vitro by expression of these genes.

V patentovej a vedeckej literatúre je uvádzaných veľa spôsobov, vhodných na produkciu rekombinantných proteínov. Všeobecne tieto techniky zahŕňajú izoláciu alebo syntézu požadovanej génovej sekvencie a expresiu takej sekvencie buď v prokaryotickej alebo eukaryotickej bunke pri použití techník bežne odborníkom známych. Len čo bol gén izolovaný, čistený a izertovaný do transfer vektora (t. j. klonovaný), je zaistená dostupnosť podstatného množstva. Vektor s doňho klonovaným génom je transferovaný do vhodného mikroorganizmu alebo bunkovej línie, napríklad baktérie, kvasinky, cicavčích buniek, ako sú COS-1 bunky (opičie obličky), CHO (vaječníky čínskeho chrčka), hmyzie bunkové línie a podobne, kde sa vektor replikuje pri proliferácii mikroorganizmu alebo bunkovej línie a z ktorých vektor môže byť izolovaný bežnými prostriedkami. Je tak poskytnutý obnoviteľný zdroj génu pre ďalšie manipulácie, modifikácie a transfery do iných vektorov alebo iných miest v rovnakom vektore.Numerous methods suitable for the production of recombinant proteins are disclosed in the patent and scientific literature. Generally, these techniques include isolating or synthesizing the desired gene sequence and expressing such a sequence in either a prokaryotic or eukaryotic cell using techniques commonly known to those skilled in the art. Once the gene has been isolated, purified anderted into the transfer vector (i.e. cloned), the availability of a substantial amount is ensured. The vector with the gene cloned therein is transferred to a suitable microorganism or cell line, for example bacteria, yeast, mammalian cells such as COS-1 cells (monkey kidney), CHO (Chinese hamster ovary), insect cell lines, and the like, where the vector replicates in the proliferation of a microorganism or cell line and from which the vector can be isolated by conventional means. Thus, a renewable gene source for further manipulations, modifications, and transfers to other vectors or other sites in the same vector is provided.

Expresia môže byť často dosiahnutá transferovaním klonovaného génu v správnej orientácii a čítacom rámčeku do vhodného miesta v transfer vektore tak, že translačný čítací postup z prokaryotického alebo eukaryotického génu vedie k syntéze proteínového prekurzora, obsahujúceho aminokyselinovú sekvenciu, kódovanú klonovaným génom, pripojeným k Met alebo aminokoncovej sekvencii z prokaryotického alebo eukaryotického génu. V obidvoch prípadoch môžu byť signály pre iniciáciu transkripcie a translácie dodané vhodným genomickým fragmentom klónovaného génu. Veľa špecifických techník štiepenia proteínov môže byť použitých na štiepenie proteínového prekurzora, keď je produkovaný, v požadovanom bode tak, aby sa uvoľnila požadovaná aminokyselinová sekvencia, ktorá môže byť potom čistená obvyklými prostriedkami. V niektorých prípadoch je proteín, obsahujúci požadovanú aminokyselinovú sekvenciu, produkovaný bez potreby špecifických techník štiepenia a môže byť tiež uvoľnený z buniek do extracelulámeho rastového média.Expression can often be achieved by transferring the cloned gene in the correct orientation and reading frame to a suitable site in the transfer vector such that a translational reading procedure from a prokaryotic or eukaryotic gene results in the synthesis of a protein precursor containing an amino acid sequence encoded by the cloned gene linked to Met or amino-terminal a sequence from a prokaryotic or eukaryotic gene. In both cases, the transcription and translation initiation signals can be delivered by a suitable genomic fragment of the cloned gene. Many specific protein cleavage techniques can be used to cleave the protein precursor, when produced, at a desired point so as to release the desired amino acid sequence, which can then be purified by conventional means. In some cases, a protein containing the desired amino acid sequence is produced without the need for specific cleavage techniques and can also be released from the cells into extracellular growth medium.

Izolácia genomického klonu ľudského EPOIsolation of human EPO genomic clone

Ľudský EPO bol čistený do homogenity z moču pacientov, postihnutých aplastickou anémiou, ako je to opísané. Úplné štiepenie tohto čisteného EPO proteázovým trypsínom poskytlo fragmenty, ktoré boli oddelené vysokotlakovou kvapalinovou chromatografiou s reverznou fázou, získané z gradientových frakcií a podrobené mikrosekvenčnej analýze. Sekvencie tryptických fragmentov sú podtrhnuté v tabuľkách 2 a 3 a sú podrobnejšie diskutované ďalej. Dve aminokyselinové sekvencie, Val-Asn-Phe-Tyr-Ala-Trp-Lys a Val-Tyr-Ser-Asn-Phe-Leu-Arg, boli zvolené pre návrh oligonukleotidových prób (vedúcich k oligonukleotidovému poolu 17 nt dlhému a 32-krát degenerovanému a oligonukleotidovému poolu 18 nt dlhému a 128-krát degenerovanému zo skoršieho tryptického fragmentu, ako tiež k dvom poolom 14 nt dlhým, vždy 48-krát degenerovaným, z neskoršieho tryptického fragmentu). 32-krát degenerovaný 17merový pool bol použitý na skrining ľudskej genomickej DNA knižnice v Ch4A vektora (22) pri použití modifikácie Woo-a a O'Malleye v in situ amplifikačnom postupe (47) na prípravu filtrov pre skrining.Human EPO was purified to homogeneity from the urine of patients suffering from aplastic anemia as described. Complete digestion of this purified EPO with protease trypsin gave fragments which were separated by reverse phase high-pressure liquid chromatography, obtained from gradient fractions and subjected to micro-sequence analysis. Tryptic fragment sequences are underlined in Tables 2 and 3 and are discussed in more detail below. Two amino acid sequences, Val-Asn-Phe-Tyr-Ala-Trp-Lys and Val-Tyr-Ser-Asn-Phe-Leu-Arg, were chosen to design oligonucleotide probes (resulting in an oligonucleotide pool of 17 nt long and 32 times degenerate and oligonucleotide pool 18 nt long and 128 times degenerate from the earlier tryptic fragment, as well as to two pools of 14 nt long, each 48 times degenerate, from the later tryptic fragment). A 32-fold degenerate 17-mer pool was used to screen a human genomic DNA library in a Ch4A vector (22) using a Woo-a and O'Malley modification in an in situ amplification procedure (47) to prepare filters for screening.

Arabské číslice v zátvorkách (1) až (81) sú použité na označenie publikácií, ktoré sú uvedené podľa čísel na konci tohto opisu.The Arabic numerals in parentheses (1) to (81) are used to indicate publications that are listed by the numbers at the end of this description.

Fágy, hybridizujúce k 17meru, boli vybrané, spojené do malých skupín a probované s 14merovými a I8merovými poolmi. Fágy, hybridizujúce k 17merovým, 18merovým aPhages hybridizing to the 17mer were selected, pooled into small groups and probed with the 14mer and 18mer pools. Phages hybridizing to 17mer, 18mer and

SK 280623 Β6SK 280623-6

14merovým poolom, boli čistené a fragmenty boli subklonované do Ml3 vektorov pre sekvenciu dideoxy-retazec ukončujúci metódou podľaThe 14mer pool was purified and the fragments were subcloned into the M13 vectors for the dideoxy chain sequence terminating by the method of

Tabuľka 1Table 1

ĽtttcctacimttrIggccarcggccigagccttcugKgaťccttgactccccgifgctgtgIgcatttcaff aĽtttcctacimttrIggccarcggccigagccttcugKgaťccttgactccccgifgctgtgIgcatttcaff and

ACG GGC TGT GCT GAA CAČ TGC AGC TTG ΑΛΤ GAG ΛΛΤ ATCACG GGC TGT GCT GAA CAC TGC AGC TTG ΛΤΛΤGAG ΛΛΤ ATC

Thľ Gly Cys Ala Clu His Cys Ser Leu Asn Glu Asn íleThly Gly Cys Ala Clu His Cys Ser Leu Asn Glu Asn White

ACT CTC CCA OAC ACC AAA CTT ΛΛΤ TTC TAT GCC TGC AAGACT CTC CCA OAC ACC AAA CTT ΛΛΤ TTC TAT GCC TGC AAG

Thr Val Pro Asp Thr Lys Vtil Asn Phe Tyr Ala Trp LysThr Val Pro Asp Thr Lys Vtil Asn Phe Tyr Ala Trp Lys

AGG AŤG GAGjrtgagttcclttttttttltttttcctttctUtggognatctcatttgcgagcctgAGG AŤG GAGjrtgagttcclttttttttltttttcctttctUtggognatctcatttgcgagcctg

Arg MET Glu 3 atttlggatgaaagggagaalgateArg MET Glu 3 atttlggatgaaagggagaalgate

Tabuľka 2 íitŕ GLY VAL HIS GLU CYS PHO ALA TUP LEV Irtf LEU LCU LEU $£P. LEV LEU SER LEU PRU LEU GLY l£B PRO VAL LEU GLY »l. Pro fru Arr L»· II» w Aw> ,!>t- Art w L°u clu Arg TyT 0111 A'*TABLE 2 GLIT VAL HIS GLU CYS PHO ALA TUP LEV Irtf LEU LCU LEU $ £ P. LEV LEU SER LEU GLU l £ B FOR VAL LEU GLY »l. Pro fru Arr L »· II» w Aw>,!> T - Art w l ° u clu Arg TyT 0111 A '*

G!w_.AI«_-Ghj *« IJ»_ TK> Thr Cly »U nu III. Cp« «.» Leu A«* Clu itn 11« ThrG! W_.AI «_- Ghj *« IJ »_ TK> Thr Cly» U nu III. Cp ««. »Leu A« * Clu itn 11 «Thr

1# «1 # «

V»l Pre Α·ρ Thr Lj« V»l A«n !*tn Tyr Al« Trt tr> Arg Met Glu Víl Cl» Cín Gin Al·»Pre · Th r r r r A A A r r r r r r r r r r r Met Met Met Met Met Met Met

Tabuľka 3 cteggigce í««g«g<«Table 3 cteggigce í «« g «g <«

CCCttt»C»t CCgCCCECtC CtCCÍggCCC gitgggcCgg xa'«»ec«g( cs»£ccee»t cUgctgagg M««»gte ígccgcgiíg ccgigcctcc cttCatCACSC cccccgtcjt -2 JCCCttt »C» t CCgCCCECtC CtCCÍggCCC gitgggcCgg xa 'ec »g ( en» £ ccee »t cUgctgagg M« «» gte ígccgcgiíg ccgigcctcc cttCatCACSC cccccgtcjt -2 J

HtT CLT TAL »11 CLU CTS MOHtT CLT TAL 11 CLU CTS MO

ATC CCC CTC CAC CAA TCT CCT ▲ATC CCC CTC CAC CAA TCT CCT ▲

ALA TU LEU TV LEU LEU LEU SE1 LEU LEV Stt LEU MO LEV -CLT LEU MO VAL LCU CLEALA TU LEU TV LEU LEU LEU LE1 LEU LEV MO LEV -CLT LEU MO VAL LCU CLE

CCC TGC CTC TCC CTT CTC CTC TCC CTG CIC TCC CTC CCT CTG OCO CTC CCA CTt CTC CCC tSO WOCCC TGC CTC TCC CTT CTC CTC TCC CTG CIC TCC CTC CCT CTG

Ltu Phe Ar» V>1 Tyr Ser *»» Phe. l.e»_Ar» Cly ty e l.eu Ly« Lem Tyr Thr Cly Cl» AULtu Phe Ar »Tyr Ser * Phe. l.e »_Ar» Cly ty e l.eu Ly «Lem Tyr Thr Cly Cl» AU

CTC TTC CSA CTC TAC TCC AAT TTC CTC CCG OCA AAC CTC AAC CTC Tie ACA CCC CAC CCCCTC TTC CSA CTC TAC TCC AAT TTC CTC CCG OCA AAC CTC AAC CTC Tie ACA CCC CAC CCC

Si USSi US

Cví Ar» Thr Cl» líp ArgCví Ar Thr Cl Arg

TCC ACC ACA CCG CAC ACA TCA ce»Ct'E tEtecaeetc jteatacce· eaacccagcg ccascct(ce ccacftacac ccuauBtg gpcacagee tlCPtCctaTCC ACC ACA CCG CAC ACA TCA Ct'E tEtecaeetc jteatacce · e and cccagcg ccascct (ce ccacftacac ccuauBtg gpcacagee tlCPtCcta

CCCICtGCCí teaeamee •CgectSt» geaíEgacic aaett£ig[g e«CC«C'Gt etcaccHcc ccugagcag ereaetq-ge CCDCCegftt» agaggíacrg gsagcactci «ccecgeaaa cceagagagc β»Ε311«|ίΑ MtCE-tgcc tegaoaacCC aaeterEM· ttaaactcig aggacaegec agC'tt'»tCCCICtGCCí teaeamee • CgectSt »geaíEgacic aaett £ ig [g e« CC «C'Gt etcaccHcc ccugagcag ereaetq-ge CCDCCegftt» agaggíacrg gsagcactci »ccecgeaaa cceagagagc β» tεgTcec |

Sangera a Coulsona (23) (1977). Sekvencia regiónu, hybridizujúceho k 32násobne degenerovanému 17meru v jednom z klonov, je uvedená v tabuľke 1. DNA sekvencia obsahuje v otvorenom čítacom rámčeku nukleolidy, ktoré by mohli presne kódovať tryptický fragment, použitý na odvodenie 17merového poolu oligonukleotidov. Ďalej analýza DNA sekvencie indikuje, že 17merový hybridizujúci región bol obsiahnutý v 87bp exóne, naviazanom v miestach potenciálneho zostrihu akceptora a donoru.Sanger and Coulson (23) (1977). The sequence of the region hybridizing to the 32-fold degenerate 17mer in one of the clones is shown in Table 1. The DNA sequence contains, in the open reading frame, nucleolides that could accurately encode the tryptic fragment used to derive the 17mer oligonucleotide pool. Further, DNA sequence analysis indicates that the 17mer hybridizing region was contained within the 87bp exon bound at the potential splice acceptor and donor sites.

Pozitívne potvrdenie, že tieto dva klony (tu označené ako lambda-HEPOl a lambda-HEP02) sú EPO genomické klony, bolo získané sekvenovaním ďalších exónov, obsahujúcich iný tryptický fragment, kódujúci informácie.Positive confirmation that these two clones (referred to herein as lambda-HEPO1 and lambda-HEP02) are EPO genomic clones were obtained by sequencing additional exons containing another tryptic fragment encoding the information.

Izolácia EPO cDNA klonovIsolation of EPO cDNA clones

Bola vykonaná Northem analýza (56) ľudskej fetálnej (20 týždňov starej) pečeňovej mRNA pri použití 95nt jednoreťazcovej próby, pripravenej z M13 klonu, obsahujúceho časť 87bp exónu, opísaného v tabuľke 1. Ako je ilustrované na obr. 1, bolo možné detegovať silný signál vo fetálnej jadrovej mRNA. Presná identifikácia tohto pásu ako EPO mRNA bola vykonaná pri použití rovnakej próby k skríningu bakteriofágovej lambda cDNA knižnice fetálnej pečeňovej mRNA (25). Bolo získaných niekoľko hybridizujúcich klonov pri frekvencii približne 1 pozitívny na 250 000 rekombinantov. Kompletný nukleotid a odvodené od týchto klonov (lambdaHEPOFL13 a lambda-HEPOFL8) sú uvedené v tabuľkách 5 a 6. EPO kódujúci informácie je obsiahnutý v 594nt v 5-koniec polovine cDNA, zahŕňajúcej veľmi hydrofóbny 27 aminokyselinový leader a 166 aminokyselinového zrelého proteínu.A Northem analysis (56) of human fetal (20 weeks old) liver mRNA was performed using a 95nt single-stranded probe prepared from an M13 clone containing a portion of the ex 87bp 87bp described in Table 1. As illustrated in FIG. 1, a strong signal could be detected in fetal nuclear mRNA. Accurate identification of this band as EPO mRNA was performed using the same probe to screen the bacteriophage lambda lambda cDNA library of fetal liver mRNA (25). Several hybridizing clones were obtained at a frequency of approximately 1 positive per 250,000 recombinants. The complete nucleotide and derived from these clones (lambdaHEPOFL13 and lambda-HEPOFL8) are shown in Tables 5 and 6. EPO encoding information is contained in 594nt in the 5-end half of the cDNA, including a very hydrophobic 27 amino acid leader and 166 amino acid mature protein.

Identifikácia N-konca zrelého proteínu bola založená na N-koncovej sekvencii proteínu, sekretovaného do moču osôb s aplastickou anémiou, pozri tabuľku 1, a ako publikovali Goldwasser (26), Sue a Sytkowski (27) a Yangawa (21). Či tento N-koniec (Ala-Pro-Pro-Arg-) predstavuje skutočný N-koniec, naviazaný na EPO v obehu, alebo či prebieha nejaké štiepenie v obličkách alebo moči, nie je v súčasnosti známe.The identification of the N-terminus of the mature protein was based on the N-terminal sequence of the protein secreted into the urine of individuals with aplastic anemia, see Table 1, and as published by Goldwasser (26), Sue and Sytkowski (27) and Yangawa (21). Whether this N-terminus (Ala-Pro-Pro-Arg-) represents the true N-terminus bound to EPO in circulation or whether there is any cleavage in the kidneys or urine is currently unknown.

Aminokyselinové sekvencie, ktoré sú podtrhnuté v tabuľkách 2 a 3, označujú tie tryptické fragmenty alebo časti, z ktorých bola získaná proteínová sekvencia. Dedukovaná sekvencia presne súhlasí s tryptickými fragmentmi, ktoré boli sekvenované, čo potvrdzuje, že izolovaný gén kóduje ľudský EPO.The amino acid sequences that are underlined in Tables 2 and 3 indicate those tryptic fragments or portions from which the protein sequence was obtained. The deduced sequence exactly matches the tryptic fragments that have been sequenced, confirming that the isolated gene encodes human EPO.

Štruktúra a sekvencie ľudského EPO génuStructure and sequence of the human EPO gene

Relatívne polohy DNA inzertov štyroch nezávislých ľudských EPO genomických klonov sú uvedené na obr. 3. Hybridizačná analýza týchto klonov s oligonukleotidovými próbami a s rôznymi próbami, pripravenými z dvoch tried EPO cDNA klonov, umiestňuje EPO gén do približne 3,3 kb oblasti, znázornenej na obr. 3 tmavou čiarou. Kompletná sekvenčná analýza tejto oblasti (pozri príklad 4) a porovnanie s cDNA klonmi vedie k mape intrónovej a exónovej štruktúry EPO génu, uvedenej na obr. 4. EPO gén je rozdelený do 5 exónov. Časť exónu I, celé exóny II, III a IV a časť exónu V, obsahujú proteín, kódujúci informáciu. Zvyšné exóny I a V kódujú 5-koniec a 3-koniec netranslatovanej sekvencie.The relative positions of the DNA inserts of the four independent human EPO genomic clones are shown in FIG. 3. Hybridization analysis of these clones with oligonucleotide probes and different probes, prepared from two classes of EPO cDNA clones, places the EPO gene in the approximately 3.3 kb region shown in FIG. 3 with a dark line. Complete sequence analysis of this region (see Example 4) and comparison with cDNA clones leads to a map of the intron and exon structure of the EPO gene shown in FIG. 4. The EPO gene is divided into 5 exons. Part of exon I, all exons II, III and IV and part of exon V contain a protein encoding the information. The remaining exons I and V encode the 5-end and 3-end of the untranslated sequence.

Prechodná expresia EPO v COS bunkáchTransient expression of EPO in COS cells

Na demonštrovanie, že biologicky aktívny EPO by mohol byť exprimovaný v in vitro bunkovom systému, bola uskutočnená COS bunková expresná štúdia (58). Vektor, použitý na prechodné štúdie, p91023 (B), je opísaný v príklade 5. Tento vektor obsahuje adenovírusový hlavný neskorý promótor, SV40 polyadenylačnú sekvenciu, SV40 pôvod replikácie, SV40 enhancer a adenovírusový VA gén. cDNA inzert v lambda-HEPOFL13 (pozri tabuľka 6) bola inzertovaná do p91023(B) vektora po smere od hlavného neskorého promótora. Tento nový vektor je označený ako PPTFL13.To demonstrate that biologically active EPO could be expressed in an in vitro cell system, a COS cell expression study was performed (58). The vector used for the transient studies, p91023 (B), is described in Example 5. This vector contains the adenovirus major late promoter, the SV40 polyadenylation sequence, the SV40 origin of replication, the SV40 enhancer, and the adenoviral VA gene. The cDNA insert in lambda-HEPOFL13 (see Table 6) was inserted into the p91023 (B) vector downstream of the major late promoter. This new vector is designated PPTFL13.

Dvadsaťštyri hodín po transfekcii tohto konštruktu do M6 kmeňa COS-1 buniek (Horowitz a spol., J. Mol. Appl. Genet. 2: 147-149 (1983)) boli bunky premyté, premiestne4 né do séra bez média a bunky boli zobrané o 48 hodín neskoršie. Hladina uvoľnenia EPO do supematanta kultúry potom bola hodnotená pri použití kvantitatívnej rádioimunoeseje pre EPO (55). Ako je uvedené v tabuľke 8 (príklad 6), bol exprimovaný imunologický reaktívny EPO. Biologická aktivita EPO, produkovaného z COS-1 buniek, bola tiež hodnotená. V oddelenom pokuse bol vektor, obsahujúci EPO cDNA z lambda-HEPOFL13, transfektovaný do COS-1 buniek a médium bolo zobrané ako je to opísané. EPO v médiu bol potom kvantifikovaný buď v dvoch in vitro biologických skúškach, 3H-tymidínom a CFU-E (12, 29) a potom dvoma in vivo skúškami, hypoxickou myšou a vyhladovenou myšou (30, 31) (pozri tabuľku 9, príklad 7). Tieto výsledky demonštrujú, že biologicky aktívny EPO je produkovaný v COS-1 bunkách. Pri Westem-blottingu s použitím polyklonálnej anti-EPO protilátky, EPO produkovaný COS bunkami má mobilitu na SDS-polyakrylamidových géloch, ktorá je identická s mobilitou natívneho EPO, pripraveného z ľudského moču (príklad 8). Rozsah glykozylácie EPO, produkovaného COS-1, môže byť podobný ako pri natívnom EPO.Twenty-four hours after transfection of this construct into an M6 strain of COS-1 cells (Horowitz et al., J. Mol. Appl. Genet. 2: 147-149 (1983)), cells were washed, transferred to serum-free serum, and cells were harvested. 48 hours later. The level of release of EPO into the culture supernatant was then evaluated using quantitative radioimmunoassay for EPO (55). As shown in Table 8 (Example 6), immunological reactive EPO was expressed. The biological activity of EPO produced from COS-1 cells was also evaluated. In a separate experiment, the vector containing the EPO cDNA from lambda-HEPOFL13 was transfected into COS-1 cells and the medium was harvested as described. The EPO in the medium was then quantified in either two in vitro bioassays, 3 H-thymidine and CFU-E (12, 29) and then two in vivo assays, a hypoxic mouse and a starved mouse (30, 31) (see Table 9, example). 7). These results demonstrate that biologically active EPO is produced in COS-1 cells. In Western blotting using a polyclonal anti-EPO antibody, EPO produced by COS cells has mobility on SDS-polyacrylamide gels that is identical to that of native EPO prepared from human urine (Example 8). The extent of glycosylation of EPO produced by COS-1 may be similar to that of native EPO.

Rôzne vektory, obsahujúce iné promôtory, môžu byť tiež použité v COS bunkách alebo v iných cicavčích alebo eukaryotických bunkách. Príklady takých iných promótorov, vhodných pri rozpracovaní vynálezu, zahŕňajú SV40 časné a neskoré promôtory, promótor myšieho metalotioneinového génu, promótor, nájdený v dlhých terminálnych opakovaniach vtáčích alebo cicavčích retrovírusov, promótor bakulovírusového polyhedron génu a iné. Príklady typov iných buniek, vhodných v praktickom rozpracovaní tohto vynálezu, zahŕňajú E. coli, kvasinkové, cicavčie bunky, ako sú CHO (vaječník čínskeho chrčka), C127 (opičí epitel), 3T3 (myší fibroblast), CV-1 (obličky africkej opice - Afričan green monkey kidney) a hmyzie bunky, ako sú bunky z Spodoptera fŕugiperda a Drosophila melangaster. Tieto alternatívne promôtory a/alebo bunkové typy môžu umožňovať reguláciu načasovania alebo hladiny EPO expresie, produkcie bunkové špecifických typov EPO alebo rastu veľkých množstiev EPO produkujúcich buniek za menej nákladných, ľahšie kontrolovateľných podmienok.Various vectors containing other promoters can also be used in COS cells or other mammalian or eukaryotic cells. Examples of such other promoters useful in the practice of the invention include the SV40 early and late promoters, the mouse metallothionein gene promoter, the promoter found in long terminal repeats of avian or mammalian retroviruses, the baculovirus polyhedron gene promoter, and others. Examples of other cell types useful in the practice of this invention include E. coli, yeast, mammalian cells such as CHO (Chinese Hamster Ovary), C127 (monkey epithelium), 3T3 (mouse fibroblast), CV-1 (African monkey kidney) (African monkey kidney) and insect cells such as cells from Spodoptera fugiperda and Drosophila melangaster. These alternative promoters and / or cell types may allow regulation of the timing or level of EPO expression, the production of cell specific types of EPO, or the growth of large amounts of EPO producing cells under less expensive, more easily controllable conditions.

Expresný systém, ktorý si zachováva výhody cicavčej expresie, ale vyžaduje kratší čas na produkciu vyššej hladiny expresie bunkovej línie, sa skladá z hmyzej bunkovej línie a DNA vírusu, ktorý sa reprodukuje v tejto bunkovej línii. Vírus je vírus jadrovej polyhedrózy. Má dvojvláknový cirkulámy DNA genóm s veľkosťou 128 kb.An expression system that retains the benefits of mammalian expression but requires less time to produce a higher level of cell line expression consists of an insect cell line and a DNA virus that reproduces in that cell line. The virus is a nuclear polyhedrosis virus. It has a double-stranded circulating DNA genome of 128 kb.

Nukleokapsid je tyčkovite tvarovaný a nachádza sa obalený v dvoch formách, neokludovanej forme vírusu, prerastajúceho membránou, a okludovanej forme, obalenej v proteínovom kryštále v jadre infikovanej bunky. Tieto vírusy môžu byť rutinne propagované v in vitro hmyzej bunkovej kultúre a sú prispôsobivé všetkým rutinným vírusovým metódam u živočíchov. Médium bunkovej kultúry je typicky živný soľný roztok a 10% fetálne teľacie sérum.The nucleocapsid is rod-shaped and is enveloped in two forms, the non-occluded form of the membrane-growing virus, and the occluded form, encased in the protein crystal in the nucleus of the infected cell. These viruses can be routinely propagated in in vitro insect cell culture and are adaptable to all routine viral methods in animals. Cell culture medium is typically nutrient saline and 10% fetal calf serum.

In vitro je rast vírusu iniciovaný, keď neokludovaný vírus (NOV) vstupuje do bunky a prechádza do jadra, kde sa replikuje. Replikácia je jadrová. Počas počiatočnej fázy (8-18 hodín po infekcii) vírusovej aplikácie sú nukleokapsidy zhromaždené v jadre a následne prerastajú plazmovou membránou ako NOV a rozširujú infekciu v bunkovej kultúre. Navyše niektoré nukleokapsidy následne (18+ hodín po infekcii) zostávajú v jadre a sú okludované v proteínovej matrici a sú známe ako polyhedrálne inkluzné teliesko (PIB). Táto forma nie je v bunkovej kultúre infekčná. Matrica je zložená z proteínu, známeho ako polyhedrín, mol. hmotnosť 33 kd. Každý PIB má približne 1 mm v priemere a v jadre môže byť až 100 PIB. V neskorej fáze infekčného cyklu je produkovaný tak veľký podiel polyhedrínu, ktorý robí až 25 % celkového bunkového proteínu.In vitro, virus growth is initiated when non-occluded virus (NOV) enters the cell and passes into the nucleus where it replicates. Replication is nuclear. During the initial phase (8-18 hours after infection) of viral application, the nucleocapsids are collected in the nucleus and subsequently grow through the plasma membrane as NOV and spread the infection in cell culture. In addition, some nucleocapsids subsequently (18+ hours after infection) remain in the nucleus and are occluded in the protein matrix and are known as polyhedral inclusion bodies (PIBs). This form is not infectious in cell culture. The matrix is composed of a protein known as polyhedrin, mol. weight 33 kd. Each PIB is approximately 1 mm in diameter and can be up to 100 PIB in the core. In the late phase of the infection cycle, such a large proportion of polyhedrin is produced that makes up to 25% of the total cellular protein.

Pretože PIB nemá žiadnu úlohu v in vitro replikačnom cykle, môže byť polyhedrínový gén deletovaný z vírusového chromozómu bez ovplyvnenia životaschopnosti in vitro. Pri použití vírusu ako expresného vektora bola nahradená polyhedrínový gén kódujúca oblasť cudzou DNA, ktorá má byť exprimovaná, a bola tak umiestnená pod kontrolu polyhedrín promótora. Výsledkom je vírusový fenotyp, netvoriaci PIB.Since PIB has no role in the in vitro replication cycle, the polyhedrin gene can be deleted from the viral chromosome without affecting in vitro viability. Using the virus as an expression vector, the polyhedrin gene encoding the region of the foreign DNA to be expressed was replaced and placed under the control of the polyhedrin promoter. The result is a non-PIB viral phenotype.

Tento systém bol použitý niekoľkými výskumníkmi, z ktorých sú najčastejšie uvádzaní Pennock a spol. a Smith a spol. Pennock a spol. (Gregory D.Pennock, Charles Shoemaker a Lois K. Miller, Molecular and Celí Biology 3 : 84, str. 399 - 406) opisujú vysokú hladinu expresie bakteriálneho proteínu, S-galaktozidázy, keď je umiestnený pod kontrolou polyhedrínového promótora.This system has been used by several researchers, of which Pennock et al. and Smith et al. Pennock et al. (Gregory D. Penock, Charles Shoemaker, and Lois K. Miller, Molecular and Cell Biology 3: 84, pp. 399-406) describe a high level of expression of a bacterial protein, S-galactosidase, when placed under the control of the polyhedrin promoter.

Iný expresný vektor, odvodený od jadrového polyhedrózneho vírusu, bol opísaný Smithom a spol. (Gale E. Smith, Max D.Summers a M.J.Fraser, Molecular nad Celí Biology, 16. mája 1983, str. 2156-2165). Títo autori demonštrovali účinnosť svojho vektora v expresii ľudského B-interferónu. Syntetizovaný produkt bol nájdený ako glykozylovaný a sekretovaný z hmyzích buniek, ak sa to očakávalo. V príklade 14 sú opísané modifikácie plazmidu, obsahujúceho Autographa califomica jadrový polyhedrosis vírusový (AcNPV) polyhcdrónový gén, ktoré umožňujú ľahkú inzerciu EPO génu do plazmidu, takže môže byť pod transkripčnou kontrolou polyhedrínového promótora. Výsledná DNA je ko-transfektovaná intaktnou chromozómovou DNA zo štandardného typu AcNPV do hmyzích buniek. Genetická rekombinácia vedie k nahradeniu AcNPVC oblasti polyhedrínového génu DNA z plazmidu. Výsledný rekombinantný vírus môže byť identifikovaný medzi vírusovým potomstvom tým, že má DNA sekvencie EPO génu. Tento rekombinantný vírus má po reinfekcii hmyzích buniek produkovať EPO.Another expression vector derived from the core polyhedrosis virus has been described by Smith et al. (Gale E. Smith, Max D. Summers and M. J. Fraser, Molecular over Cell Biology, May 16, 1983, pp. 2156-2165). These authors demonstrated the efficacy of their vector in the expression of human B-interferon. The synthesized product was found to be glycosylated and secreted from insect cells if expected. Example 14 describes modifications of a plasmid containing the Autographa califomica core polyhedrosis viral (AcNPV) polyhdrone gene that allow easy insertion of the EPO gene into the plasmid so that it can be under transcriptional control of the polyhedrin promoter. The resulting DNA is co-transfected with intact chromosomal DNA from wild type AcNPV into insect cells. Genetic recombination results in replacement of the AcNPVC region of the polyhedrin DNA gene from the plasmid. The resulting recombinant virus can be identified among the viral progeny by having the DNA sequences of the EPO gene. This recombinant virus is expected to produce EPO upon reinfection of insect cells.

Príklady EPO expresie v CHO, C127 a 3T3 a hmyzích bunkách sú uvedené v príkladoch 10 a 11 (CHO), 13 (C 127 a 3T3) a 14 (hmyzie bunky).Examples of EPO expression in CHO, C127 and 3T3 and insect cells are given in Examples 10 and 11 (CHO), 13 (C 127 and 3T3) and 14 (insect cells).

Rekombinantný EPO, produkovaný v CHO bunkách ako v príklade 11, bol čistený bežnými metódami stĺpcovej chromatografie. Relatívne množstvo cukrov, prítomných v glykoproteíne, bolo analyzované dvoma nezávislými metódami [(I) Reinold, Methods in Enzymol. 50:244-249 (Methanolysis) a (II) Takemoto H. a spol., Anál. Biochem. 145:245 (1985) (pyridylaminácie, spolu s nezávislým stanovením kyseliny sialovej)]. Výsledky, získané v každej metóde, boli vo vynikajúcom súlade. Bolo vykonaných niekoľko stanovení, poskytujúcich nasledujúce priemerné hodnoty, kde N-acetylglukosamín je na porovnávacie účely označený hodnotou 1:Recombinant EPO, produced in CHO cells as in Example 11, was purified by conventional column chromatography methods. The relative amounts of sugars present in the glycoprotein were analyzed by two independent methods [(I) Reinold, Methods in Enzymol. 50: 244-249 (Methanolysis) and (II) Takemoto H. et al., Anal. Biochem. 145: 245 (1985) (pyridylamination, together with an independent assay for sialic acid)]. The results obtained in each method were in perfect agreement. Several assays were performed, giving the following average values, where N-acetylglucosamine is designated for comparison purposes as 1:

Cukor relatívna Sugar relative moláma hladina mola level N-acetylglukosamín N-acetylglucosamine 1 1 hexózy: hexoses: 1,4 1.4 galaktóza galactose 0,9 0.9 manóza mannose 0,5 0.5 kyselina N-acetyluramínová N-acetyluraminic acid 1 1 fúkóza fucose 0,2 0.2 N-acetylgalaktozamín N-acetylgalactosamine 0,1 0.1

Je potrebné uviesť, že významné hladiny fúkózy a N-acetylgalaktozamínu boli reprodukovateľné pozorované pri použití obidvoch nezávislých metód analýzy cukrov. Prítomnosť N-acetylgalaktozaminu indikuje prítomnosť O-napojenej glykozylácie na proteín. Prítomnosť O-napojenej glykozylácie boli ďalej indikované SDS-PAGE analýzou glykoproteínu s nasledujúcim štiepením glykoproteínuIt should be noted that significant levels of fucose and N-acetylgalactosamine were reproducible observed using both independent methods of sugar analysis. The presence of N-acetylgalactosamine indicates the presence of O-linked glycosylation to the protein. The presence of O-linked glycosylation was further indicated by SDS-PAGE analysis of the glycoprotein followed by cleavage of the glycoprotein

SK 280623 Β6 s rôznymi kombináciami glykozidických enzýmov. Po enzymatickom odštiepení všetkých N- napojených karbohydrátov na glykoproteinach pri použití enzýmu peptid endo F N-glykozidáza, bola molekulová hmotnosť proteínu ďalej znižovaná nasledujúcim štiepením s neuraminidázami, ako bolo stanovené pomocou SDS-PAGE analýzy. In vitro biologická aktivita čisteného rekombinantného EPO bola skúšaná metódou G.Krystala, Exp. Hematol. 11 : 649 (1983) (bioesej proliferácie slezinových buniek) s proteínovými ukončenými, vypočítanými na základe údajov o aminokyselinovom zložení. Po viacnásobných ukončeniach bola in vitro špecifická aktivita čisteného rekombinantného EPO vyrátaná ako vyššia ako 200 000 jednotiek/mg proteínu. Priemerná hodnota bola v rozmedzí asi 275 000 - 300 000 jcdnotick/mg proteínu. Navyše boli tiež pozorované hodnoty vyššie ako 300 000. Pomery in vivo/polycytemická esej na myšiach, Kazal a Erslev, Am. Clinical Lab. Sci., Vcl. B, str. 91 (1975)/in vitro aktivity, pozorované pre rekombinantný materiál, boli v rozmedzí 0,7 až 1,3.SK 280623 Β6 with various combinations of glycosidic enzymes. After enzymatic cleavage of all N-linked carbohydrates on glycoproteins using the peptide endo F N-glycosidase enzyme, the molecular weight of the protein was further reduced by subsequent digestion with neuraminidases as determined by SDS-PAGE analysis. The in vitro biological activity of purified recombinant EPO was assayed by the method of G. Krystal, Exp. Hematol. 11: 649 (1983) (spleen cell proliferation bioassay) with protein terminated, calculated based on amino acid composition data. After multiple terminations, the in vitro specific activity of purified recombinant EPO was calculated to be greater than 200,000 units / mg protein. The mean value was in the range of about 275,000 to 300,000 units / mg protein. In addition, values greater than 300,000 were also observed. In vivo / polycythemic assay in mice, Kazal and Erslev, Am. Clinical Lab. Sci., Vcl. B, p. 91 (1975) / in vitro activities observed for recombinant material ranged from 0.7 to 1.3.

Je zaujímavé porovnať glykoproteínové charakteristiky, uvedené pre rekombinantný CHO-produkovaný EPO materiál, skôr uvedený v medzinárodnej patentovej prihláške č. WO 85/02610 (publikovanej 20. júna 1985). Zodpovedajúca porovnateľná analýza cukrov, opísaná na str. 65 tejto prihlášky udáva nulovú hodnotu pre fukózu a pre N-acetylgalaktozamín a pomer hexózy : N-acetylgalaktozamín 15,09 : 1. Neprítomnosť N-acetylgalaktozamínu indikuje neprítomnosť O-napojenej glykozylácie v skôr uvádzanom glykoproteíne. Na rozdiel od tohto materiálu, rekombinantný CHO-produkovaný EPO podľa tohto vynálezu, ktorý je charakterizovaný, obsahuje významné a reprodukovateľné pozorovateľné množstvá tak tukózy, ako Nacetylgalaktozamínu, obsahuje menej ako jednu desatinu relatívneho množstva hexóz a je charakterizovaný prítomnosťou O-napojenej glykozylácie. Ďalej môže byť vysoká špecifická aktivita opísaného CHO-ziskaného rekombinantného EPO podľa tohto vynálezu priamo vztiahnutá k svojmu charakteristickému glykozylačnému usporiadaniu.It is of interest to compare the glycoprotein characteristics reported for the recombinant CHO-produced EPO material, previously disclosed in International Patent Application Publication No. WO 97/32710. WO 85/02610 (published Jun. 20, 1985). A corresponding comparable sugar analysis, described on p. 65 of this application gives a zero value for fucose and for N-acetylgalactosamine and a hexose: N-acetylgalactosamine ratio of 15.09: 1. The absence of N-acetylgalactosamine indicates the absence of O-linked glycosylation in the aforementioned glycoprotein. In contrast to this material, the recombinant CHO-produced EPO of the present invention, which is characterized, contains significant and reproducible observable amounts of both fat and Nacetylgalactosamine, contains less than one-tenth the relative amount of hexoses, and is characterized by O-linked glycosylation. Furthermore, the high specific activity of the described CHO-obtained recombinant EPO of the invention may be directly related to its characteristic glycosylation pattern.

Biologicky aktívny EPO, produkovaný prokaryotickou alebo eukaryotickou expresiou klonovaných EPO génov podľa predloženého vynálezu, môže byť použitý pre in vivo liečbu cicavčích druhov lekármi a/alebo veterinármi. Množstvo účinnej zložky bude samozrejme závisieť od intenzity liečenej choroby, zvoleného spôsobu podania a špecifickej aktivity aktívneho EPO, a v konečnej podobe bude stanovené príslušným lekárom alebo veterinárom. Také množstvo aktívneho EPO, stanovené príslušným lekárom, je tu tiež označené ako „liečebne účinné EPO“ množstvo. Napríklad v liečbe indukovanej hypoproliferatívnej anémie, spojenej s chronickým zlyhaním obličiek ovce, bolo účinné denné množstvo EPO 10 jednotiek/kg počas 15 až 40 dní. Pozri Eschbach a spol., J.Clin.Invest., 74 : 434 (1984).Biologically active EPO, produced by prokaryotic or eukaryotic expression of the cloned EPO genes of the present invention, can be used for in vivo treatment of mammalian species by physicians and / or veterinarians. The amount of active ingredient will, of course, depend on the severity of the disease being treated, the route of administration chosen and the specific activity of the active EPO, and will ultimately be determined by the physician or veterinarian concerned. Such an amount of active EPO, as determined by the physician, is also referred to herein as a "therapeutically effective EPO" amount. For example, in the treatment of induced hypoproliferative anemia associated with chronic sheep renal failure, the daily amount of EPO was 10 units / kg for 15 to 40 days. See Eschbach et al., J. Clin. Invest., 74: 434 (1984).

Účinný EPO môže byť podávaný akýmkoľvek spôsobom vhodným pre stav, ktorý je liečený. Výhodne je EPO injektovaný do krvného prúdu liečeného cicavca. Odborníkovi v odbore bude zrejmé, že preferovaný spôsob podania sa bude meniť podľa liečeného stavu.Effective EPO may be administered by any route appropriate to the condition being treated. Preferably, EPO is injected into the blood stream of the treated mammal. One of skill in the art will recognize that the preferred route of administration will vary with the condition being treated.

Pri účinnom EPO je možné, aby bol podávaný buď ako čistá zlúčenina alebo v podstate čistá zlúčenina, je výhodné ho podávať vo forme farmaceutickej formulácie alebo preparátu.For active EPO, it may be administered either as a pure compound or a substantially pure compound, it is preferable to administer it in the form of a pharmaceutical formulation or preparation.

Formulácie podľa predloženého vynálezu tak na veterinárne ako humánne použitie obsahujú účinný EPO proteín, ako je opísaný, spolu s jedným alebo viacerými jeho farmaceutický prijateľnými nosičmi a prípadne ďalšie terapeutické zložky. Nosič(e) musia byť prijateľné v tom zmysle, že sú kompatibilné s inými zložkami formulácie a neškodia jej príjemcovi. Je žiaduce, aby formulácia neobsahovala oxidačné činidla a iné substancie, o ktorých je známe, že nie sú s peptidmi kompatibilné. Formulácia môže byť výhodne vo forme jednotkovej dávkovej formy a môže byť pripravená akoukoľvek metódou, známou v odbore farmácie. Všetky metódy zahŕňajú stupeň uvedenia do spojenia účinnej zložky s nosičom, ktorý tvorí jedna alebo viac pomocných zložiek. Všeobecne sú formulácie pripravené homogénnym a dokonalým spojením účinnej zložky s kvapalnými nosičmi alebo jemne delenými pevnými nosičmi, alebo obidvoma typmi nosičov a potom sú, keď je to nevyhnutné, produkty tvarované do požadovaného tvaru.The formulations of the present invention, for veterinary as well as human use, comprise an active EPO protein as described, together with one or more pharmaceutically acceptable carriers thereof and optionally other therapeutic ingredients. The carrier (s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. It is desirable that the formulation does not contain oxidizing agents and other substances known to be incompatible with the peptides. The formulation may preferably be in unit dosage form and may be prepared by any method known in the art of pharmacy. All methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. Generally, the formulations are prepared by homogeneous and intimate association of the active ingredient with liquid carriers or finely divided solid carriers, or both, and then, if necessary, the products are shaped to the desired shape.

Formulácie, vhodné na parenterálne podanie, obyčajne zahŕňajú sterilné vodné roztoky účinnej zložky s roztokmi, ktoré sú výhodne izotonické s krvou príjemcu. Také formulácie môžu byť výhodne pripravené rozpustením pevnej účinnej zložky vo vode za vzniku vodného roztoku a sterilizáciou roztoku v jedno alebo viacdävkových nádobkách, napríklad zatavených ampulách alebo fľaštičkách.Formulations suitable for parenteral administration typically include sterile aqueous solutions of the active ingredient with solutions that are preferably isotonic with the blood of the recipient. Such formulations may advantageously be prepared by dissolving the solid active ingredient in water to form an aqueous solution and sterilizing the solution in one or more vial containers, for example, sealed ampoules or vials.

Tu používaný EPO/cDNA zahŕňa zrelý EPO/cDNA gén, ktorému predchádza ATG kodón a EPO/cDNA kódujúca alelické variácie EPO proteínu. Jedna alela je ilustrovaná v tabuľkách 2 a 3. EPO proteín zahŕňa 1-metioninový derivát EPO proteínu (Met-EPO) a alelické variácie EPO proteínu. Zrelý EPO proteín, ilustrovaný sekvcnciami v tabuľke 2, začína sekvenciou Ala-Pro-Pro-Arg..., ktorej začiatok je v tabuľke 2 označený číslom „1“. Met-EPO by začínal sekvenciou Met-Ala-Pro-Prc-Arg....EPO / cDNA as used herein includes the mature EPO / cDNA gene preceded by the ATG codon and EPO / cDNA encoding allelic variations of the EPO protein. One allele is illustrated in Tables 2 and 3. The EPO protein comprises a 1-methionine derivative of the EPO protein (Met-EPO) and allelic variations of the EPO protein. The mature EPO protein, illustrated by the sequences in Table 2, begins with the sequence Ala-Pro-Pro-Arg ..., the beginning of which is indicated in Table 2 by the number "1". Met-EPO would start with the sequence Met-Ala-Pro-Prc-Arg ....

Nasledujúce príklady slúžia na lepšie porozumenie vynálezu, ktorého rozsah je daný pripojenými nárokmi. Je pochopiteľné, že modifikácie môžu byť uskutočnené v uvedených postupoch, bez toho aby bol prekročený rozsah vynálezu. Všetky teploty sú udávané v stupňoch Celsia a nie sú korigované. Symbol mikrón alebo mikro, napr. mikroliter, mikromol atď., je „p“, napr. pl, pm atď.The following examples serve to better understand the invention, the scope of which is set forth in the appended claims. It is to be understood that modifications may be made to the above procedures without departing from the scope of the invention. All temperatures are in degrees Celsius and are not corrected. The micron or micro symbol, e.g. the microliter, micromol, etc., is "p", e.g. pl, pm etc.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Izolácia genomického klonu EPOIsolation of the genomic clone EPO

EPO bol čistený z moču pacientov s aplastickou anémiou v podstate ako to bolo opísané (Miyake a spol., J. Biol. Chem., 252 : 5558 (1977)) s tým rozdielom, že bolo vynechaná spracovanie s fenolom a nahradené tepelným spracovaním pri 80 °C počas 5 minút pre inaktiváciu neuraminidázy.EPO was purified from the urine of patients with aplastic anemia essentially as described (Miyake et al., J. Biol. Chem., 252: 5558 (1977)) except that the phenol treatment was omitted and replaced by the heat treatment at 80 ° C for 5 minutes to inactivate neuraminidase.

Konečným stupňom čistenia bola frakcionácia na C-4 Vydac HPLC kolóne (The Separation Group) s použitím 0 až 95 % acetónového gradientu s 0,1 % kyselinou trifluóroctovou (TFA) počas 100 minút. Poloha EPO v gradiente bola stanovená gólovou elektroforézou a N-terminálnou sekvenčnou analýzou (21,26, 27) hlavných píkov. EPO bol eluovaný približne 53 % acetonitrilom a predstavuje približne 40 % proteínu, podrobeného HPLC s reverznou fázou. Frakcie, obsahujúce EPO, boli odparené na 100 pl, upravené na pH 7,0 hydrogenuhličitanom amónnym, dokonale štiepené 2 % TPCK-spracovaným trypsínom (Worthington) 18 hodín pri 37 °C. Produkt tryptického štepenia bol potom podrobený HPLC s reverznou fázou, ako je to opísané. Bola sledovaná optická hustota tak pri 280, ako 214 nm. Dobre oddelené piky boli odparené takmer do sucha a podrobené priamo N-terminálnej aminokyselinovej sekvenčnej analýze (59) pri použití Applied Biosystems Model 480Ab sekvenátora v plynovej fáze. Získané sekvencie sú v tabuľkách 2 a 3 podtrhnuté. Ako je tu uvedené, boli dva z týchto tryptických fragmentov zvolené pre syntézu oligonukleotidových prób.The final purification step was fractionation on a C-4 Vydac HPLC column (The Separation Group) using a 0 to 95% acetone gradient with 0.1% trifluoroacetic acid (TFA) over 100 minutes. The position of EPO in the gradient was determined by goal electrophoresis and N-terminal sequence analysis (21.26, 27) of the major peaks. The EPO was eluted with approximately 53% acetonitrile and represents approximately 40% of the protein subjected to reverse phase HPLC. The fractions containing EPO were evaporated to 100 µl, adjusted to pH 7.0 with ammonium bicarbonate, completely digested with 2% TPCK-treated trypsin (Worthington) for 18 hours at 37 ° C. The tryptic digestion product was then subjected to reverse phase HPLC as described. The optical density was monitored at both 280 and 214 nm. Well separated peaks were evaporated to near dryness and subjected directly to N-terminal amino acid sequence analysis (59) using an Applied Biosystems Model 480Ab gas phase sequencer. The sequences obtained are underlined in Tables 2 and 3. As mentioned herein, two of these tryptic fragments were selected for synthesis of oligonucleotide probes.

Zo sekvencie Val-Asn-Phe-Tyr-Ala-Trp-Lys boli pripravené (aminokyseliny 46 až 52 v tabuľkách 2 a 3) 17mer 32-násobné degenerácie TTCCANGCGTAGAAGTT a 18 mer 128-násobné degenerácie CCANGCGTAGAAGTTNAC.From the Val-Asn-Phe-Tyr-Ala-Trp-Lys sequence, 17mer 32-fold degenerations of TTCCANGCGTAGAAGTT and 18 mer 128-fold degenerations of CCANGCGTAGAAGTTNAC were prepared (amino acids 46-52 in Tables 2 and 3).

Zo sekvencie Val-Tyr-Ser-ASn-Phe-Leu-Arg (aminokyseliny 144 až 150 v tabuľkách 2 a 3) boli pripravené dva pooly 14merov, každý 32-násobne degenerovaný TACACCTAACTTCCT a TACACCTAACTTCTT, ktoré sa odlišujú v prvej polohe pripraveného leucinového kodónu. Oligonukleotidy sú značené na 5-koniec konci pomocou 32P použitím polynukleotid-kinázy (New England Biolabs) a gama 32P-ATP (New England Nuclear). Špecifická aktivita oligonukleotidov sa menila medzi 1000 a 3000 Ci/mmol oligonukleotidu. Ľudská genomická DNA knižnica v bakteriofágu lambda (Laen a spol., 22) bola skrínovaná pri použití modifikácie in situ amplifikačného postupu, pôvodne opísaného Wooom a spol. (47) (1978). Približne 3,5 x 105 fágov bolo umiestnených v hustote 6000 fágov na 150 mm Petriho misku (NZCYM médium) a inkubovaných pri 37 °C do viditeľných povlakov, ktoré sú však malé (približne 0,5 mm). Po 1 hodine chladenia pri 4 °C boli duplikátové kópie vzoriek povlakov prenesené na nylonové membrány (New England Nuclear) a inkubované cez noc pri 37 °C na čerstvých NZCYM platniach. Filtre potom boli denaturované a neutralizované 10-minútovým pobytom počas 10 minút na tenkom filme 0,5N NaOH - IM NaCl a 0,5M Tris (pH 8) - IM NaCl. Po vákuovom sušení pri 80 °C počas 2 hodín boli filtre premyté v 5 x SSC, 0,5 % SDS 1 hodinu a bunkové zlomky na povrchu filtra boli odstránené miernym škrabaním vlhkou tkaninou. Toto škrabanie redukuje podstatnú väzbu próby k filtrom. Filtre potom boli premyté vodou a prehybridizované počas 4 až 8 hodín pri 48 °C v 3M tetrametylamóniumchloridu, 10 mM NaPO4 (pH 6,8), 5 x Denhardtovom roztoku, 0,5 % SDS a 10 mM EDTA. 32P značený 17mer bol potom pridaný v koncentrácii 0,1 pmol/ml a hybridizácia bola vykonaná pri 48 “C počas 72 hodín. Po hybridizácii boli filtre intenzívne premyté 2 x SSC (0,3M NaCl - 0,03M Na-citrát, pH 7) pri teplote miestnosti a potom 1 hodinu v 3M TMAC1 - 10 mm NaPO4 (pH 6,8) pri teplote miestnosti a od 5 do 15 minút pri hybridizačnej teplote. Približne 120 silných duplikátových signálov bolo detegovaných 2 dni po autorádiografii za intenzifikačného skríningu. Pozitívy boli vybrané, zhromaždené po 8 a opäť trikrát reskrínované pri použití jednej poloviný 14merového poolu na každom z dvoch filtrov a 127meru na treťom filtre. Podmienky a 17mer pre umiestnenie na platňu sú opísané s výnimkou, že hybridizácia pre 14mer bola pri 37 °C. Po autorádiografii boli próby odstránené zo 17merového filtra v 50 % formamide počas 20 minút pri teplote miestnosti a filter bol rehybridizovaný pri 52 °C s 18merovou próbou. Dva nezávislé fágy hybridizujú k všetkým trom próbam. DNA z jedného z týchto fágov (tu označený lambda HEPO1) bola dokonale štiepená pomocou Sau3A a subklonovaná do Ml3 pre DNA sekvenčnú analýzu pri použití dideoxy reťazec terminujúcej metódy podľa Sangera a Coulsona, (23) (1977). Nukleotidová sekvencia a odvodená aminokyselinová sekvencia otvoreného čítacieho rámčeka, kódujúca pre EPO tryptický fragment (podtrhnutá oblasť), sú tu opísané. Intrónové sekvencie sú uvedené malými písmenami, exónové sekvencie (87nt) veľkými písmenami. Sekvencie, ktoré súhlasia s miestami akceptorového (a) a donorového (d) strihu, sú podtrhnuté (pozri tabuľka 4).From the sequence Val-Tyr-Ser-ASn-Phe-Leu-Arg (amino acids 144-150 in Tables 2 and 3), two pools of 14mer, each 32-fold degenerate TACACCTAACTTCCT and TACACCTAACTTCTT, were prepared that differ in the first position of the leucine codon prepared. . Oligonucleotides are labeled at the 5-terminus with 32 P using polynucleotide kinase (New England Biolabs) and gamma 32 P-ATP (New England Nuclear). The specific activity of the oligonucleotides varied between 1000 and 3000 Ci / mmol of the oligonucleotide. The human genomic DNA library in lambda bacteriophage (Laen et al., 22) was screened using an in situ modification of the amplification procedure originally described by Woo et al. (47) (1978). Approximately 3.5 x 10 5 phages were plated at a density of 6000 phages per 150 mm Petri dish (NZCYM medium) and incubated at 37 ° C into visible coatings that are small (approximately 0.5 mm). After 1 hour cooling at 4 ° C, duplicate copies of the coating samples were transferred to nylon membranes (New England Nuclear) and incubated overnight at 37 ° C on fresh NZCYM plates. The filters were then denatured and neutralized for 10 minutes on a thin film of 0.5N NaOH-IM NaCl and 0.5M Tris (pH 8) -IM NaCl for 10 minutes. After vacuum drying at 80 ° C for 2 hours, the filters were washed in 5 x SSC, 0.5% SDS for 1 hour, and cell debris on the filter surface was removed by gentle scraping with a damp cloth. This scraping reduces the substantial binding of the probe to the filters. The filters were then washed with water and prehybridized for 4-8 hours at 48 ° C in 3M tetramethylammonium chloride, 10 mM NaPO 4 (pH 6.8), 5 x Denhardt's solution, 0.5% SDS and 10 mM EDTA. 32 P labeled 17mer was then added at a concentration of 0.1 pmol / ml and hybridization was performed at 48 ° C for 72 hours. After hybridization, the filters were washed extensively with 2 x SSC (0.3M NaCl - 0.03M Na-Citrate, pH 7) at room temperature and then for 1 hour in 3M TMAC1 - 10 mm NaPO4 (pH 6.8) at room temperature and from room temperature. 5 to 15 minutes at hybridization temperature. Approximately 120 strong duplicate signals were detected 2 days after autoradiography under intensification screening. Positives were selected, pooled at 8 and re-refined three times using one half 14-meter pool on each of the two filters and 127-meter on the third filter. The conditions and the 17mer for plate placement are described except that the hybridization for the 14mer was at 37 ° C. After autoradiography, the probes were removed from a 17-mer filter in 50% formamide for 20 minutes at room temperature and the filter was rehybridized at 52 ° C with an 18-mer probe. Two independent phages hybridize to all three probes. DNA from one of these phages (lambda HEPO1 herein) was digested with Sau3A and subcloned into M13 for DNA sequence analysis using the dideoxy chain terminating method of Sanger and Coulson, (23) (1977). The nucleotide sequence and deduced open reading frame amino acid sequence encoding an EPO tryptic fragment (underlined region) are described herein. Intron sequences are shown in lowercase letters, exon sequences (87nt) in capital letters. Sequences that match the acceptor (a) and donor (d) splice sites are underlined (see Table 4).

Príklad 2Example 2

Northern analýza mRNA pečene ľudského plodu pg mRNA pečene ľudského plodu (pripravené z pečene 20-týždenného ľudského fetu) a mRNA pečene dospelého človeka bolo elektroforezovaných v 0,8 % agarózovom formaldehydovom géli a transferovaných na nitrocelulózu pri použití metódy Dermana a spol., Celí, 23 : 731 (1981). Jednoreťazcová próba potom bola pripravená z Ml3 templátu, obsahujúceho inzert, ilustrovaný v tabuľke 1. Prajmer bol 20mer, získaný z rovnakého tryptického fragmentu, ako pôvodná 17merová próba. Próba bola pripravená, ako to opísal Anderson a spol., PNAS, (50) (1984), s tým rozdielom, že nasledujúce štiepenie pomocou Amal (ktoré produkuje požadovanú próbu dĺžky 95nt, obsahujúce 74nt kódujúce sekvencie), malý fragment bol čistený z ml3 templátu chromatografiou na stĺpci sepharózy C14BNorthern analysis of human fetal liver mRNA pg human fetal liver mRNA (prepared from the liver of a 20-week human fetus) and adult human liver mRNA was electrophoresed in a 0.8% agarose formaldehyde gel and transferred to nitrocellulose using the method of Derman et al., Cell, 23: 731 (1981). A single chain probe was then prepared from the M13 template containing the insert illustrated in Table 1. The primer was 20mer, obtained from the same tryptic fragment as the original 17mer probe. The probe was prepared as described by Anderson et al., PNAS, (50) (1984), except that following Amal digestion (which produces the desired 95nt probe containing 74nt coding sequences), a small fragment was purified from ml3. of the template by chromatography on a C14B sepharose column

Tabuľka 4 aget cceggget tecagaeet<igc(ac tt IgeggaaeteaEeaflcecaggea tetet gact eteegeeeaaeacc gg|*ai£eeeeceagf,A(gcgceegc(tigeec«gccctieecagni ge.igcteegceegtcceaíictetgctc·· ISO ccttctfcuctcccctcccBcgiicccaixi’ccefxgageageccecattacecaeaef'.caeiiuteeí'Bcagecc cr,ic.->Bcecccr.acccteAacccaEgcgtcct£cecetgctctgaccecgEttggeccctacceet((CBaccce 300 tcacBcneacatcetetcceccacecccaccegŕgeacgcaeaeetEcagacancafiecccEaecceeiiccaga neCReaej>Rtceete8geenrCCCC«:cCCCTCCCTCCĽCTCCUCCCCACCGC<;CTCTCCTCr.aWACCCCCACCC A 50 t:CCCC*CCCCecCCCCTCTCCTCCC*CACCCCCCCCCCTCCACAKCCCCCCTCTCCTCCACCCCCCTCCCCCTCC CCCTĽĽACCCCCCACCTTCCCCCt'ATrACCGCCCCCCCTCTCCTCACCCCCCCCCCCCCACCTCCCTCACCCACC 660 (jCCCCCAUCCCCCCACATCCCCCTCCACCgtgagtaccegegggctcggcEcteecgeecgecetggtcectgtt Hetf.lyVaillIaG tgagcggggatttagcgccceggctaetgtecaggaggtggetgggttcaDggaccggegaettgteaaggaecc 750 cggaaggfiggaBEggBStlSetCMCCtecacgtgccARCftSAgact' wtgggngtectt jtgggatgeeenaaac ccgacctgtgaagEgcaeacagtttggiggetEAggEgaacaaEEtceggggEgCtctgctttgccagtggagag 900 gaagetgataagctBatiacctgggCBctggagccBecacttatccgccagatggta»£crtccgtcaeaceagg at tgnngtttgBecg|agaagtgcatectt|ťigcctgggr.C<CRggCgťtc*cactgeaE<*<l!gmtgaatgaa 10SQ. ggcci'BggAggcagcaecigagcgcctccatgEtcggggacatgaeggaegagettgggcagagaegtggggatg aagcaegctctcettccaea(ceacccttctcccteceeBeetgactcteageetggŕtatetgt tetaEAATCT 1200’ - CCrCCCTCriCTCTCRCTTCTCCTCTCCCTCCTGTCCCTCCCTCTCCCCCTCaACTCCTCtXCCCCCCACCAcÉc FroAlaTrpLcuTrpl.col^oLcuSerl^uLcuSerLeuProLauClytauProValLeuCIyAlaFroProArg CTCATCtCTCACACCCCACTCCTtXACACCTACCTCTrec.AĽCCCAACCACCCCCACAATATCACCgtBatecce I35Ď , Lenil eCyaAapSerArgValleuCl uArgTyrLauLauCluAIaLyaCluAlaGluAtnl leThr c 11 c crcnRcnca 11 ccacngaac t cnŕf.e t caRggc 11 c e ftggaiic t cc t c· r.at c cag(a*ec t (gcact C ggccrgEítgcggaEctEBgaagctagacaecgeeeceeiaeacaagaacaagtetggtagececaaaccataccc 1500 ggaaaccaggcaagBagcaaaecengcagatcctacgectgtggccagggceagBgecttcegggacccttgnet cceeBBgetgegtgeatteeagACCCCCTCTCCTCAACACTCCACCTTCAATCACAATATCACTCTCCCACACAC 1650 ‘nirCJyCysAlaClulUeCyaSaiLauAanCLuAaallaThrValProAapThTable 4 aget cceggget tecagaeet <IGC (c tt IgeggaaeteaEeaflcecaggea Tete gact eteegeeeaaeacc gg | * i £ eeeeceagf, A (gcgceegc (tigeec «gccctieecagni ge.igcteegceegtcceaíictetgctc · · ISO ccttctfcuctcccctcccBcgiicccaixi'ccefxgageageccecattacecaeaef'.caeiiuteeí'Bcagecc cr ic .-> Bcecccr. acccteAacccaEgcgtcct £ cecetgctctgaccecgEttggeccctacceet ((CBaccce 300 tcacBcneacatcetetcceccacecccaccegŕgeacgcaeaeetEcagacancafiecccEaecceeiiccaga neCReaej> Rtceet e8geen rCCCC ': cCCCTCCCTCCĽCTCCUCCCCACCGC <; CTCTCCTCr.aWACCCCCACCC and 50 t: CCCC * * CCCCecCCCCTCTCCTCCC CACCCCCCCCCCTCCACAKCCCCCCTCTCCTCCACCCCCCTCCCCCTCC CCCTĽĽACCCCCCACCTTCCCCCt'ATrACCGCCCCCCCTCTCCTCACCCCCCCCCCCCCACCTCCCTCACCCACC 660 (jCCCCCAUCCCCCCACATCCCCCTCCACCgtgagtaccegegggctcggcEcteecgeecgecetggtcectgtt Hetf.lyVaillIaG tgagcggggatttagcgccceggctaetgtecaggaggtggetgggttcaDggaccggegaettgteaaggaecc 750 cggaaggfiggaBEggBStlSetCMCCtecacgtgccARCftSAgact' wtgggngtectt jtgggatgeeenaaac ccgacctgtgaagEgcaeacagtttggiggetEAggEgaacaaEEtceggggEgCtctgctttgccag tggagag 900 gaagetgataagctBatiacctgggCBctggagccBecacttatccgccagatggta »£ crtccgtcaeaceagg at tgnngtttgBecg | agaagtgcatectt | tigcctgggr.C <CRggCgtt * cac tg ea E <* <l! gmt ggcci'BggAggcagcaecigagcgcctccatgEtcggggacatgaeggaegagettgggcagagaegtggggatg aagcaegctctcettccaea (1200 ceacccttctcccteceeBeetgactcteageetggŕtatetgt tetaEAATCT '- CCrCCCTCriCTCTCRCTTCTCCTCTCCCTCCTGTCCCTCCCTCTCCCCCTCaACTCCTCtXCCCCCCACCAcÉc FroAlaTrpLcuTrpl.col oLcuSerl ^ ^ uLcuSerLeuProLauClytauProValLeuCIyAlaFroProArg CTCATCtCTCACACCCCACTCCTtXACACCTACCTCTrec.AĽCCCAACCACCCCCACAATATCACCgtBatecce I35Ď, Lenil eCyaAapSerArgValleuCl uArgTyrLauLauCluAIaLyaCluAlaGluAtnl leThr c 11 c 11 crcnRcnca ccacngaac t cnŕf.et caRggc 11 cc ce ftggaiic t tc · cag c r.at (a * ec t (C ggccrgEítgcggaEctEBgaagctagacaecgeeeceeiaeacaagaacaagtetggtagececaaaccataccc GCAC 1500 ggaaaccaggcaagBagcaaaecengcagatcctacgectgtggccagggceagBgecttcegggacccttgnet cceeBBgetgegtgeatteeagACCCCCTCTCCTCAACACTCCACCTTCAATCACAATATCACTCTCCCACACAC 1650 'nirCJyCysAlaClulUeCyaSaiLauAanCLuAaallaThrValProAapTh

CAAAGnAATTTCTATCCCTCCAACACCATCCACgtgagttcctttttCttCttttttcctttcttttggageat rLyaValA«nPI>«TyrAlaTrpLy<ArgHetClu cCcutttBCgagcctgatcctggatgaaagggaEaaegategAEggaaaggEaaaatggagcagcagagatgagB 1800 etgcetgggegcagagECtcn<:geerntaatcecagBetgagatg|ccgAgatgggagaatt|cttgagccctgg aBtttcagaceaaccraBgcateatagtgaEateceeeateteteeaaacatttaaaaaaattaBCeaggtiaag 1950 tggttcatBttglcigteceatatatttttaaggccgaggcgggagtatcgcttgsgcecagB'at'tgaggc'E ca8tBaBC(EtgateacaccactgcactccaBectcagtgacagagtgaBgetctgtctcaaaaaagaaaaea.ia 2100 aaataaaaatAntgBggBctBtatxgeatarEttcnrtsttcnttcaetfactcaeteeereatteatteatte· cecattcaacaagtcceattgeataeettctgettBcteei’ettggtgeCtggEgctgctBaggtgcaggegi'Ea 2250CAAAGnAATTTCTATCCCTCCAACACCATCCACgtgagttcctttttCttCttttttcctttcttttggageat rLyaValA «NPI>« TyrAlaTrpLy <ArgHetClu cCcutttBCgagcctgatcctggatgaaagggaEaaegategAEggaaaggEaaaatggagcagcagagatgagB 1800 etgcetgggegcagagECtcn <: geerntaatcecagBetgagatg | ccgAgatgggagaatt | cttgagccctgg aBtttcagaceaaccraBgcateatagtgaEateceeeateteteeaaacatttaaaaaaattaBCeaggtiaag 1950 tggttcatBttglcigteceatatatttttaaggccgaggcgggagtatcgcttgsgcecagB'at'tgaggc'E ca 8 t B and BC (Etg and teacaccactgcactccaBectcagtgacagagtgaBgetctgtctcaaaaaagaaaaea.ia 2100 aaataaaaatAntgBggBctBtatxgeatarEttcnrtsttcnttcaetfactcaeteeereatteatteatte · cecattcaacaagtcceattgeataeettctgettBcteei'ettggtgeCtggEgctgctBaggtgcaggegi'Ea 2250

BOBtgtgacatcccleagetgacteeeagagtecactceetgtagCTCCCGCAGCACCrCCTACAACTCTCCCACBOBtgtgacatcccleagetgacteeeagagtecactceetgtagCTCCCGCAGCACCrCCTACAACTCTCCCAC

ValeJyClnClnAtaValCluValtrpCln fCCCTCGCCCTCCTCTCCCAACCTCTCCTCCCCCCCCACCCCCTCTTCGTCAACTCTTCCCACCCCTCCGACCCC «00 C lyl.au AlnLauLeugcrCluAlaValLauAraClyCLnAlaLauLauValAenSarSarClnFreTrpCluPTO CTCCACCTCCATCrcCATAAACCCCTCACTCGCCTTCCCACCCTCACCACTCTCCTTCCCCCTCTCCCACCCCAC LeuCinLeutlUValAspLy(AlaValSarClyLcuArsScrLeuThrTbrLeuLeuArgAlaL.cuGlyAlaGJn RtgagtaecaEecgacacttetgetetcectttctgCaagaaggcgagaaEggtcttgetaagBagtacaggaac 2350 tgtccgtattcettcectttctgtggeaecgcagcgacctectgttttctecttggcagAAGCAACCCATCTCCC LyaClyAlalleSarP £TCCACATCCGCCCTCACCTCCTCCACTCCCAACAATCACTGCTGACACTTTCCCCAAACTCTTCCCACTCIACT 2700 roFroAapAlaAlaSerAlaAlBProLauArgThrllcThrAlaAapTTirPhaArgLyeLcuPheArgValTyrS f.CAATTrCCTCCCCCGAAACCTCAACCtCTACACACCĽCACCCCTCCACCACACCCCACAr.ATCACCACCTCTC7 erAsnPheLeuArcClyLyaLeul.yaLeuTyrThrClyCluAlaCyiArgTlirClyAapArg ' CCACCTCGCCATATCCACCACCTCCCTCACCAACATrCCTrGTCČCACACCCTCČCCCCCCACTČCT(:AACCCCC 2850 TCeACCCfíCTCTCACCTCACCCCCACCCTCTCCCATCCACACTCCACTCCCACCAATCACATCTCACCCCCCASA CCAACTGTCCAffACACCAACTCTGACATCTAACCATCTCACACCCCCAACTTCACCCCCCACACCACCAAGCATT 3000 CAGACACCACCrTTAAACTCACGGACACACCCATJKTCCCAAGACCCCTCAtň^CACrCCCCACCCTGCÄAAArT TCATCCCACCACACCCTTTGGACCCCATTt ACCTCTTTTCCCACCTACCATCAGCCACACGATGACCTCCACAAC 3150 TTACCTCCCAAGCTGTCACTTCTCCACCTCTCACCCCĽArCCCCACTCCCTTCCTCCCAACACCCCCCTŤGACAC (!CeCCTCCTCCCAACCATCAACACACCATCCCCCCTCCCCTCTCCCTCTCATCGOCTCCAAGTTŕTCrCTATTCT 5300 TCAACCTCATTCACAACMCTCAAACCACCaatatgaeccttggccttCctcttttctttiaaeeteeaaetccc ctggctctgtcceactcctggcagca 3400 v 0, IN NaOH-0,2M NaCl. Filter bol hybridizovaný k približne 5x106 cpm tejto próby počas 12 hodín pri 68 °C, premytý v 2 x SSC pri 68 °C a vystavený 8 dní intenzívnemu skríningu. Jediná markerová mRNA s 1200 nt (označené šípkou) prebiehala v susednej dráhe (obr. 1).ValeJyClnClnAtaValCluValtrpCln fCCCTCGCCCTCCTCTCCCAACCTCTCCTCCCCCCCCACCCCCTCTTCGTCAACTCTTCCCACCCCTCCGACCCC «00 C lyl.au AlnLauLeugcrCluAlaValLauAraClyCLnAlaLauLauValAenSarSarClnFreTrpCluPTO CTCCACCTCCATCrcCATAAACCCCTCACTCGCCTTCCCACCCTCACCACTCTCCTTCCCCCTCTCCCACCCCAC LeuCinLeutlUValAspLy (AlaValSarClyLcuArsScrLeuThrTbrLeuLeuArgAlaL.cuGlyAlaGJn RtgagtaecaEecgacacttetgetetcectttctgCaagaaggcgagaaEggtcttgetaagBagtacaggaac 2350 tgtccgtattcettcectttctgtggeaecgcagcgacctectgttttctecttggcagAAGCAACCCATCTCCC LyaClyAlalleSarP £ TCCACATCCGCCCTCACCTCCTCCACTCCCAACAATCACTGCTGACACTTTCCCCAAACTCTTCCCACTCIACT 2700 roFroAapAlaAlaSerAlaAlBProLauArgThrllcThrAlaAapTTirPhaArgLyeLcuPheArgValTyrS f.CAATTrCCTCCCCCGAAACCTCAACCtCTACACACCĽCACCCCTCCACCACACCCCACAr.ATCACCACCTCTC7 erAsnPheLeuArcClyLyaLeul.yaLeuTyrThrClyCluAlaCyiArgTlirClyAapArg 'CCACCTCGCCATATCCACCACCTCCCTCACCAACATrCCTrGTCČCACACCCTCČCCCCCCACTČCT (: AACCCCC 2850 TCeACCCfíCTCTCACCTCACCCCCACCCTCTCCCATCCACACTCCACTCCCACCAATCACATCTCACCCCCCASA CCAACTGTCCAffA CACCAACTCTGACATCTAACCATCTCACACCCCCAACTTCACCCCCCACACCACCAAGCATT 3000 CAGACACCACCrTTAAACTCACGGACACACCCATJKTCCCAAGACCCCTCAtň ^ CACrCCCCACCCTGCÄAAArT TCATCCCACCACACCCTTTGGACCCCATTt ACCTCTTTTCCCACCTACCATCAGCCACACGATGACCTCCACAAC TTACCTCCCAAGCTGTCACTTCTCCACCTCTCACCCCĽArCCCCACTCCCTTCCTCCCAACACCCCCCTŤGACAC 3150 (? 5300 CeCCTCCTCCCAACCATCAACACACCATCCCCCCTCCCCTCTCCCTCTCATCGOCTCCAAGTTŕTCrCTATTCT TCAACCTCATTCACAACMCTCAAACCACCaatatgaeccttggccttCctcttttctttiaaeeteeaaetccc ctggctctgtcceactcctggcagca 3400 to 0, NaOH 0.2 M-NaCl. The filter was hybridized to approximately 5x10 6 cpm of this probe for 12 hours at 68 ° C, washed in 2 x SSC at 68 ° C and subjected to intensive screening for 8 days. A single marker mRNA with 1200 nt (indicated by an arrow) was run in an adjacent pathway (Fig. 1).

Príklad 3 cDNA z pečene ploduExample 3 fetal liver cDNA

Bola pripravená próba zhodná s próbou, opísanou v príklade 2, a bola použitá na skríning cDNA knižnice peče7A probe identical to the probe described in Example 2 was prepared and used to screen the baking cDNA library.

SK 280623 Β6 ne plodu, pripravenej vo vektore lambda-Ch21A (Toole a spol., Náture, (25) (1984) pri použití štandardného skríningového (Benton Davis, Science, (54) (1978)) postupu. Tri nezávislé pozitívne klony (označené tu lambda-HEPOFLó (1350 bp), lambda-HEPOFL8 (700 bp) a lambda-HEPOFL3 (1400 bp) boli izolované po skríningu 1 x 106 povlakov. Celý inzert lambda-HEPOFL13 a lambda-HEPOFL6 boli sekvenované po subklonovaní do M13 (tabuľky 7 a 5). Iba časti lambda-HEPOFL8 boli sekvenované a zvyšok bol považovaný za zhodný s ostatnými dvoma klonmi (tabuľka 6). 5-koniec a 3-koniec netranslátovanej sekvencie sú uvádzané malými písmenami. Kódujúca oblasť je zapísaná veľkými písmenami.Fetus, prepared in the lambda-Ch21A vector (Toole et al., Nature, (25) (1984) using standard screening (Benton Davis, Science, (54) (1978)). Three independent positive clones ( lambda-HEPOFL6 (1350 bp), lambda-HEPOFL8 (700 bp), and lambda-HEPOFL3 (1400 bp) were isolated after screening with 1 x 10 6 coatings The entire lambda-HEPOFL13 insert and lambda-HEPOFL6 were sequenced after subcloning 13. (Tables 7 and 5) Only portions of lambda-HEPOFL8 were sequenced and the remainder were considered identical to the other two clones (Table 6) The 5-end and 3-end of the untranslated sequence are shown in lowercase letters.

V tabuľkách 2 a 3 jc dcdukovaná aminokyselinová sekvencia uvedená pod nukleotidovou sekvenciou a je číslovaná tak, že číslo 1 platí pre prvú aminokyselinu maturovaného proteinu. Predpokladaný vedúci peptid (leader peptid) je označený zápisom celých skratiek pre zápis aminokyselín. Cysteínové zvyšky v zrelom proteíne sú ďalej označené SH a potenciálne N-napojené glykozylačné miesta hviezdičkou. Aminokyseliny, ktoré sú podtrhnuté, označujú tie zvyšky, identifikované N-terminálnym proteínovým sekvenovaním alebo sekvenovaním tryptických fragmentov EPO, ak je opísané vIn Tables 2 and 3, the deduced amino acid sequence shown below the nucleotide sequence is numbered such that the number 1 applies to the first amino acid of the mature protein. The predicted leader peptide is indicated by writing full abbreviations for amino acid notation. Cysteine residues in the mature protein are further indicated by SH and potentially N-linked glycosylation sites by an asterisk. Amino acids that are underlined refer to those residues identified by N-terminal protein sequencing or sequencing of EPO tryptic fragments as described in

Tabuľka 5Table 5

Val Aan Ser Ser Cln 7r« Trp Clu Pro Leu CU Leu Hla ValVal Aan Ser Ser Cln 7r «Trp Clu For Leu CU Leu Hla Val

ĽTC AAC TCT TCC CAC CCC TCC CAC CCC CTC CAC CTC CAT CTCLTC AAC TCT TCC CAC CCC TCC CAC CCC

Cl, Leu Atg Ser Uu Thr flír Uu LauCl, Leu Atg Ser Uu Thr Flusher Uu Lau

GCC CTT CCC ACC CTC ACC ACT CTC CTTGCC CTT CCC ACC CTC

Pro Pro Aap AU AU Ser ala Ala ProPro Pro Aap AU AU Ser Ala Ala Pro

CĽT CCA CAT CCC CCC TCA GCT GCT CCACCT CCA CAT CCC CCC TCA GCT GCT CCA

Tabuľka 7Table 7

CTSCTS

TCTTCT

CATCAT

Lya AlaLya Ala

AAA CCCAAA CCC

Val CTCVal CTC

I0O SerI0O Ser

ACTACT

AIAAIA

CCCCCC

TUP TCCTUP TCC

SKB TCCSKB TCC

LťULTU

CTC ixír CTCCTC ixir CTC

SĽHSLH

TCCTCC

Cti CCCHonor CCC

VAL CTCVAL CTC

CU CCC taCU CCC ta

Tyr TACTyr TAC

CTCCTC

TTCTTC

CluClu

CACCAC

Cl,Cl,

CCCCCC

CluClu

LeuLeu

TTCTTC

AATAAT

II e ATCII e ATC

ACT >0ACT> 0

TCCTCC

CACCAC

TTC CTCTTC CTC

AACAAC

ClnA boat

CAC ľroCAC ľro

CCCCCC

TrpTrp

TCCTCC

Clu CACClu CAC

CCCCCC

ClaCla

CACCAC

Leu CTC niiLeu CTC nii

CATCAT

Val CTC *‘PVal CTC * ‘P

CATCAT

U ·

AAAAAA

10»10 »

SerSer

ACTACT

Ser Aen PhaSer Aen Pha

TCC ΛΛΤ TTCTCC-TTC

Cly tenCly ten

CCC CTTCCC CTT

Ser Leu Thr ACC CTC ACCSer Leu Thr ACC

Lea CTCLea CTC

Leu CTTLeu CTT

110110

Arg Ala lx« Cly AliArg Ala 1x «Cly Ali

Ctili CCT CTC CTA CCC CAC AAGCtili CCT CTC CCC CAC AAG

Cla LyiCla Lyi

AleBut

CCC íle ATCCCC of the ATC

CCTCCT

CCACCA

ArzArz

Tlie TTCTlie TTC

Aan fh« LeuAan fh «Leu

AAT TTC CTCAAT TTC CTC

CTC AAC CTCCTC AAC CTC

T,r Thr 01y «h TAC ACA CCC * 'T, r Thr 01y «h TAC ACA CCC * '

CACCAC

110110

Arg ccoArg cco

CCTCCT

PhaPha

TTC leo Ar» cly CTC CCC CCATTC leo Ar Cly CTC CCC CCA

Lya U« lya U« Tyr MC CTC AM CTC TACLya U «lya U« Tyr MC CTC AM CTC TAC

Thr SirThr Sir

ACA CCCACA CCC

S UTHEY ARE

Cy. Ar» TCC ACCCy. TCC ACC

166 :ac ACA166: ac ACA

TCA ecaggtg tgttcacetgTCA ecaggtg tgttcacetg

B* t9tur' •gc'eagegB * t 9 tur '• gc'eageg

U9 <i«agtgtci staaggatgU 9 < agtgtci staaggatg

ICaCAgggCC ugagcag igagcagct tcaaaeteag ggaeigagcc gacgcccgag CU‘ aggaeaegetICaCAgggCC ugagcag igagcagct tcaaaeteag ggaeigagcc gacgcccgag C U 'aggaeaeget

ΒΒ·Μ'Β<ΒΒ · Μ'Β <

•M·'»·• M · ' »·

LtltglLtltgl

IW 'tU<IW 't U <

a«cct«a<t| ‘B*and "CCT" and <t | "B *

Tabuľka 6 cccggtt :get|cgeTable 6 cccggtt: get | cge

Igegccgcí cgcgctglcc ctgagcc ttaccggggc eaccgcgcct gctctgctccg acaccgcgce ccetggaeag eegeeetctt gCBCi:C'<M tlgeaccg ggtcacccgg cgcgccccag gtcgctgagg gaccccggcc •OIgegccgc cgcgctglcc ctgagcc ttaccggggc eaccgcgcct gctctgctccg acaccgcgce ccetggaeag eegeeetctt gCBCi: C '<M tlgeaccg ggtcacccgg cgcgccccag gtcgctgagg gaccccctgagg

ATC CCC <ATC CCC <

CBUA'caggtCBUA'caggt

CAC seiCAC sei

TCCTCC

LEVLEV

CTCCTC

Lev CTCLion CTC

AfgAfg

CCCCCC

LeuLeu

CTCCTC

GAC to Atg CCAGAC to Atg CCA

Val CTCVal CTC

LeaLea

CTGCTG

Clu CACClu CAC

TyrTyr

TACTAC

CTCCTC

LauLau

TTCTTC

CluClu

CACCAC

Clu CACClu CAC

11« ATC11 «ATC

Tkrtkr

ACCACC

Thr ACCThr ACC

ClyCly

CCCCCC

AleBut

CCTCCT

SH CyaSH Cya

TCCTCC

SerSer

ACCACC

LeuLeu

TTCTTC

CCACCA

CACCAC

ACCACC

Val cnVal cn

Tyr TATTyr TAT

TCCTCC

Lya AACLya AAC

ACCACC

CTCCTC

Cl, CCCCl, CCC

Valwall

CTACTA

Cle CAACle CAA

Val CTCVal CTC

Trp TOCTrp TOC

ClnA boat

CAGCAG

Cl, occCl, occ

CTCCTC

AlaAla

CCCCCC

Leu CTCLeu CTC

U. CTCU. CTC

Ser TCCSer TCC

CluClu

CAACAA

Ala CCTAla CCT

Valwall

CTCCTC

ĽajlAJ

CTCCTC

UiUi

CTCCTC

120120

ATC TCCATC TCC

140140

Ar» L, aAr »L, a

CCC ΑΑΛ cecAjagce Μ“«ΙΒΒΒ' caccgcgccc ictctfttccg aeaeegegneCCC ΑΑΛ cecAjagce Μ “« ΙΒΒΒ 'caccgcgccc ictctfttccg aeaeegegne

IB'caceegt egegceccag gtcgetcngg gaeceeggcc ce«'g«tegIB'caceegt egegceccag gtcgetcngg gaeceeggcc ce «'g« teg

CB'B<UM ecgoget'ee «Μ·(|·ΙΜ ««tlgrglCB'B <UM ecgoget'ee «Μ · (| · ΙΜ« «tlgrgl

-H-H

KCT CCT “AL HIS ClO CTS no ATC CCC CTC CAC CAA TCT CCTKCT CCT 'AL HIS ClO CTS no ATC CCC CTC CAC CAA TCT CCT

CCC TCC CTC TCC CTT CTC CTC TCC CTC CTC TCC CTC CCT CTC CCC CTC CCA CTC CTCCCC TCC CTC TCC CTC CTC CTC TCC CTC CTC

II

AlaAla

Tyr — — ... ŤÁetíč ŤŤč čačTyr - - ... Á etí č ač

LeuLeu

AlaAla

- t Sll 30 SB- t Sll 30 SB

Clu Al. Blu Ara U. Tfcr _ Thr - CT« _ Cya AU Clu Ma C,e SerClu Al. Blu Ara U. Tfcr - Thr - CT Cya AU Clu Ma C, e Ser

CM CCC CM AAT Ate AČČ^ACC CCC TCT CCT CAA CAC TCC ACCCM CCC CM AAT Ate ACC ^ ACC CCC TCT CCT CAA CAC TCC ACC

Val Pro Aap Thr t,o Val Aan Phe Tyr Ala Trp Irt Arg HetVal Pro Aap Thr t, Val Aan Phe Tyr Ala Trp Irt Arg Het

CTC CCA CAC ACC AAA CTT AAT TTC TAT CCC TGG AM AM ATCCTC CCA CAC ACC AAA ATT

Tel LU Vil Trp Cln Cly Leu Ale Uu Leu Set Clu Ale ValTel LU Vil Trp Clly Clu Leu Ale Uu Leu Set Clu Ale Val

Lru Arg Cly ClnLru Arg Cly Cln

CtC CCC CCC CACCCC CCC CCC CAC

Ala Leu EČČ CTC tw Val A»n $er_Set__Cln Iro Tra CU Pre l.ru Cla Leu Hla Val Aap In Ata ValAla Leu Registration Number CTC tw Val A »n $ er_Set__Cln Iro Tra CU Pre l.ru Cla Leu Hla Val

TTC CTC AAC TCT TTC C*C CCC TCC CAC CTC CTC CAC CTC CAT CTC CAT MA CTC CTC fily lau Arg Ser Uu Thr Tlie Leu Lea Ara Ala U« Cly Ala ccc cn ccc acc crc acc act c ru crr ctc ccr ctc cca cccTTC CTC AAC TCT TTC C * C CCC TCC CAC CTC CTC CTC CAT CTC CAT MA CTC CTC fily lau Arg Ser Uu Thr Tlie Leu Lea Ara Ala U «Cly Ala ccc cc cc acc cc acc act c ru ccr ctc ca. ccc

100100

Sewith

AGT noAGT no

Fr, Pre Aap Ala Ala Ser Aln AU Pro Leu Arg Thr IU Thr Ale Aap Tl.r Phe Arg, <XT CCA GAT GCC CCC TCA CCT CCT CCA CTC CČA ACA ATC ACT CCT CAC ACT TTC CCCFr, Pre Aap Ala Ala Ser Aln AU Pro Leu Arg Thr IU Thr Ale Aap Tl.r Phe Arg, <XT CCA GAT GCC CCC TCA CCT CCT CCA CTC CCA ACA ATC ACT CCT CAC ACT TTC CCC

140 ty· AAA140 ty · AAA

Leu Jhí—ÄX. CTC TTC CCA Leu Jhi — ÄX. CTC .'r s“. CTC TAC TCC.'r s '. CTC TAC TCC Ara Mie Letí AAT UC CTC Ara Mie Flying AAT UC CTC Ar|| Cly Lyi CCC CCA AAC Ar || Cly Lyi CCC CCA AAC Uu Lya Uu CTC AAC AT Uu Lya Uu CTC AAC AT Tyr π-r Cly TAC ACA CCC Tyr π-r Cly TAC ACA CCC ILU Clu Ala ~Ώδ ČEC ILU Clu Ala ~ Ώδ CEC $11 ľíť ACC ACA $ 11 ACC ACA 1U CJy Alp Arg GOl CAC MA 1U CJy Alp Arg GOl CAC MA TCA ccaggtg TCA ccaggtg tgtccacetg tgtccacetg ggcatatccu ggcatatccu ccocclccct ccocclccct ea'CM'att ea'CM'att gcttgtgcea gcttgtgcea eaccclcccc eaccclcccc c|c<actcct c | c <actcct (taceccgcc (taceccgcc (•IU|CC«t (IU • | CC «t cagcccagcg cagcccagcg ccagcctgtc ccagcctgtc teeagcgcea teeagcgcea gcaetgaeat gcaetgaeat ctetgujcc ctetgujcc agaggaaecg agaggaaecg tccagagagc tccagagagc aactctgaga aactctgaga tcícntggcc tcícntggcc aaettguutt aaettguutt cceaew'ac cceaew'ac gaagcactca gaagcactca emiaececcc emiaececcc ccaaacroe ccaaacroe •rgetggga» • rgetggga » gaegeccgag gaegeccgag cteaecegge cteaecegge •eeetgcaaa • eeetgcaaa «tctgacgcc «tctgacgcc aggaeucgct aggaeucgct lUS’Bt'B* lUS'Bt'B * rttaeetgtt rttaeetgtt ttcgeacct» ttcgeacct » ceatcaggga ceatcaggga c.U.'ga c.U.'ga tggagaeetr tggagaeetr aggcggraag aggcggraag etgtf-Aette etgtf-AETT tettggttte tettggttte lemeaiu lemeaiu g<a<t«eetE g <a <t 'Eetee geeetettga geeetettga eaeetttt'· eaeetttt '· CIMH0CC.1 CIMH0CC.1 tg.iagAcagg tg.iagAcagg •‘íía«t«ci• 'IIA' t 'c i ececccgtec ececccgtec C'C4Eígggt C'C4Eígggt ecaagctccg ecaagctccg tgtattcttc tgtattcttc aauccaeraa aauccaeraa

príklade 1. Čiastočné podtrhnutie označuje zvyšky v aminokyselinovej sekvencii určitých tryptických fragmentov, ktoré nemohli byť stanovené jednoznačne. cDNA klony lambda-HEPOFL8 a lambda-HEPOFL13 boli skrínované, uložené a sú dostupné z Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom ATCC 40156, ATCC 40152 a ATCC 40153.Example 1. Partial underline indicates residues in the amino acid sequence of certain tryptic fragments that could not be unambiguously determined. The lambda-HEPOFL8 and lambda-HEPOFL13 cDNA clones were screened, stored and available from the American Type Culture Collection, Rockville, Maryland under accession numbers ATCC 40156, ATCC 40152 and ATCC 40153.

Príklad 4Example 4

Genomická štruktúra EPO génuGenomic structure of EPO gene

Relatívne veľkosti a polohy štyroch nezávislých genomických klonov (lambda-HEPOl, 2, 3 a 6) z knižnice HaeIll/Alul sú ilustrované prekrývajúcimi sa čiarami na obr. 3. Silná čiara označuje polohu EPO génu. Je uvedená stupnica (v kb) a polohy známych miest štiepenia reštrikčnou endonukleázou. Oblasť, obsahujúca EPO gén, bola kompletne sekvenovaná z obidvoch reťazcov pri použití riadenej série delécií v tejto oblasti. Schematické znázornenie piatich exónov, kódujúcich EPO mRNA, je uvedené na obr. 4. Presná 5-koncová väzba exónu I je v súčasnosti neznáma. Proteín kódujúci podiely exónov sú tmavšie. Kompletná nukleotidová sekvencia oblasti je uvedená v tabuľke 4. Známe hranice každého exónu sú označené pomocou silných vertikálnych čiar. Genomické klony lambda-HEPOl, lambda-HEPO2, lambda-HEPO3 a lambda-HEPO6 boli uložené a sú dostupné z Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom ATCC 40154, ATCC 40155 a ARCC 40150 a ATCC 40151.The relative sizes and positions of the four independent genomic clones (lambda-HEPO1, 2, 3 and 6) from the HaeII / Alul library are illustrated by the overlapping lines in FIG. 3. The thick line indicates the position of the EPO gene. The scale (in kb) and the positions of the known restriction endonuclease cleavage sites are shown. The region containing the EPO gene was completely sequenced from both strands using a controlled series of deletions in this region. A schematic representation of the five exons encoding EPO mRNA is shown in FIG. 4. The exact 5-terminal exon I bond is currently unknown. The protein encoding the exon moieties is darker. The complete nucleotide sequence of the region is shown in Table 4. The known boundaries of each exon are indicated by thick vertical lines. The genomic clones lambda-HEPO1, lambda-HEPO2, lambda-HEPO3 and lambda-HEPO6 were deposited and are available from American Type Culture Collection, Rockville, Maryland under accession numbers ATCC 40154, ATCC 40155 and ARCC 40150 and ATCC 40151.

Príklad 5Example 5

Konštrukcia vektora p91023 (b)Construction of vector p91023 (b)

Transformačným vektorom bol pAdD26SVpA(3), opísaný Kaufmanom a spol., Mol.Cell Biol., 2:1304 (1982). Štruktúra tohto vektora je uvedená na obr. 5A. Stručne, tento plazmid obsahuje gén cDNA myšej dihydrofolát rcduktázy (DFHR), ktorý je pod transkripčnou kontrolou adenovírus 2 (Ad2) hlavného neskorého promótora. 5-koniec strihové miesto je indikované v adenovírusovej DNA a 3-koniec strihové miesto, odvodené od imunoglobulínového génu, je prítomné medzi Ad2 hlavným neskorým promótorom a DFHR kódujúcou sekvenciou. SV40 časné polyadenylačné miesto je prítomné za DHFR kódujúcou sekvenciou. Prokaryoticky odvodená sekcia pAdD26SVpA(3) je z pSVOd (Mellon a spol., Celí, 27:279 (1981)) a neobsahuje pBR322 sekvencie, o ktorých je známe, že inhibujú replikáciu v bunkách cicavcov (Lusky a spol., Náture, 293 : :79(1981)).The transformation vector was pAdD26SVpA (3) described by Kaufman et al., Mol.Cell Biol., 2: 1304 (1982). The structure of this vector is shown in FIG. 5A. Briefly, this plasmid contains the mouse dihydrofolate reductase (DFHR) cDNA gene, which is under the transcriptional control of the main late promoter adenovirus 2 (Ad2). The 5-end splice site is indicated in adenoviral DNA and the 3-end splice site derived from the immunoglobulin gene is present between the Ad2 major late promoter and the DFHR coding sequence. The SV40 early polyadenylation site is present after the DHFR coding sequence. The prokaryotic-derived section of pAdD26SVpA (3) is from pSVOd (Mellon et al., Cell, 27: 279 (1981)) and does not contain pBR322 sequences known to inhibit replication in mammalian cells (Lusky et al., Nature, 293 Rev.: 79 (1981)).

pAdD26SVpA(3) bol premenený na plazmid pCVSVL2, ako je to ilustrované na obr. 5A. pAdD26SVpA(3) bol premenený na plazmid pAdD26SVpA(3) (d) deléciou jedného z dvoch Pstl miest v pAdD26SVpA(3). Toto bolo vykonané parciálnym štiepením pomocou Pstl pri použití deficitu enzýmu tak, aby bola získaná subpopulácia linearizovaných plazmidov, v ktorých bolo štiepené len jedno Pstl miesto, s nasledujúcim spracovaním Klenowom, ligáciou pre recirkuláciu a skríningom na deléciu Pstl miesta umiesteného 3-koniec k SV40 polyadenylačnej sekvencii.pAdD26SVpA (3) was transformed into plasmid pCVSVL2 as illustrated in FIG. 5A. pAdD26SVpA (3) was converted to plasmid pAdD26SVpA (3) (d) by deletion of one of the two PstI sites in pAdD26SVpA (3). This was accomplished by partial digestion with Pstl using an enzyme deficit to obtain a subpopulation of linearized plasmids in which only one Pstl site was digested, followed by Klenow treatment, ligation for recirculation, and screening for the Pstl site deletion of the 3-terminal poly-terminal to the 40-terminus. sequence.

Adenovírusový trojdielny líder a s vírusom spojené gény (VA gény) boli inzertované do pAdD26SVpA(3) (d), ako je to ilustrované na obr. 5A. Najskôr bol pAdD26SVpA(3) (d) štiepený pomocou PvuII na získanie lineárnej molekuly otvorenej v 3-koniec časti troch elementov, tvoriacich trojdielny líder. Potom bol pJAW 43 (Zain a spol., Celí, 16:851 (1979)) spracovaný s Klenowom, štiepený pomocou PvuII a 140bp fragment, obsahujúci druhú časť tretieho lídra, bol izolovaný elektroforézou na akrylamidovom géli (6 % v Tris borátovom tlmivom roztoku; Maniatis a spol., supra). 140bp fragment bol potom ligovaný do PvuII štiepeného pAdD26SVpA(3) (d). Ligačný produkt bol použitý na transformáciu E. coli na tetracyklínovú rezistenciu a kolónie boli skrínované pri použití Grunstein-Hognessovho postupu pri použití 32P značenej próby, hybridizujúcej k 140 bp fragmentu. DNA bola pripravená z pozitívne hybridizujúcich kolónií na test, či PvuII rekonštruované miesto bolo 5-koniec alebo 3-koniec inzertované 140bp DNA, špecifickej k druhému a tretiemu adenovírusovému neskorému lídru. Správna orientácia PvuII miesta je na 5-koncovej strane 140bp inzertu. Tento plazmid je označený tTPL na obr. 5 A.The adenoviral three-part leader and the virus-linked genes (VA genes) were inserted into pAdD26SVpA (3) (d) as illustrated in FIG. 5A. First, pAdD26SVpA (3) (d) was digested with PvuII to obtain a linear molecule open at the 3-terminus of the three-part leader element. Then, pJAW 43 (Zain et al., Cell, 16: 851 (1979)) was treated with Klenow, digested with PvuII, and the 140 bp fragment containing the second part of the third leader was isolated by acrylamide gel electrophoresis (6% in Tris borate buffer) Maniatis et al., Supra). The 140 bp fragment was then ligated into PvuII digested pAdD26SVpA (3) (d). The ligation product was used to transform E. coli to tetracycline resistance, and colonies were screened using the Grunstein-Hogness procedure using a 32 P labeled probe, hybridizing to a 140 bp fragment. DNA was prepared from positively hybridizing colonies to test whether the PvuII reconstructed site was 5-terminal or 3-terminal inserted with 140bp of DNA specific to the second and third adenoviral late leader. The correct orientation of the PvuII site is at the 5-terminal side of the 140bp insert. This plasmid is designated tTPL in FIG. 5 A.

Ava II D fragment SV40, obsahujúci SV40 enhancerovú sekvenciu, bol získaný štiepením SV40 DNA pomocou Ava II, stupením koncov Klenowým fragmentom pol I, ligáciou Xho 1 linkerov k fragmentom, štiepením s Xho 1 pre otvorenie Xho 1 miesta a izoláciou štvrtého najväčšieho (D) fragmentu gélovou elektroforézou. Tento fragment bol potom ligovaný k Xho 1 štiepenému pTPL za vzniku plazmidu pCVSVL2-TPL. Orientácia SV40 D fragmentu v pCVSVL2-TPL bola taká, že SV40 neskorý promótor bol v rovnakej orientácii ako adenovírusový hlavný neskorý promótor.The SV40 Ava II D fragment containing the SV40 enhancer sequence was obtained by digesting SV40 DNA with Ava II, stepping the ends with Klenow pol I fragment, ligating the Xho 1 linkers to the fragments, digesting with Xho 1 to open the Xho 1 site and isolating the fourth largest (D) fragment by gel electrophoresis. This fragment was then ligated to Xho 1 cleaved pTPL to give plasmid pCVSVL2-TPL. The orientation of the SV40 D fragment in pCVSVL2-TPL was such that the SV40 late promoter was in the same orientation as the adenoviral major late promoter.

Pre zavedenie s adenovírusom spojených (VA) génov do pCVSVL2-TPL bol najskôr konštruovaný plazmid pBR322, ktorý obsahuje adenovírus typ 2 Hind III B fragment. Adenovírus typ 2 DNA bol štiepený s Hind III a B fragment bol izolovaný gélovou elektroforézou. Tento fragment bol inzertovaný do pBR322, ktorý bol vopred štiepený pomocou Hind III. Po transformácii E. coli na ampicilínovú rezistenciu, boli rekombinanty skrínované na inzerciu Hind IIIB fragmentu a orientácia inzertu bola stanovená štiepením reštrikčným enzýmom. pBR322-Ad Hind III B obsahuje adenovírus typ 2 Hind III B fragment v orientácii, znázornenej na obr. 5B.To introduce adenovirus-linked (VA) genes into pCVSVL2-TPL, a plasmid pBR322 containing the type 2 Hind III B fragment adenovirus was first constructed. Adenovirus type 2 DNA was digested with Hind III and the B fragment isolated by gel electrophoresis. This fragment was inserted into pBR322, which had been pre-digested with Hind III. After transformation of E. coli to ampicillin resistance, the recombinants were screened for insertion of the Hind IIIB fragment and the orientation of the insert was determined by restriction enzyme digestion. pBR322-Ad Hind III B contains the type 2 Hind III B adenovirus fragment in the orientation shown in FIG. 5B.

Ako je ilustrované na obr. 5B, sú VA gény výhodne získané z plazmidu pBR322-Ad Hind IIIB štiepením s Hpa I, prídavkom EcoRI linkerov a štiepením pomocou EcoRI a nasledujúcim odstránením 1,4 kb fragmentu. Fragment, majúci EcoRI lepivé konce, sa potom liguje do EcoRI miesta PTL, vopred štiepeného s EcoRI. Po transformácii E. coli HB101 a selekcii na tetracyklínovú rezistenciu, boli kolónie skrínované filtrovou hybridizáciou k DNA, špecifickej pre VA gény. DNA bola pripravená z pozitívne hybridizujúcich klonov a charakterizovaná štiepením reštrikčnou endonukleázou. Výsledný plazmid je označený p91023.As illustrated in FIG. 5B, the VA genes are preferably obtained from the plasmid pBR322-Ad Hind IIIB by digestion with Hpa I, addition of EcoRI linkers, and digestion with EcoRI followed by removal of the 1.4 kb fragment. The fragment having EcoRI sticky ends is then ligated into the EcoRI site of the PTL previously cleaved with EcoRI. After transformation of E. coli HB101 and selection for tetracycline resistance, colonies were screened by filter hybridization to VA gene-specific DNA. DNA was prepared from positively hybridizing clones and characterized by restriction endonuclease digestion. The resulting plasmid is designated p91023.

Ako je to ilustrované na obr. 5C, boli dve EcoRI miesta v p91023 odstránené úplným rozštiepením p91023 pomocou EcoRI za vzniku dvoch DNA fragmentov, jeden asi 7kb a druhý asi 1, 3kb. Posledne uvádzaný fragment obsahuje VA gény. Konce obidvoch fragmentov potom boli vzájomne k sebe ligované. Plazmid p91023(A), obsahujúci VA gény a podobne p91023, ale s deléciou dvoch EcoRI miest, boli identifikované pomocou Grunstein-Hognessovho skríningu s VA génovým fragmentom a bežnou analýzou reštrikčných miest.As illustrated in FIG. 5C, two EcoRI sites in p91023 were removed by complete digestion of p91023 with EcoRI to produce two DNA fragments, one about 7 kb and the other about 1.3 kb. The latter fragment contains VA genes. The ends of both fragments were then ligated to each other. Plasmid p91023 (A), containing the VA genes and the like p91023, but with a deletion of two EcoRI sites, was identified by Grunstein-Hogness screening with the VA gene fragment and conventional restriction site analysis.

Jediné Pstl miesto v p91023(A) bolo odstránené a nahradené EcoRI miestom. p91023(a) bol úplne rozrezaný pomocou Pstl a spracovaný s Klenowým fragmentom Poli na vytvorenie vyrovnaných koncov. EcoRI linkery boli ligované k zatupenému Pstl miestu p91023(A). Lineárny p91023(A) s EcoRI linkermi, pripojenými k zatupenému Pst miestu, boli oddelené od neligovaných linkerov a plne rozštiepené pomocou EcoRI a religované. Bol získaný plazmid p91023(B), ako je znázornený na obr. 5C, a bol identifikovaný ako majúci štruktúru, podobnú p91023(A), ale s EcoRI miestom skoršieho Pstl miesta. Plazmid p91023(B) bol uložený a je dostupný v Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom ATCC 39754.The single PstI site in p91023 (A) was removed and replaced with an EcoRI site. p91023 (a) was completely cut with PstI and treated with the Klenow Poli fragment to form the blunt ends. EcoRI linkers were ligated to the blunted PstI site of p91023 (A). Linear p91023 (A) with EcoRI linkers attached to the blunt Pst site were separated from the non-ligated linkers and fully digested with EcoRI and religated. The plasmid p91023 (B), as shown in FIG. 5C, and was identified as having a structure similar to p91023 (A) but with the EcoRI site of the earlier PstI site. Plasmid p91023 (B) was deposited and is available from the American Type Culture Collection, Rockville, Maryland under accession number ATCC 39754.

Príklad 6 cDNA klony (lambda-EPOFL6 a lambda-EPOFL13, príklad 3) boli inzertované do plazmidu p91023(B) za vzniku PPTFL6 a PPTFL13. 8 pg každej z čistených DNA bolo potom použitých na transfektovanie 5 x 106 COS buniek pri použití DEAEdextránovej metódy (infra). Po 12 hodinách boli bunky premyté a spracovávané s chloroquinom (0,1 mm) počas 2 hodín, opäť premyté a vystavené 10 ml média, obsahujúceho 10 % fetálneho teľacieho séra počas 24 hodín. Médium bolo zamenené za 4 ml séra bez média a zobrané o 48 hodín neskoršie.Example 6 cDNA clones (lambda-EPOFL6 and lambda-EPOFL13, Example 3) were inserted into plasmid p91023 (B) to produce PPTFL6 and PPTFL13. 8 µg of each purified DNA was then used to transfect 5 x 10 6 COS cells using the DEAEdextran method (infra). After 12 hours, the cells were washed and treated with chloroquine (0.1 mm) for 2 hours, washed again, and exposed to 10 ml of medium containing 10% fetal calf serum for 24 hours. The medium was changed to 4 ml of serum-free serum and collected 48 hours later.

Produkcia imunologický aktívneho EPO bola kvantifikovaná rádioimuno skúškou, ako to opísali Sherwood a Goldwasser (55). Protilátka bola poskytnutá Dr. ludith Sherwood. Jódovaný značkovač bol pripravený z homogénneho EPO, opísaného v príklade L Citlivosť skúšky je približne 1 ng/ml. Výsledky sú uvedené ďalej v tabuľke 8.The production of immunologically active EPO was quantified by radioimmunoassay as described by Sherwood and Goldwasser (55). The antibody was provided by Dr. ludith Sherwood. The iodinated marker was prepared from the homogeneous EPO described in Example 1. The assay sensitivity was approximately 1 ng / ml. The results are shown in Table 8 below.

Tabuľka 8Table 8

Vektor hladina EPO, uvoľneného do média (ng/ml) pPTFLI3 330 pPIFLó 31Vector level of EPO released into medium (ng / ml) pPTFLI3 330 pPIFLδ 31

SK 280623 Β6SK 280623-6

COS buniek, transfcktovaných EPO aktivitaCOS cells transfected with EPO activity

100 ng/ml100 ng / ml

20,5 j./ml20.5 U / ml

3,1 l,8j./ml3.1 L, 8 U / ml

j./mlj./ml

j./mlj./ml

PTFL13 bol uložený a je dostupný v Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom ATCC3990.PTFL13 was deposited and is available from the American Type Culture Collection, Rockville, Maryland under accession number ATCC3990.

Príklad 7Example 7

EPO cDNA (lambda-HEPOFL13) bola inzertovaná do p91023(B) vektora a bola transfektovaná do COS-1 buniek a zobraná, ako je to opísané hore (príklad 6) s tým rozdielom, že bolo vypustené spracovanie chloroguinom.EPO cDNA (lambda-HEPOFL13) was inserted into the p91023 (B) vector and transfected into COS-1 cells and harvested as described above (Example 6) except that the chloroguin treatment was omitted.

In vitro bol stanovený biologicky aktívny EPO pomocou skúšky tvorby kolónií s bunkami pečene myšieho plodu ako zdroja CFU-E, alebo skúšky príjmu 3H-tymidínu pri použití buniek sleziny myší, ktorým bola vopred podaná injekcia fenylhydrazínu. Citlivosti týchto skúšok sú približne 25 milijednotiek/ml. In vivo bol biologicky aktívny EPO meraný použitím metód buď s hypoxickou myšou, alebo vyhladovelým potkanom. Citlivosť týchto skúšok je približne 100 milijednotiek/ml. Nebola detegovaná žiadna aktivita pri obidvoch skúškach ani v kontrolnom pokuse. Výsledky EPO, exprimovaného klonom EPOFL13, sú uvedené ďalej v tabuľke 9, kde uvádzané aktivity sú vyjadrené v jednotkách/ml pri použití komerčného kvantifikovaného EPO (Toyobo, Inc.) ako štandardu.In vitro, biologically active EPO was determined using a mouse fetal liver cell colony assay as a CFU-E source, or a 3 H-thymidine uptake assay using spleen cells of mice previously injected with phenylhydrazine. The sensitivities of these assays are approximately 25 milliunits / ml. In vivo, biologically active EPO was measured using either hypoxic mouse or fasted rat methods. The sensitivity of these assays is approximately 100 milliunits / ml. No activity was detected in both assays and control. The results of EPO, expressed by EPOFL13 clone, are shown below in Table 9, where the reported activities are expressed in units / ml using commercial quantified EPO (Toyobo, Inc.) as a standard.

Tabuľka 9 EPO exprimovaný z cDNA typ I Skúška RIA CFU-E 3II-Thy hypoxická myš vyhladovený potkanTable 9 EPO expressed from type I cDNA RIA CFU-E 3 II-Thy hypoxic starved mouse test

Príklad 8 Analýza EPO z COS buniek na polyakrylamidovom géliExample 8 Analysis of EPO from COS cells on polyacrylamide gel

180 ng EPO, uvoľneného do média COS buniek, transfektovaných EPO (lambda-HEPOFL13) cDNA vo vektore 91023(B) (pozri hore), bolo elektroforézovaných na 10 % SDS Laemli polyakrylamidovom géli a elektrotransferovaných na nitrocelulózový papier (Towbin a spol., Proc. Natl. Acad. Sci. USA 76:4350 (1979)). Filter bol probovaný s anti-EPO protilátkou, ako je to opísané v tabuľke 8, premytý a opäť prezretý pomocou l25I-staph A proteínom. Filter bol spracovávaný autorádiografiou počas dvoch dní. Natívne homogénne EPO, opísané v príklade 1, buď pred (dráha B), alebo po jodácii (dráha C) boli podrobené elektroforéze (pozri obr. 8). Použité markéry zahŕňajú 35S značený metionín, sérový albumín (68 000 d) a ovalbumín (45 000 d).180 ng of EPO released into COS cell medium transfected with EPO (lambda-HEPOFL13) cDNA in vector 91023 (B) (see above) was electrophoresed on a 10% SDS Laemli polyacrylamide gel and electrotransfered onto nitrocellulose paper (Towbin et al., Proc. Natl Acad Sci USA 76: 4350 (1979)). The filter was probed with anti-EPO antibody as described in Table 8, washed and re-screened with 125 I-staph A protein. The filter was processed by autoradiography for two days. Native homogeneous EPOs described in Example 1, either before (lane B) or after iodination (lane C), were subjected to electrophoresis (see Figure 8). Markers used include 35 S labeled methionine, serum albumin (68,000 d) and ovalbumin (45,000 d).

Príklad 9 Konštrukcia RK1-4Example 9 Construction of RK1-4

Bam HI-PvuII fragment z plazmidu PSV2DHFR (Subramani a spol., Mol. Celí. Biol. 1:854-864 (1981)), obsahujúci oblasť časného promótora SV40, pripojeného ku génu myšej dihydrofolát reduktázy (DHFR), SV40 enhancer, malý intrón t antigénu a SV40 polyadenylačnú sekvenciu, bol izolovaný (fragment A). Zvyšné fragmenty boli získané z vektora p91023(B) (pozri hore) nasledovne: p91023(A) bol štiepený pomocou Pst I v jedinom Pst I mieste, blízkom adenovírusovému promótoru pre linearizáciu plazmidu a buď ligovaný k syntetickým Pst I až EcoRl konvertorom a recirkulovaný (vytvorenie miest Pst 1 - EcoRl - Pst I na pôvodnom Pst I mieste; 91023(B') alebo spracovaný s veľkým fragmentom DNA polymerázy 1 na rozrušenie Pst I miest a ligovaný k syntetickému EcoRl linkeru a recirkularizovaný (vytvorením EcoRl miesta na pôvodnom mieste Pst I; 91023(B). Každý z dvoch výsledných fragmentov 91023(B) a 91023(B') bol štiepený pomocou Xba a EcoRl za vzniku dvoch fragmentov (F a G). Spojením F fragmentu z p91023(B) a fragmentu G z p91023(B') a fragmentu G z p91023(B) a fragmentu F z p91023(B') boli vytvorené dva nové plazmidy, ktoré obsahujú buď EcoRl - Pst I miesto alebo Pst I - EcoRl miesto na pôvodnom Pst I mieste. Plazmid, obsahujúci Pst I - EcoRl miesto, kde Pst I miesto je najbližšie adenovírusovému hlavnému neskorému promótoru, bol nazvaný p91023(C).Bam HI-PvuII fragment from plasmid PSV2DHFR (Subramani et al., Mol. Cell. Biol. 1: 854-864 (1981)) containing the SV40 early promoter region linked to the mouse dihydrofolate reductase (DHFR) gene, SV40 enhancer, small the intron t antigen and the SV40 polyadenylation sequence was isolated (fragment A). The remaining fragments were obtained from vector p91023 (B) (see above) as follows: p91023 (A) was digested with Pst I at a single Pst I site, near the adenoviral promoter for linearization of the plasmid and either ligated to synthetic Pst I to EcoR1 converters and recirculated ( formation of Pst 1 sites - EcoR1 - Pst I at the original Pst I site; 91023 (B ') or treated with a large DNA polymerase 1 fragment to disrupt the Pst I sites and ligated to a synthetic EcoRl linker and recirculated (by creating an EcoR1 site at the original Pst I site) 91023 (B), each of the resulting 91023 (B) and 91023 (B ') fragments was digested with Xba and EcoR1 to form two fragments (F and G), combining the F fragment of p91023 (B) and the G fragment of p91023; (B ') and the G fragment of p91023 (B) and the F fragment of p91023 (B'), two new plasmids were generated that contain either an EcoR1-Pst I site or a Pst I-EcoR1 site at the original Pst I site. Pst I - EcoRl site where Ps The I site is closest to the adenoviral major late promoter, it was named p91023 (C).

Vektor p91023(C) bol kompletne štiepený pomocou Xhol a výsledná linearizovaná DNA s lepivými koncami bola zatupená reakciou zaplnenia koncov s veľkým fragmentom E. coli z DNA polymerázy I. K tejto DNA bol ligovaný 340 bp Hind III EcoRl fragment, obsahujúci SV40 enhancer, pripravený nasledovne:The vector p91023 (C) was completely digested with XhoI, and the resulting linearized sticky-end DNA was blunt-ended by filling ends with a large fragment of E. coli from DNA polymerase I. A 340 bp Hind III EcoR1 fragment containing the SV40 enhancer was ligated to this DNA. as follow:

Hind III - Pvu II fragment zo SV40, ktorý obsahuje SV40 počiatok replikácie a enhancer, bol inzertovaný do plazmidu c lac (Little a spol., Mol.Biol.Med. 1:473-488 (1983)). c lac vektor bol pripravený štiepením c lac DNA pomocou BamHI, zaplnením na lepivých koncoch veľkým fragmentom DNA polymerázy I a štiepením DNA pomocou Hind III. Výsledný plazmid (c SVHPIaC) regeneroval BamHI miesto pri ligácii k Pvu II tupému koncu. Fragment EcoRI-Hind III bol pripravený z c SVHPlac a ligovaný k EcoRI-Hind III fragmentu pSVOd (Mellon a spol., supra), ktorý obsahuje plazmidový počiatok replikácie a bol selektovaný výsledný plazmid PSVHPOd. Potom bol pripravený 340 bp EcoRI-Hind III fragment z PSVHPOd, obsahujúci SV40 počiatok/cnhancer, zatupený na obidvoch koncoch pomocou veľkého fragmentu DNA polymerázy 1 a ligovaný k Xhol štiepenému, zatupenému p91023(c) vektoru, opísanému hore. Výsledný plazmid (p91023(C)/Xho/ zatupený plus EcoRI/Hind III/zatupený SV40 počiatok plus enhancer), v ktorom bola orientácia Hind III - EcoRl fragmentu taká, že BamHI miesto v tomto fragmente bolo čo najbližšej VA génu, bol označený pES105. Plazmid Pesl05 bol štiepený pomocou Bam Hl a PvuII a tiež PvuII samotným a bol izolovaný BamHl-PvuII fragment, obsahujúci adenovírusový hlavný neskorý promótor (fragment B) a PvuII fragment, obsahujúci plazmid trvania rezistencie génu (tetracyklínová rezistencia) a iné sekvencie (fragment C). Fragmenty A, B a C boli ligované a výsledný plazmid je uvedený na obr. 7 a bol izolovaný a nazvaný RK1-4. Plazmid RK1-4 bol uložený v Američan Type Culture Collection, Rockville, Maryland, kde je dostupný pod prírastkovým číslom ATCC 399940.The Hind III-Pvu II fragment from SV40, which contains the SV40 origin of replication and enhancer, was inserted into plasmid c lac (Little et al., Mol.Biol.Med. 1: 473-488 (1983)). The c lac vector was prepared by digesting c lac DNA with BamHI, filling the sticky ends with a large DNA polymerase I fragment, and digesting the DNA with Hind III. The resulting plasmid (c SVHPIaC) regenerated the BamHI site upon ligation to the blunt-ended Pvu II. The EcoRI-Hind III fragment was prepared from c SVHPlac and ligated to the EcoRI-Hind III fragment of pSVOd (Mellon et al., Supra), which contained a plasmid origin of replication and the resulting plasmid PSVHPOd was selected. A 340 bp EcoRI-Hind III fragment from PSVHPOd containing SV40 origin / cnhancer was then prepared, blunt-ended at both ends with a large DNA polymerase 1 fragment, and ligated to the XhoI cleaved, blunt p91023 (c) vector described above. The resulting plasmid (p91023 (C) / Xho / blunted plus EcoRI / Hind III / blunted SV40 origin plus enhancer) in which the orientation of the Hind III-EcoR1 fragment was such that the BamHI site in this fragment was as close as possible to the VA gene was designated pES105 . Plasmid Pes105 was digested with Bam HI and PvuII as well as PvuII alone and a BamH1-PvuII fragment containing the adenovirus major late promoter (fragment B) and a PvuII fragment containing the gene resistance duration plasmid (tetracycline resistance) and other sequences (fragment C) was isolated. . Fragments A, B and C were ligated and the resulting plasmid is shown in FIG. 7 and was isolated and named RK1-4. Plasmid RK1-4 was deposited with the American Type Culture Collection, Rockville, Maryland, where it is available under accession number ATCC 399940.

Príklad 10Example 10

Expresia EPO v CHO bunkách - metóda 1Expression of EPO in CHO cells - method 1

DNA (20 pg) z plazmidu pPTFLI3, opísaného (príklad 6), bola štiepená reštrikčnou endonukleázou Cla I k linearizácii plazmidu a bola ligovaná k Cla I-štiepenej DNA z plazmidu pAdD26SVP(A) 1 (2 pg), ktorý obsahuje intaktný dihydrofolát reduktázový (DHFR) gén, riadený adenovírusovým hlavným neskorým promótorom (Kaufman a Sharp, Mol. and Cell.Biol. 2:1304-1319 (1982)). Takto ligovaná DNA bola použitá na transfektovanie DHFR-negatívnych CHO buniek (DUKS-B1I, Chasin L.A. a UrlaubDNA (20 µg) from plasmid pPTFL13 described (Example 6) was digested with Cla I restriction endonuclease to linearize the plasmid and was ligated to Cla I-digested DNA from plasmid pAdD26SVP (A) 1 (2 µg) containing intact reductase dihydrofolate. (DHFR) gene driven by the adenovirus major late promoter (Kaufman and Sharp, Mol. And Cell.Biol. 2: 1304-1319 (1982)). The DNA thus ligated was used to transfect DHFR-negative CHO cells (DUKS-B1I, Chasin L.A. and Urlaub).

G. (1980) PNAS 77 4216-4220) a ponechaná rásť dva dni, bunky, ktoré inkorporovali aspoň jeden DHFR gén, boli selektované v alfa médiu, postrádajúcom nukleotidy a doplnenom 10 % dialyzovaného fetálneho hovädzieho séra. Po dvoch týždňoch rastu v selektívnom médiu boli kolónie odstránené z originálnych platní, spojené do skupín 10-100 kolónií na skupinu, opäť umiestnené na platňu a ponechanéG. (1980) PNAS 77 4216-4220) and allowed to grow for two days, cells that incorporated at least one DHFR gene were selected in alpha medium lacking nucleotides and supplemented with 10% dialyzed fetal bovine serum. After two weeks of growth in selective medium, colonies were removed from the original plates, pooled into groups of 10-100 colonies per group, replated on the plate and left

SK 280623 Β6 rásť do zliatia v médiu, postrádajúcom nukleotidy. Supernatanty média zo skupín, vyrastených pred metotrexátovou selekciou, boli skúšané na EPO pomocou RIA. Skupiny, ktoré majú pozitívnu EPO produkciu, rástli v prítomnosti metotrexátu (0,02 μΜ) a potom boli subklonované a opäť skúšané. EPO Cla 4 4.02-7, jediný subklonovaný z EPO Cla 4 4.02 skupiny, uvoľňuje 460 ng/ml EPO do média, obsahujúceho 0,02 μΜ MTX (tabuľka 10). EPO Cla 4 4.02-7 je bunková línia voľby pre produkciu EPO a bola uložená v Američan Type Culture Collection pod prírastkovým číslom ATCC CRL8695. V súčasnosti je tento kloň podrobený postupnej selekcii v zvyšujúcich sa koncentráciách MTX a bude pravdepodobne poskytovať bunky, ktoré produkujú aj vyššie hladiny EPO. Pre skupiny, ktoré na základe RIA boli negatívne, boli kolónie, rezistentné k metotrexátu, získané z duplikátnych kultúr, ktoré rástli v prítomnosti metotrexátu (0,02 pM), opäť v skupinách skúšané na EPO pomocou RIA. Tieto kultúry, ktoré neboli pozitívne, boli subklonované a podrobené rastu v ďalej sa zvyšujúcich koncentráciách metotrexátu.Growth into mating in a nucleotide-free medium. Media supernatants from groups raised prior to methotrexate selection were assayed for EPO by RIA. Groups that had positive EPO production grew in the presence of methotrexate (0.02 μΜ) and were then subcloned and retested. EPO Cla 4 4.02-7, the only subcloned from the EPO Cla 4 4.02 group, releases 460 ng / ml EPO into media containing 0.02 μΜ MTX (Table 10). EPO Cla 4 4.02-7 is the cell line of choice for EPO production and has been deposited with the American Type Culture Collection under accession number ATCC CRL8695. Currently, this clone is subjected to sequential selection at increasing MTX concentrations and will likely provide cells that also produce higher levels of EPO. For groups that were negative on the RIA, methotrexate resistant colonies obtained from duplicate cultures that grew in the presence of methotrexate (0.02 µM) were again tested in the EPO groups by RIA. These non-positive cultures were subcloned and grown at increasing concentrations of methotrexate.

Postupná metotrexátová selekcia (MTX) bola dosiahnutá opakovaním cyklov kultivácie buniek v prítomnosti zvyšujúcich sa koncentrácií metotrexátu a selekciou prežívajúcich. V každom cykle bol meraný EPO v kultúrach supernatanta pomocou RIA a in vitro biologickej aktivity. Hladiny metotrexátu, použité v každej postupnej amplifikácii, boli 0,02 pM, 0,1 pM a 0,5 pM. Ako je uvedené v tabuľke 10, po jednom cykle selekcie v 0,02 pM MTX boli do kultivačného média uvoľnené významne vysoké hladiny EPO.Sequential methotrexate selection (MTX) was achieved by repeating cell culture cycles in the presence of increasing concentrations of methotrexate and selecting survivors. For each cycle, EPO was measured in supernatant cultures by RIA and in vitro biological activity. The levels of methotrexate used in each sequential amplification were 0.02 pM, 0.1 pM and 0.5 pM, respectively. As shown in Table 10, significantly higher EPO levels were released into the culture medium after one round of selection in 0.02 µM MTX.

Tabuľka 10Table 10

Hladina EPO, uvolneného do média The level of EPO released into the medium Vzorka skupina sample group Skúška An exam získané z média 0,02 μΜ metotrexát alfa v médiu alfa obtained from the medium 0,02 μΜ methotrexate alpha in alpha medium 4 4 4 4 RIA RIA 17 ng/ml 50 ng/ml 17 ng / ml 50 ng / ml jediná kolónia 4 4 kloň single colony 4 4 kloň (.02-7) (.02-7) RIA RIA - 460 ng/ml - 460 ng / ml

Príklad 11Example 11

Expresia EPO v CHO bunkách - metóda IIExpression of EPO in CHO Cells - Method II

DNA z klonu lambda HEPOFL13 bola štiepená pomocou EcoRI a malý fragment, obsahujúci EPO gén, bol subklonovaný do EcoRI miesta plazmidu RK1-4 (pozri príklad 10). Táto DNA (RKFL13) potom bola použitá na transfekciu DHFR-negatívnych CHO buniek priamo (bez štiepenia) a selekcia a amplifikácia bola vykonaná spôsobom opísaným v príklade 10.DNA from the lambda clone HEPOFL13 was digested with EcoRI and a small fragment containing the EPO gene was subcloned into the EcoRI site of plasmid RK1-4 (see Example 10). This DNA (RKFL13) was then used to transfect DHFR-negative CHO cells directly (without cleavage) and selection and amplification was performed as described in Example 10.

RKFL13 DNA bola tiež inzertovaná do CHO buniek protoplastovou fúziou a mikroinjekciou. Plazmid RKFL13 bol uložený a je dostupný v Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom ATCC 39989.RKFL13 DNA was also inserted into CHO cells by protoplast fusion and microinjection. Plasmid RKFL13 has been deposited and is available from the American Type Culture Collection, Rockville, Maryland under accession number ATCC 39989.

Tabuľka 11Table 11

Hladina EPO, EPO level, uvoľneného do aédia released to the arena Vzorka sample SkúSka An exam získan6 s média 0,02 pH matoYrexét. obtained with media 0.02 pH matrexate. alfa alpha v médiu alfa in alpha skupina kolónii A colony group A RIA RIA 3 ng/ml 3 ng / ml 4 2 ng/ml (skupina) ISO ng/nl (kloň) 4 2 ng / ml (group) ISO ng / nl (kloon) 3H-Thy 3 H-Thy - - 1,5 j./ml 1.5 U / ml jediná only RIA RIA - - so ng/ml with ng / ml kolónia colony 3H-Thy 3 H-Thy - - 5,9 j./ml 5.9 U / ml kloň (.O2C-2) lion (.O2C-2) alkroinjektovaná alkroinjektovaná skupina group RIA RIA 60 ng/ml 60 ng / ml 160 ng/ml 160 ng / ml (DEFO-1) (DEFO-1) 3H-Thy 3 H-Thy 1,8 j . /! 1.8 j. /! - -

Preferovaný kloň jedinej kolónie bol uložený a je dostupný z Američan Type Culture Collection, Rockville,The preferred single colony clone has been deposited and is available from the American Type Culture Collection, Rockville,

Maryland pod prírastkovým číslom ATCC CRL8695.Maryland under accession number ATCC CRL8695.

Príklad 12Example 12

Expresia EPO genomického klonu v COS-1 bunkáchExpression of EPO genomic clone in COS-1 cells

Na expresiu EPO genomického klonu bol použitý vektor pSVOd (Mellon a spol., supra). DNA z pSVOd bola úplne štiepená pomocou Hind III a zatupená s veľkým fragmentom DNA polymerázy I. EPO genomický kloň lambda-HEP3 bol úplne štiepený s EcoRI a Hind III a 4,0 kb fragment, obsahujúci EPO gén, bol izolovaný a zatupený ako je to opísané. Nukleotidová sekvencia tohto fragmentu z Hind III miesta do oblasti tesne za polyadenylačným signálom je uvedená na obr. 4 a v tabuľke 4. EPO génový fragment bol inzertovaný do pSVOd plazmidového fragmentu a správne konštruované rekombinanty v obidvoch orientáciách boli izolované a overené. Plazmid CZ2-1 má EPO gén v orientácii „a“ (t. j. 5' koniec EPO najbližšie k SV40 počiatku) a plazmid CZ1-3 je v opačnej orientácii (orientácia „b“).The pSVOd vector (Mellon et al., Supra) was used to express the EPO genomic clone. DNA from pSVOd was completely digested with Hind III and blunted with a large fragment of DNA polymerase I. The EPO genomic lambda-HEP3 clone was completely digested with EcoRI and Hind III, and the 4.0 kb fragment containing the EPO gene was isolated and blunted as is described. The nucleotide sequence of this fragment from the Hind III site to the region immediately behind the polyadenylation signal is shown in FIG. 4 and Table 4. The EPO gene fragment was inserted into the pSVOd plasmid fragment and the correctly constructed recombinants in both orientations were isolated and verified. Plasmid CZ2-1 has the EPO gene in the "a" orientation (i.e., the 5 'end of the EPO closest to the SV40 origin) and the plasmid CZ1-3 is in the opposite orientation ("b" orientation).

Plazmidy CZ1-3 a CZ2-1 boli transfektované do COS-1 buniek, ak je to opísané v príklade 7, a médiá boli zobrané a skúšané na imunologický reaktívny EPO. Približne 31 ng/ml EPO bolo defektných v supematante kultúry z CZ2-1 a 16-31 ng/ml CZ1-3.Plasmids CZ1-3 and CZ2-1 were transfected into COS-1 cells as described in Example 7, and media were harvested and assayed for immunologically reactive EPO. Approximately 31 ng / ml EPO was defective in the culture supernatant of CZ2-1 and 16-31 ng / ml CZ1-3.

Genomické klony HEPO1, HEPO2 a HEPO5 môžu byť inzertované do COS buniek pre expresii podobným spôsobom.The genomic clones HEPO1, HEPO2 and HEPO5 can be inserted into COS cells for expression in a similar manner.

Príklad 13Example 13

Expresia v C127 a v 3T3 bunkách. Konštrukcia pBPVEPO.Expression in C127 and 3T3 cells. Construction of pBPVEPO.

Plazmid, obsahujúci EPO cDNA sekvenciu pod transkripčnou kontrolou myšieho metalotioneinového promótora a napojený ku kompletnej DNA hovädzieho papilloma vírusu, bol pripravený nasledovne:A plasmid containing the EPO cDNA sequence under transcriptional control of the mouse metallothionein promoter and fused to bovine papilloma virus complete DNA was prepared as follows:

pEPO49FpEPO49F

Plazmid SP6/5 bol získaný od Promcga Biotec. Tento plazmid bol štiepený kompletne pomocou EcoRI a 1340 bp EcoRI fragment z lambda-HEPOFL13 bol inzertovaný DNA ligázou. Výsledný plazmid, v ktorom 5' koniec EPO génu bol najbližšie k SP6 promótoru (stanovené pomocou štiepenia BglI a Hind III), bol nazvaný pEPO49F. V tejto orientácii je BamHI miesto v PSP6/5 polylinkere priamo pripojené k 5' koncu EPO génu.Plasmid SP6 / 5 was obtained from Promcga Biotec. This plasmid was digested completely with EcoRI and the 1340 bp EcoRI fragment from lambda-HEPOFL13 was inserted by DNA ligase. The resulting plasmid in which the 5 'end of the EPO gene was closest to the SP6 promoter (determined by digestion with BglI and Hind III) was named pEPO49F. In this orientation, the BamHI site in the PSP6 / 5 polylinker is directly attached to the 5 'end of the EPO gene.

pMMTneo BPVpMMTneo BPV

Plazmid pdBPV-MMTneo (342-12) (Law a spol., Mol. and Celí Biol., 3:2110-2115 (1983)), ilustrovaný na obr. 8, bol štiepený kompletne pomocou BamHI za vzniku dvoch fragmentov - veľkého fragmentu asi 8 kb v dĺžke, obsahujúceho BPV genóm, a menšieho fragmentu asi 6,5 kb dĺžky, obsahujúceho pML2 počiatok replikácie a gén ampicilínovej rezistencie, metalotioneinový promótor, gén rezistencie neomycínu a SV40 polyadenylačný signál. Štiepená DNA bola recirkularizovaná DNA ligázou a plazmidy, ktoré obsahujú len 6,8 kb fragment, boli identifikované pomocou EcoRI a BamHI reštrikčným endonukleázovým štiepením. Jeden z týchto plazmidov bol nazvaný pMMTneo BPV.Plasmid pdBPV-MMTneo (342-12) (Law et al., Mol. And Cell Biol., 3: 2110-2115 (1983)), illustrated in FIG. 8, it was digested completely with BamHI to form two fragments - a large fragment of about 8 kb in length containing the BPV genome and a smaller fragment of about 6.5 kb in length containing the pML2 origin of replication and the ampicillin resistance gene, metallothionein promoter, neomycin resistance gene, and SV40 polyadenylation signal. The digested DNA was recirculated by DNA ligase and plasmids containing only the 6.8 kb fragment were identified by EcoRI and BamHI restriction endonuclease digestion. One of these plasmids was named pMMTneo BPV.

pEPO15a pMMT neo BPV bol kompletne štiepený pomocou BglII. pEPO49f bol štiepený kompletne pomocou BamHI a BglII a približne 700 bp fragment bol pripravený izoláciou na géli. BglII štiepený pMMTneo BPV a 700 bp Bam11pEPO15a pMMT neo BPV was completely digested with BglII. pEPO49f was digested completely with BamHI and BglII and an approximately 700 bp fragment was prepared by gel isolation. BglII digested with pMMTneo BPV and 700 bp Bam11

SK 280623 Β6SK 280623-6

HI/BgIII Epo fragment boli ligované a výsledné plazmidy, obsahujúce EPO cDNA, boli identifikované kolóniovou hybridizáciou s oligonukleotidovou d(GGTCATCTGTCCCCTGTCC) próbou, ktorá je špecifická pre EPO gén. Z plazmidov, ktoré boli pozitívne pri hybridizačnej analýze, bol jeden (pEPO15a), ktorý mal EPO cDNA v orientácii takej, že 5' koniec DNA bol najbližšie metalotioneinovému promótora, identifikovaný štiepením pomocou EcoRI a Kpnf.The HI / BgIII Epo fragment was ligated and the resulting plasmids containing EPO cDNA were identified by colony hybridization with an oligonucleotide d (GGTCATCTGTCCCCTGTCC) probe that is specific for the EPO gene. Of the plasmids that were positive in the hybridization assay, one (pEPO15α) having EPO cDNA in the orientation such that the 5 'end of the DNA was closest to the metallothionein promoter was identified by digestion with EcoRI and Kpnf.

pBPV-EPOpBPV-EPO

Plazmid pEPO15A bol štiepený kompletne BamHI pre linearizáciu plazmidu. Plazmid pdBPV-MMTneo(342-12) bol tiež štiepený kompletne pomocou BamHI za vzniku dvoch fragmentov 6, 5 a 8 kb. 8kb fragment, ktorý obsahuje celý genóm hovädzieho Papilloma vírusu, bol izolovaný na géli. pEPO15a/ BamHI a 8kb BamHI fragment boli spolu ligované a plazmid (pBPV-EPO), ktorý obsahuje BPV fragment, bol identifikovaný kolóniovou hybridizáciou pri použití oligonukleotidovej próby d(PCCACACCCGGTACACA-OH), ktorá je špecifická pre BPV genóm. Štiepenie pBPV-EPO DNA pomocou Hind III indikuje, že smer transkripcie BPV genómu bol rovnaký ako smer transkripcie metalotioneinového promótora (ako v pdBPV-MMMTnec(342-12) pozri obr. 8). Plazmid pdBPV-MMTneo(342-12) je dostupný z Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom č. ATCC 37224.Plasmid pEPO15A was digested completely with BamHI to linearize the plasmid. Plasmid pdBPV-MMTneo (342-12) was also digested completely with BamHI to give two fragments of 6, 5 and 8 kb. An 8 kb fragment containing the entire bovine Papilloma virus genome was isolated on a gel. pEPO15a / BamHI and the 8 kb BamHI fragment were ligated together and the plasmid (pBPV-EPO) containing the BPV fragment was identified by colony hybridization using the oligonucleotide probe d (PCCACACCCGGTACACA-OH), which is specific for the BPV genome. Digestion of pBPV-EPO DNA with Hind III indicates that the transcription direction of the BPV genome was the same as that of the metallothionein promoter (as in pdBPV-MMMTnec (342-12) see Figure 8). Plasmid pdBPV-MMTneo (342-12) is available from the American Type Culture Collection, Rockville, Maryland under accession no. ATCC 37224.

Expresiaexpression

Nasledujúce metódy boli použité na expresiu EPO.The following methods were used to express EPO.

Metóda IMethod I

DNA pBPV-EPO bola pripravená a približne 25 pg bolo použitých na transfektovanie asi 1 x 106 C127 (Lowy a spol., J. of Virol. 26:291-98 (1978)) CHO buniek pri použití štandardných techník zrážania fosforečnanom vápenatým (Grahm a spol., Virology, 52:456-67 (1973)). Päť hodín po transfekcii boli transfekčné médiá odstránené, bunky boli podrobené glycerínovému šoku, premyté a bolo pridané čerstvé α-médium obsahujúce 10 % fetálneho hovädzieho séra. Po 48 hodinách boli bunky trypsínizované a štiepené v pomere 1 : 10 v DME médiu, obsahujúcom 500 pg/ml 0418 (Southem a spol., Mol. Appl.Genet. 1 : 327-41 (1982)), a bunky boli inkubované dva až tri týždne. G418 rezistentné kolónie potom boli individuálne izolované do mikrotitračných jamiek a ponechané rásť do štádia v prítomnosti G418. Bunky potom boli premyté, bolo pridané čerstvé médium, obsahujúce 10 % fetálneho hovädzieho séra a médiá boli zobrané o 48 hodín neskoršie. Kondicionované médium bolo testované a zistené ako pozitívne pri rádioimunoeseji a in vitro biologickej eseji.PBPV-EPO DNA was prepared and approximately 25 µg was used to transfect about 1 x 10 6 C127 (Lowy et al., J. of Virol. 26: 291-98 (1978)) of CHO cells using standard calcium phosphate precipitation techniques ( Grahm et al., Virology, 52: 456-67 (1973)). Five hours after transfection, transfection media was removed, cells were subjected to glycerin shock, washed and fresh α-medium containing 10% fetal bovine serum was added. After 48 hours, cells were trypsinized and digested 1: 10 in DME medium containing 500 µg / ml 0418 (Southem et al., Mol. Appl.Genet. 1: 327-41 (1982)), and the cells were incubated for two up to three weeks. G418 resistant colonies were then individually isolated into microtiter wells and allowed to grow to the stage in the presence of G418. The cells were then washed, fresh medium containing 10% fetal bovine serum was added, and the media was harvested 48 hours later. Conditioned medium was tested and found to be positive in radioimmunoassay and in vitro biological assays.

Metóda IIMethod II

C127 alebo 3T3 bunky boli transfektované s 25 pg pBPV-EPO a 2 pg pSV2neo (Southem a spol., supra), ako je to opísané v metóde I. Je tu približne 10-násobný molárny prebytok pBPV-EPO. Po transfekcii, postup je rovnaký ako v metóde 1.C127 or 3T3 cells were transfected with 25 µg pBPV-EPO and 2 µg pSV2neo (Southem et al., Supra) as described in Method I. There is an approximately 10-fold molar excess of pBPV-EPO. After transfection, the procedure is the same as in Method 1.

Metóda IIIMethod III

C127 bunky boli transfektované 30 pg pBPV-EPO, ako je to opísané v metóde I. Po transfekcii a štiepení (1 : 10) bolo každé tri dni vymieňané čerstvé médium. Po asi 2 týždňoch boli zrejmé ložiská transformovaných buniek. Jednotlivé ložiská boli odoberané jednotlivo do 1 cm jamiek mikrotitračnej platne, ponechané rásť do subsúvislej mono vrstvy a skúšané na EPO aktivitu alebo antigenicitu v kondicionovanom médiu.C127 cells were transfected with 30 µg of pBPV-EPO as described in Method I. After transfection and digestion (1:10), fresh medium was changed every three days. After about 2 weeks, foci of transformed cells were evident. Individual foci were collected individually into 1 cm wells of the microtiter plate, allowed to grow into a sub-contiguous mono layer and assayed for EPO activity or antigenicity in the conditioned medium.

Príklad 14Example 14

Expresia v hmyzích bunkách. Konštrukcia pIVEV EPOFL13.Expression in insect cells. Construction of pIVEV EPOFL13.

Plazmidový vektor pIVEV bol uložený a je dostupný v Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom č. ATCC 39991. Vektor bol modifikovaný nasledovne:The plasmid vector pIVEV was deposited and is available in the American Type Culture Collection, Rockville, Maryland under accession no. ATCC 39991. The vector was modified as follows:

pIVEVNI pIVEV bol štiepený pomocou EcoRI k linearizácii plazmidu, zatupený použitím veľkého fragmentu DNA polymerázy I a jediný Nôti linker GGCGGCCGCCpIVEVNI pIVEV was digested with EcoRI to linearize the plasmid, blunted using a large DNA polymerase I fragment and a single NO linker GGCGGCCGCC

CCGCCGGCGG bol inzertovaný ligáciou k otupeným koncom. Výsledný plazmid je nazvaný pIVEVNI.CCGCCGGCGG was inserted by ligation to blunt ends. The resulting plasmid is called pIVEVNI.

pIVEVSI pIVEV bol štiepený pomocou Smal k linearizácii jediného Sfil linkerapIVEVSI pIVEV was digested with SmaI to linearize a single Sfil linker

GGGCCCCAGGGGCCCGGGCCCCAGGGGCCC

CCCGGGGTCCCCGGG, bol inzertovaný ligáciou k otupeným koncom. Výsledný plazmid bol nazvaný pIVEVSI.CCCGGGGTCCCCGGG, was inserted by ligation to blunt ends. The resulting plasmid was named pIVEVSI.

pIVEVSIBgKppIVEVSIBgKp

Plazmid pIVEVSI bol štiepený pomocou KpnI k linearizácii plazmidu a približne 0 až 100 bp bolo získaných z každého konca štiepením dvojreťazcovou exonukleázou Bal 31. Akékoľvek konce, ktoré neboli perfektne tupé, boli stupené pomocou veľkého fragmentu DNA polymerázy I a polylinker _Xho_ I _XbaI pEgjjl^ {Eccte! íciai Kpni AGATCTCG^GAATTCTAGlAlrCGA'?GGTAcJ TCTAGAGCTCTTAAGATCTAGCTACCATGG bol inzertovaný ligáciou k tupým koncom. Polylinker bol inzertovaný v obidvoch orientáciách. Plazmid, v ktorom je polylinker orientovaný tak, že BglII miesto v polylinkeri je najbližšie k promótora polyhedron génu, je nazvaný plVEVSIBgKp. Plazmid, v ktorom KpnI miesto v polylinkeri je najbližšie k promótora polyhedron génu, je nazvaný plVEVSIKpBg. Počet párov báz, ktoré boli deletované medzi pôvodným KpnI miestom v pIVEVSI a polyhedron promótorom, nebol stanovený. pIEIVSIBgKp bol uložený a je dostupný v Američan Type Culture Collection, Rockville, Maryland pod prírastkovým číslom č. ATCC 399988.The plasmid pIVEVSI was digested with KpnI to linearize the plasmid, and approximately 0 to 100 bp was obtained from each end by digestion with double-stranded exonuclease Bal 31. Any ends that were not perfectly blunt were digested with a large DNA polymerase I fragment and polylinker _Xho_I_XbaI pEgjj. ECCTIS! Kpni AGATCTCG ^ GAATTCTAG 1 A 1 rCGA 'GGTAcTCTAGAGCTCTTAAGATCTAGCTACCATGG was inserted by blunt end ligation. The polylinker was inserted in both orientations. The plasmid in which the polylinker is oriented so that the BglII site in the polylinker is closest to the promoter of the polyhedron gene is termed pIVEVSIBgKβ. The plasmid in which the KpnI site in the polylinker is closest to the polyhedron gene promoter is termed pIVEVSIKpBg. The number of base pairs that were deleted between the original KpnI site in pIVEVSI and the polyhedron promoter was not determined. pIEIVSIBgKp has been deposited and is available in the American Type Culture Collection, Rockville, Maryland under accession no. ATCC 399988.

IEVSIBgKpNl pIVEVNI bol štiepený kompletne pomocou KpnI a PstI za vzniku dvoch fragmentov. Väčší fragment, ktorý obsahuje plazmidový počiatok replikácie a 3' koniec polyhedron génu, bol pripravený izoláciou na géli (fragment A). pIEVSIBgKp bol štiepený kompletne pomocou pstl a Kpn za vzniku dvoch fragmentov a menší fragment, ktorý obsahuje polyhedron génový promótor a polylinker, bol pripravený izoláciami na géli (fragment B). Fragment A a B potom boli spojené DNA ligázou za vzniku nového plazmidu plVESIBgKpNI, ktorý obsahuje čiastočne deletovaný polyhedron gén, do ktorého bol inzertovaný polylinker a obsahuje tiež Nôti miesto (nahradenie zničeného EcoRI miesta) a Sfil miesto, ktoré prilieha k polyhedron génovej oblasti.IEVSIBgKpN1 pIVEVNI was digested completely with KpnI and PstI to form two fragments. The larger fragment containing the plasmid origin of replication and the 3 'end of the polyhedron gene was prepared by gel isolation (fragment A). pIEVSIBgKp was digested completely with pstI and Kpn to form two fragments, and a smaller fragment containing the polyhedron gene promoter and polylinker was prepared by gel isolations (fragment B). Fragments A and B were then ligated with a DNA ligase to form a novel plasmid p1VESIBgKpNI, which contains a partially deleted polyhedron gene into which a polylinker has been inserted, and also contains a N?

SK 280623 Β6 pIVEPO pIVEVSI BGKpNI bol štiepený kompletne pomocou EcoRI na linearizáciu plazmidu a 1340 bp EcoRI fragment z lambdaHEPOFLI3 bol inzertovaný. Plazmidy, obsahujúce EPO gén v orientácii takej, že 5' koniec EPO génu je najbližší polyhedron promótora a 3' koniec polyhedron génu, boli identifikované štiepením s BglII. Jeden z týchto plazmidov v opísanej orientácii bol označený pIVEPO.PIVEPO pIVEVSI BGKpNI was digested completely with EcoRI to linearize the plasmid and a 1340 bp EcoRI fragment from lambdaHEPOFLI3 was inserted. Plasmids containing the EPO gene in orientation such that the 5 'end of the EPO gene is the closest polyhedron promoter and the 3' end of the polyhedron gene were identified by digestion with BglII. One of these plasmids in the orientation described was designated pIVEPO.

Expresia EPO v hmyzích bunkáchEPO expression in insect cells

Veľké množstvá pIVEPO plazmidu boli vyrobené transformáciou E. coli kmeňa JMlOl-tgl. Plazmidová DNA bola izolovaná technikou čistenia lyzátu (Maniatis a Fritsch, Cold Spring Harbor Manual) a ďalej čistená pomocou CsCl odstredenia. L-l DNA polyhedrosis vírusu štandardného typu Autographa califomica (AcNPV) bola pripravená fenolovou extrakciou častíc vírusu a následným CsCl čistením vírusovej DNA.Large quantities of the pIVEPO plasmid were produced by transformation of E. coli strain JM101-tg1. Plasmid DNA was isolated by a lysate purification technique (Maniatis and Fritsch, Cold Spring Harbor Manual) and further purified by CsCl centrifugation. L-1 DNA polyhedrosis of wild-type Autographa califomica virus (AcNPV) was prepared by phenol extraction of virus particles followed by CsCl purification of viral DNA.

Tieto dve DNA potom boli kotransfektované do Spodoptera frugiperda buniek IPLB-SF-21 (Vaughn a spol., In Vitro, diel B, str. 213-17 (1977) pri použití transfekčného postupu s fosforečnanom vápenatým (Potter a Millere, 1977). Pre každú platňu kontransfektovaných buniek bol použitý 1 pg DNA štandardného typu AcNPV a 10 pg pIVEPO. Platne boli inkubované pri 27 °C 5 dní. Supematant potom bol oddelený a EPO expresia v supematante bola potvrdená rádioimunoesejou a in vitro biologickou esejou.The two DNAs were then co-transfected into Spodoptera frugiperda IPLB-SF-21 cells (Vaughn et al., In Vitro, Vol. B, pp. 213-17 (1977)) using a calcium phosphate transfection procedure (Potter and Millere, 1977). 1 µg of wild type AcNPV DNA and 10 µg of pIVEPO were used for each plate of transfected cells and incubated at 27 ° C for 5 days, then the supernatant was separated and EPO expression in the supernatant was confirmed by radioimmunoassay and in vitro biological assay.

Príklad 15 Čistenie EPOExample 15 Purification of EPO

COS-bunkové kondicionované médiá (121) s EPO koncentráciami až 200 pm/liter bola koncentrovaná na 600 ml pri použití ultrafiltračných membrán so schopnosťou delenia 10 000 mol. hmotnosti, ako je Millipore Pellicans 0,46 m2 na membránu. Eseje boli vykonané pomocou RIA, ako je to opísané v príklade 6. Retentát z ultrafiltrácie bol diafiltrovaný proti 4 ml 10 mM 10 mM fosforečnanu sodného, upraveného na pH 7,0. Koncentrované a diafiltrované kondičné médiá obsahujú 2,5 mg EPO v 380 mg celkového proteínu. EPO roztok bol ďalej koncentrovaný na 186 ml a vyzrážané proteíny boli odstránené odstredením pri 110 000 x g počas 30 minút.COS-cell conditioned media (121) with EPO concentrations up to 200 µm / liter was concentrated to 600 ml using ultrafiltration membranes with a separation capability of 10,000 mol. weight such as Millipore Pellicans 0.46 m 2 per membrane. The assays were performed by RIA as described in Example 6. The retentate from the ultrafiltration was diafiltered against 4 ml of 10 mM 10 mM sodium phosphate, adjusted to pH 7.0. Concentrated and diafiltered conditioning media contain 2.5 mg EPO in 380 mg total protein. The EPO solution was further concentrated to 186 ml and the precipitated proteins were removed by centrifugation at 110,000 xg for 30 minutes.

Supematant, ktorý obsahuje EPO (2,0 mg), bol upravený na pH 5,5 50 % kyselinou octovou, miešaný pri 4 °C 30 minút a zrazenina bola odstránená odstreďovaním pri 13 000 x g počas 30 minút.The supernatant containing EPO (2.0 mg) was adjusted to pH 5.5 with 50% acetic acid, stirred at 4 ° C for 30 minutes and the precipitate was removed by centrifugation at 13,000 x g for 30 minutes.

Chromatografia na karbonylmetylsepharózeCarbonylmethylsepharose chromatography

Supematant z odstreďovania (20 ml), obsahujúci 200 pg EPO (24 mg celkového proteínu), bol nanesený na kolónu, naplnenú CM-Sepharózou (20 ml), ekvilibrovanou v 10 mM octanu sodnom pH 5,5, premytou 40 ml rovnakého tlmivého roztoku. EPO, ktorý sa naviazal k CM-Sepharóze, bol eluovaný 100 ml gradientu NaU (0-1) v 10 mM fosforečnanu sodnom pH 5,5. Frakcie, obsahujúce EPO (celkom 50 pg v 2 mg celkových proteínov), boli spojené a koncentrované na 2 ml pri použití Amicon YM10 ultrafiltračnej membrány.The centrifugation supernatant (20 ml) containing 200 µg EPO (24 mg total protein) was loaded onto a column packed with CM-Sepharose (20 ml) equilibrated in 10 mM sodium acetate pH 5.5, washed with 40 ml of the same buffer. . EPO, which bound to CM-Sepharose, was eluted with a 100 mL gradient of NaU (0-1) in 10 mM sodium phosphate pH 5.5. Fractions containing EPO (total 50 µg in 2 mg total proteins) were pooled and concentrated to 2 mL using an Amicon YM10 ultrafiltration membrane.

HPLC s reverznou fázouReversed phase HPLC

Koncentrované frakcie z CM-Sepharózy, obsahujúce EPO, boli ďalej čistené pomocou HPLC s reverznou fázou pri použití Vydac-4 kolóny. EPO bol nanesený na kolónu, ekvilibrovanú v 10 % rozpúšťadle B (rozpúšťadlo A bolo 0,1 % CF3CO2H vo vode; rozpúšťadlo B bolo 0,1 % CF3CO2H v CF3CO2H v CF3CN), pri prietokovej rýchlosti ml/min. Kolóna bola premývaná 10 % B 10 minút a EPO bol eluovaný s lineárnym gradientom B(10 - 70 % 60 minút). Frakcie, obsahujúce EPO, boli spojené (asi 40 pg EPO v 120 pg celkových proteínov) a lyofilizované. Lyofilizovaný EPO bol rekonštruovaný v 0,1 M Tris HC1 pri pH 7,5, obsahujúcom 0,15M NaCl a rcchromatografovaný pomocou HPLC s reverznou fázou. Frakcie, obsahujúce EPO, boli spojené a analyzované SDS-polyakrylamidovou (10 %) gélovou elektroforézou (Lameli U.K., Náture). Spojené frakcie EPO obsahujú 15,5 pg EPO v 25 pg celkového proteínu.Concentrated fractions from CM-Sepharose containing EPO were further purified by reverse phase HPLC using a Vydac-4 column. The EPO was applied to a column equilibrated in 10% solvent B (solvent A was 0.1% CF 3 CO 2 H in water; solvent B was 0.1% CF 3 CO 2 H in CF 3 CO 2 H in CF 3 CN ), at a flow rate of ml / min. The column was washed with 10% B for 10 minutes and EPO eluted with a linear gradient B (10-70% 60 minutes). Fractions containing EPO were pooled (about 40 µg EPO in 120 µg total proteins) and lyophilized. Lyophilized EPO was reconstituted in 0.1 M Tris HCl at pH 7.5 containing 0.15M NaCl and chromatographed by reverse phase HPLC. Fractions containing EPO were pooled and analyzed by SDS-polyacrylamide (10%) gel electrophoresis (Lameli UK, Nature). The pooled EPO fractions contain 15.5 µg EPO in 25 µg total protein.

Vynález bol podrobne opísaný svojimi výhodnými rozpracovaniami. Odborník v odbore môže ľahko uskutočniť modifikácie a vylepšenia na základe opisu a predložených obrázkov bez toho, aby bola porušená myšlienka a rozsah vynálezu, ktorý je daný pripojenými nárokmi.The invention has been described in detail by its preferred embodiments. One skilled in the art can readily make modifications and improvements on the basis of the description and the present drawings without departing from the spirit and scope of the invention as set forth in the appended claims.

1. Jacobson L. O., Goldwasser E. Fried W., a Pizak L. F., Trans. Assoc. Am. Phvsicians TO:305-317(1957).1. Jacobson L.O., Goldwasser E. Fried W., and Pizak L. F., Trans. Assoc. Am. Phsicians TO: 305-317 (1957).

2. Krantz S. B. a Jacobson L. O. Chicago: Universitv of Chicago Press 1970, pp. 29-31.2. Krantz, S. B. and Jacobson, L.O. 29-31.

3. Hammond D. a Winnick S. Ann. N. Y. Acad. Sci. 230:219-227(1974).3. Hammond D. and Winnick S. Ann. N.Y. Acad. Sci. 230: 219-227 (1974).

4. Sherwood J. B. a. Goldwasser E., Endocrinology 103:866-870 (1978).4. Sherwood J. B. a. Goldwasser E., Endocrinology 103: 866-870 (1978).

5. Fried, W. Blood 40:671-677 ( 1972).5. Fried, W. Blood 40: 671-677 (1972).

6. Fisher J. J. Lab. and Clin. Med. 93:695-699 (1979).6. Fisher J. J. Lab. and Clin. Med. 93: 695-699 (1979).

7. Naughton B. A., Kaplan. S. M., Roy M., Burdowski A. J., Gordon A. S., a Piliera S. J. Scier 196:301-302.7. Naughton B.A., Kaplan. S. M., Roy M., Burdowski A. J., Gordon A. S., and Piliera S. J. Scier 196: 301-302.

8. Lucarelli G. P., Howard D., a Stohlman F., Jr. J. Clin. Invest 43:2195-2203 (1964).8. Lucarelli G. P., Howard D., and Stohlman F., Jr. J. Clin. Invest 43: 2195-2203 (1964).

9. Zanjani E. D., Poster J., Burlington H., Mann L. I., a Wasserman L. R. J. Lab. Clin. Med. 89:640-644 (1977).9. Zanjani E. D., Poster J., Burlington H., Mann L. I., and Wasserman L. R. J. Lab. Clin. Med. 89: 640-644 (1977).

10. Krantz S. B., Gallicn-Lartiguc O., a Goldwasser E. J. Biol Chem, 238:4085-4090 (1963).10. Krantz S. B., Gallicn-Lartiguc O., and Goldwasser E. J. Biol Chem, 238: 4085-4090 (1963).

11. Dunn C. D., Jarvis J. H. a Gresnman J. M. Exp. Hematol. 3:65-78 (1975).11. Dunn C. D., Jarvis J. H. and Gresnman J. M. Exp. Hematol. 3: 65-78 (1975).

12. Kryštál G. Exp. Hematol. 11:649-660 (1983).12. Crystal G. Exp. Hematol. 11: 649-660 (1983).

13. Iscove N. N. a Guilbert L. J., M. J. Murphy, Jr. (Ed.) New York:Springer-Verlag, pp. 3-7 (1978).13. Iscove N. N. and Guilbert L. J., M.J. Murphy, Jr. &amp; (Ed.) New York: Springer-Verlag 3-7 (1978).

14. Goldwasser E., ICN UCLA Symposium. Control of Cellular Division and Development. A. R. Liss, Inc., pp. 487-494 (1981)14. Goldwasser E., ICN UCLA Symposium. Control of Cellular Division and Development. A. R. Liss, Inc. 487-494

15. Cline M. J. a Golde D. W. Náture 277:177-181 (1979)15. Cline M.J. and Golde D. W. Nature 277: 177-181 (1979)

16. Metcalf D., Johnson G. R., a Burgess A. W. Blood 55:138- ( 1980).16. Metcalf D., Johnson G. R., and Burgess A. W. Blood 55: 138- (1980).

17. Krane N. Henry Ford Hosp. Med. J. 31:177-181 (1983).17. Krane N. Henry Ford Hosp. Med. J. 31: 177-181 (1983).

18. Eschbach J., Madenovic J., Garcia J., Wahl P., a Adamson J. J. Clin. Invest. 74:434-441 (1984).18. Eschbach J., Madenovic J., Garcia J., Wahl P., and Adamson J. J. Clin. Invest. 74: 434-441 (1984).

19. Anagnostou A., Barone J., Vedo A., a Fried. W. Br. J. Hematol 37:85-91 (1977).19. Anagnostou A., Barone J., Vedo A., and Fried. W. Br. J. Hematol. 37: 85-91 (1977).

20. Miyake T., Kung C., a Goldwasser E. J. Biol. Chem. 252:5558-5564(1977).20. Miyake T., Kung C., and Goldwasser E. J. Biol. Chem. 252: 5558-5564 (1977).

21. Yanagawa S., Hirade K., Ohnota H., Sasaki R., Chiba21. Yanagawa, S., Hirade, K., Ohnota, H., Sasaki, R., Chiba

H., Veda M., a Goto, M. J. Biol, Chem:259:2707-2710 (1984).H., Veda M., and Goto, M. J. Biol, Chem., 259: 2707-2710 (1984).

22. Lawn R. M., Fritsch E. F., Parker R. C., Blake G., a Maniatis. T. Celí 15:1157-( 1978).22. Lawn R. M., Fritsch E. F., Parker R. C., Blake G., and Maniatis. T. Cell 15: 1157- (1978).

23. Sanger F., Nicklen S., aCoulson A. R. Proc. Nat'I Acad. Sci., U.S.A, 74:5463-(1977).23. Sanger F., Nicklen S., and Coulson A. R. Proc. Nat'I Acad. Sci., U.S.A., 74: 5463- (1977).

24. Zanjanc E. D., Ascensao J. L., McGlave P. B., Banisadre M., ar Ash. R. C. J, Clin. Invest. 67:1183- (1981).24. Zanjanc E D, Ascensao J L, McGlave P B, Banisadre M, and Ash. R. C. J, Clin. Invest. 67: 1183- (1981).

25. Toole J. J., Knopf J. L., Wozney J. M., Sultzman L. A. Buecker L L., Pittman D. D., Kaufman R. J Brown E., Shoemaker C., Orr E. C., Amphlett G. W., Foster W. B., Coe M, L. Knutson G. J., Fass D N., a: Hewick R. M. Náture in Press.25. Toole JJ, Knopf JL, Wozney JM, Sultzman LA Buecker L., Pittman DD, Kaufman R. J Brown E., Shoemaker C., Orr EC, Amphlett GW, Foster WB, Coe M, L. Knutson GJ, Fass D N., and: Hewick RM Nature in Press.

26. Goldwasser E. Blood Suppl. L 58. xlii (abstr) (1981).26. Goldwasser E. Blood Suppl. L 58, xlii (abstr) (1981).

SK 280623 Β6SK 280623-6

27. Sue J. M. a Sytkowdki A. J. Proc. Nat'I Acad. Sci U.S.A. 80:3651-3655(1983).Sue JM and Sytkowdki A.J. Proc. Nat'I Acad. Sci U.S.A. 80: 3651-3655 (1983).

29. Bersch N. a Golda D. W., In Vitro Aspects of Ervthropoiesis. M. J. Murphy (Ed.) New York:Spinger-Verlag (1978).29. Bersch N. and Golda D. W., In Vitro Aspects of Ervthropoiesis. M.J. Murphy (Ed.) New York: Spinger-Verlag (1978).

30. CotesP. M. a BanghamD. R. Náture 191:1065-(1961).30. CotesP. M. and BanghamD. R. Nature 191: 1065- (1961).

31. Gotdwasser E. a Gross M. Methods in Enzvmol 37:109-121 (1975).31. Gotdwasser E. and Gross M. Methods in Enzvmol 37: 109-121 (1975).

32. Nabeshima Y. -i. Fujii-Kuriyama Y., Muramatsu M., a Ogata K. Náture 308:333-338 (1984).32. Nabeshima Y. -i. Fujii-Kuriyama Y., Muramatsu M., and Ogata K. Nature 308: 333-338 (1984).

33. Young R. A., Hagencuhle O. a Schibler U. Celí 23:451-558(1981).33. Young R.A., Hagencuhle O. and Schibler U. Cell 23: 451-558 (1981).

34. Medford R. M., Nguyen H. T., Destree A. T., Summers E. a Nadal-Ginard B. Celí 38:409-42 (1984).34. Medford R. M., Nguyen H. T., Destree A. T., Summers E. and Nadal-Ginard B. Cell 38: 409-42 (1984).

35. Ziff E. B. Náture 287:491-499 (1980).35. Ziff E. B. Nature 287: 491-499 (1980).

36. Earlv P. Celí 20:313-319 í 1980).36. Earlv P. Cell 20: 313-319 (1980).

37. Sytkowski A. Bio. Biop. Res. Comm. 96:143-149 (1980).37. Sytkowski A. Bio. BIOPAL. Res. Comm. 96: 143-149 (1980).

38. Murphy M. a Miyake T. Acta. Haematol. Jpn. 46:1380-1396(1983).38. Murphy M. and Miyake T. Acta. Haematol. Jpn. 46: 1380-1396 (1983).

39. Wagh P. V: a Bahl, O. P. CRC Critical Rieviews in Biochemistry 307-377 (1981).39. Wagh P. V: and Bahl, O. P. CRC Critical Rieviews in Biochemistry 307-377 (1981).

40. Wang F. F., Kung C. K. H. a Goldwasser E. Fed. Proc. Fed. Am, Soc. Exp-, Biol. 42:1872 (abstr) (1983).40. Wang F. F., Kung C. K. H. and Goldwasser E. Fed. Proc. Fed. Am, Soc. Exp., Biol. 42: 1872 (1983).

41. Lowy P., Keighley G. a Borsook H. Náture 185:102-103 (1960).41. Lowy P., Keighley G. and Borsook H. Nature 185: 102-103 (1960).

42. VanLenten L. a Ashwell G. J. Biol. Chem. 247:4633-4640(1972).42. VanLenten L. and Ashwell G. J. Biol. Chem. 247: 4633-4640 (1972).

43. I-ee-Huang S. Proc. Naťl Acad. Sci. U.S.A. 81:2708-2712(1984).43. I-ee-Huang S. Proc. Nat'l Acad. Sci. U.S.A. 81: 2708-2712 (1984).

44. Fyhrquist F., Rosenlof K., Gronhagen-Riska C., Hortling L. ar Tikkanen I. Náture 308:649-562 (1984).44. Fyhrquist F., Rosenlof K., Gronhagen-Riska C., Hortling L. and Tikkanen I. Nature 308: 649-562 (1984).

45. Ohkubo H., Kageyama R., Vjihara M., Hirose T., Inayama S., ar Nakanishi S. Proc. Naťl Acad. Sci. U.S.A. 80:2196-2200(1983).45. Ohkubo H., Kageyama R., Vjihara M., Hirose T., Inayama S., and Nakanishi S. Proc. Nat'l Acad. Sci. U.S.A. 80: 2196-2200 (1983).

46. Suggs S.V., Wallace R. B., Ilirose T., Kawashima E. H. ar. Itakura K. Proc. Naťl. Acad. Sci. U.S.A.-78:6613-6617 (1981).46. Suggs S.V., Wallace R. B., Ilirose T., Kawashima E. H. ar. Itakura K. Proc. Nat'l. Acad. Sci. U.S.A.-78: 6613-6617 (1981).

47. Woo S. L. C., Dugaiczyk A., Tsai M. J., Lai E. C., Catterall J. F. aO'Malley B. W. Proc. Naťl. Acad. Sci.U.S.A. 75:3688-(1978).47. Woo S. L. C., Dugaiczyk A., Tsai M. J., Lai E. C., Catterall J. F. and O'Malley B. W. Proc. Nat'l. Acad. Sci.U.S.A. 75: 3688- (1978).

48. Melchior W. B. a VonHippel P. H. Proc. Naťl Acad, Soc. U.S.A. 70:298-302 (1973).48. Melchior W. B. and VonHippel P. H. Proc. Natl Acad, Soc. U.S.A. 70: 298-302 (1973).

49. Orosz J. M. a Wetmis J. G. Biopolvmers 16:1183-1199 (1977).49. Orosz JM and Wetmis JG Biopolvmers 16: 1183-1199 (1977).

50. Anderson S aKingston I. B. Proc. Naťl Acad. Sci. U.S.A. 80:6836-6842 61983).50. Anderson S.Kingston I. B. Proc. Nat'l Acad. Sci. U.S.A. 80: 6836-6842, 61983).

51. Ullrich A., Coussens L., Hayflick J. S. Duli T. J., Gray A., Tam A. W., Lee J., Yarden Y., Libermann T. A., Schlessinger J., Downward J., Mayes E. L. V., Whittle H., Waterfield M.D, a Seeburg P. H. Náture 309:418-425 (1984).51. Ullrich A., Coussens L., Hayflick JS Duli TJ, Gray A., Tam AW, Lee J., Yarden Y., Libermann TA, Schlessinger J., Downward J., Mayes ELV, Whittle H., Waterfield MD , and Seeburg PH Nature 309: 418-425 (1984).

52. Fisher J. Proc. Soc. Exptl. Biol. a J Med. 173:289-305 (1983).52. Fisher J. Proc. Soc. Exptl. Biol. and J Med. 173: 289-305 (1983).

53. Kozák M. Nuc. Acid Res. 12:857-872 (1984).53. Kozak M. Nuc. Acid Res. 12: 857-872 (1984).

54. Benton W. D. a Davis R. W. Science 196:180-182 (1977).54. Benton W. D. and Davis R. W. Science 196: 180-182 (1977).

55. Sherwood J. B. a Goldwasser E. Blood 54:885-893 (1979).55. Sherwood J. B. and Goldwasser E. Blood 54: 885-893 (1979).

56. Derman E., Krauter K., Walling L., Weinberger C., Ray M., a Damell, J. T., Celí 23:731-(1981).56. Derman E., Krauter K., Walling L., Weinberger C., Ray M., and Damell, J. T., Cell 23: 731- (1981).

57. Gluzman Y.. Celí 23:175-182(1981).57. Gluzman Y. Cell 23: 175-182 (1981).

58. Hewick R. M., Hunkapiller M. E., Hood L. E., a Dreyer W. J. J. Biol, Chem, 256:7990-7997 (1981).58. Hewick R. M., Hunkapiller M. E., Hood L. E., and Dreyer W. J. J. Biol, Chem, 256: 7990-7997 (1981).

59. Towbin H., Stachelin T., a Gordon J., Proc. Naťl Acad. Sci. 76:4380-(1979).59. Towbin H., Stachelin T., and Gordon J., Proc. Nat'l Acad. Sci. 76: 4380- (1979).

60. Camott P., DeFlandre, C. C. R. Acad. Sci. Paris 143:432-(1960).60. Camott P., DeFlandre, C. C. R. Acad. Sci. Paris 143: 432- (1960).

Claims (13)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Rekombinantný DNA plazmidový vektor, obsahujúci cDNA kódujúcu ľudský erytropoetín (EPO) klonu lambda HEPOFL13 (ATCC 40153).A recombinant DNA plasmid vector comprising a cDNA encoding human erythropoietin (EPO) of the lambda clone HEPOFL13 (ATCC 40153). 2. Cicavčia bunka transformovaná transfer vektorom podľa nároku 1.A mammalian cell transformed with a vector transfer according to claim 1. 3. Bunka podľa nároku 2, kde uvedenou cicavčou bunkou je 3T3, C127 alebo CHO bunka.The cell of claim 2, wherein said mammalian cell is a 3T3, C127 or CHO cell. 4. Cicavčia bunka, obsahujúca plazmid, ktorý obsahuje celú DNA hovädzieho papilloma vírusu a cDNA sekvenciu z tabuľky 3 kódujúcu ľudský EPO.4. A mammalian cell comprising a plasmid that contains all bovine papilloma virus DNA and the cDNA sequence of Table 3 encoding human EPO. 5. Bunka podľa nároku 4, ktorou je bunka C127 alebo 3T3.The cell of claim 4 which is a C127 or 3T3 cell. 6. Bunka podľa nároku 5, kde uvedená EPO DNA je pod transkripčnou kontrolou myšieho metalotionen promótora.The cell of claim 5, wherein said EPO DNA is under transcriptional control of the mouse metallothionene promoter. 7. Bunka podľa nároku 5, ktorá obsahuje plazmid, obsahujúci DNA z pdBPV-MMTneo(342-12) (ATCC 37224).The cell of claim 5, which comprises a plasmid containing DNA from pdBPV-MMTneo (342-12) (ATCC 37224). 8. Rekombinantný ľudský erytropoetín, charakterizovaný prítomnosťou O-napojenej glykozylácie, pripraviteľný stupňami8. Recombinant human erythropoietin, characterized by the presence of O-linked glycosylation, preparable by steps a) kultivácie CHO buniek podľa nároku 3 obsahujúcich DNA sekvenciu kódujúcu ľudský erytropoetín vo vhodnom médie, kde uvedená DNA sekvencia je operatívne pripojená k expresnej kontrolnej sekvencií aa) culturing the CHO cells of claim 3 comprising a DNA sequence encoding human erythropoietin in a suitable medium, wherein said DNA sequence is operably linked to an expression control sequence; and b) získania a oddelenia EPO z buniek a média.b) recovering and separating EPO from the cells and the medium. 9. Rekombinantný ľudský erytropoetín podľa nároku 8, jeho glykozylové zvyšky zahŕňajú zvyšky fukózy.The recombinant human erythropoietin of claim 8, its glycosyl residues including fucose residues. 10. Rekombinantný ľudský erytropoetín podľa nároku 9, charakterizovaný glykozylačným profilom, zahŕňajúcim vzájomný molárny pomer hexóz k N-acetylglukózamínu (Nacglc) 1,4 : 1, konkrétne galaktózy : Nacglc = 0,9 : 1 a manózy : Nacglc = 0,5 : 1.Recombinant human erythropoietin according to claim 9, characterized by a glycosylation profile comprising a relative molar ratio of hexoses to N-acetylglucosamine (Nacglc) of 1.4: 1, namely galactose: Nacglc = 0.9: 1 and mannose: Nacglc = 0.5: first 11. Rekombinantný ľudský erytropoetín podľa nároku 9 alebo 10, charakterizovaný prítomnosťou N-acetyl-galaktózamínu.Recombinant human erythropoietin according to claim 9 or 10, characterized by the presence of N-acetyl-galactosamine. 12. Spôsob výroby rekombinantného ľudského erytropoetínu (hEPO)zahŕňajúci stupneA method for producing recombinant human erythropoietin (hEPO) comprising the steps of a) kultivácie CHO buniek, ktoré obsahujú DNA sekvenciu kódujúcu hEPO operatívne pripojenú k expresnej kontrolnej sekvencií, vo vhodnom médie a(a) culturing CHO cells containing a DNA sequence encoding hEPO operably linked to an expression control sequence in a suitable medium; and b) získania a separácie produkovaného rekombinantného hEPO z buniek a média, vyznačujúci sa tým, že sa použijú CHO bunky majúce schopnosť poskytovať N- a O-pripojenú glykozyláciu so zavedením fukózy a N-acetylgalaktózamí-nu, pričom z buniek a média sa získa a oddelí rekombinantný hEPO s N- a O-pripojenou glykozyláciou.(b) recovering and separating the produced recombinant hEPO from the cells and the medium, characterized in that CHO cells having the ability to provide N- and O-linked glycosylation with the introduction of fucose and N-acetylgalactosamine are used; separates recombinant hEPO with N- and O-linked glycosylation. 13. Spôsob podľa nároku 12, vyznačujúci sa t ý m , že rekombinantný hEPO má nasledujúci glykozylačný profil: molárny pomer hexóz k N-acetylglukózamínu (Nacglc) 1,4 : 1, konkrétne molárny pomer galaktózy k Nacglc 0,9 : 1 a manózy k Nacglc 0,5 :1.The method of claim 12, wherein the recombinant hEPO has the following glycosylation profile: a molar ratio of hexoses to N-acetylglucosamine (Nacglc) of 1.4: 1, in particular a molar ratio of galactose to Nacglc of 0.9: 1 and mannose to Nacglc 0.5: 1.
SK46598A 1985-01-03 1985-12-03 Recombinant dna plasmid vector, mammalian cell transformed with this vector, recombinant human erythropoietin, and method of its production SK46598A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68862285A 1985-01-03 1985-01-03

Publications (2)

Publication Number Publication Date
SK280623B6 true SK280623B6 (en) 2000-05-16
SK46598A3 SK46598A3 (en) 2000-05-16

Family

ID=24765108

Family Applications (1)

Application Number Title Priority Date Filing Date
SK46598A SK46598A3 (en) 1985-01-03 1985-12-03 Recombinant dna plasmid vector, mammalian cell transformed with this vector, recombinant human erythropoietin, and method of its production

Country Status (3)

Country Link
RU (2) RU2120996C1 (en)
SK (1) SK46598A3 (en)
SU (1) SU1672930A3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523948C1 (en) * 2013-06-28 2014-07-27 Общество С Ограниченной Ответственностью "Фармапарк" Eukaryotic host cell for expression of darbepoetin, expression vector and method of production of darbepoetin alfa
RU2548806C1 (en) * 2014-01-20 2015-04-20 Общество с ограниченной ответственностью "РД-БИОТЕХ" Synthetic dna encoding human erythropoietin, comprising its vector, method of production of erythropoietin producer strain, erythropoietin producer strain

Also Published As

Publication number Publication date
SU1672930A3 (en) 1991-08-23
SK46598A3 (en) 2000-05-16
RU2120996C1 (en) 1998-10-27
RU2129613C1 (en) 1999-04-27

Similar Documents

Publication Publication Date Title
EP0411678B2 (en) Method for the production of erythropoietin
US4703008A (en) DNA sequences encoding erythropoietin
EP0148605B1 (en) Production of erythropoietin
SK280623B6 (en) Recombinant dna plasmid vector, mammalian cell transformed with this vector, recombinant human erythropoietin, and method of its production
JPH0144317B2 (en)
AU5711199A (en) Method for the production of erythropoietin
KR930005917B1 (en) Method for the production of erythropoietion
AU604051B2 (en) Recombinant human erythropoietin
DD251788A5 (en) Process for the preparation of a human cDNA clone
AU4252400A (en) Production of erythropoietin