SI9800182A - Process for treatment with nitrate ion contaminated water - Google Patents

Process for treatment with nitrate ion contaminated water Download PDF

Info

Publication number
SI9800182A
SI9800182A SI9800182A SI9800182A SI9800182A SI 9800182 A SI9800182 A SI 9800182A SI 9800182 A SI9800182 A SI 9800182A SI 9800182 A SI9800182 A SI 9800182A SI 9800182 A SI9800182 A SI 9800182A
Authority
SI
Slovenia
Prior art keywords
ion
nitrate
solution
regeneration
chloride
Prior art date
Application number
SI9800182A
Other languages
Slovenian (sl)
Inventor
Albin Pintar
Jurka Batista
Gorazd Berčič
Janez Levec
Original Assignee
Kemijski inštitut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski inštitut filed Critical Kemijski inštitut
Priority to SI9800182A priority Critical patent/SI9800182A/en
Priority to PCT/SI1999/000018 priority patent/WO2000000438A1/en
Publication of SI9800182A publication Critical patent/SI9800182A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention refers to a process of purification of nitrate ion polluted water, including drinking water and technological water, using a combined process of regeneration of nitrate ion saturated ion-exchange resins and catalytic hydrogenation of nitrate ions in a regeneration solution transforming them to nitrogen. By application of the invention which consists of the ion-exchange as physical chemistry method of nitrate ion removal from the polluted water stream, of the regeneration of the saturated or partially saturated ion-exchange resin by means of a water solution of chloride ion, and of the simultaneous removal of the nitrate ion by means of the heterogeneously catalysed hydrogenation carried out in two- or three-phase overflow reactor systems, the nitrate ion concentration in drinking and technological water can be effectively reduced on the legally prescribed value.

Description

Proces za čiščenje z nitratnim ionom onesnaženih vodaCleaning process for nitrate ion contaminated water

Področje izumaFIELD OF THE INVENTION

Predmetni izum se nanaša na proces za čiščenje z nitratnim ionom onesnaženih voda, vključno pitnih in tehnoloških voda, s kombiniranim procesom regeneracije z nitratnimi ioni nasičenih ionskih izmenjevalnih mas in katalitske hidrogenacije nitratnega iona v regeneracijski raztopini ter njegovo pretvorbo v dušik. Z uporabo izuma, ki sestoji iz ionske izmenjave kot fizikalno-kemijskega načina odstranjevanja nitratnega iona iz onesnaženega toka, regeneracije nasičene ali delno izrabljene ionske izmenjevalne mase z vodno raztopino kloridnega iona ter simultanega odstranjevanja nitratnega iona iz slednje s pomočjo heterogeno katalizirane hidrogenacije, ki poteka v dvo- ali trifaznih pretočnih reaktorskih sistemih, lahko v pitnih in tehnoloških vodah učinkovito zmanjšamo koncentracijo nitratnega iona na z zakonom predpisano vrednost.The present invention relates to a process for the purification of polluted waters, including drinking water and process water, by a combined process of regeneration with nitrate ions of saturated ion exchange masses and catalytic hydrogenation of nitrate ion in a regeneration solution and its conversion to nitrogen. Using an invention consisting of ion exchange as a physicochemical method of removing a nitrate ion from a polluted stream, regenerating a saturated or partially spent ion exchange mass with an aqueous chloride ion solution, and simultaneously removing the nitrate ion from the latter by heterogeneously catalyzed hydrogenation carried out in two- or three-phase flow reactor systems can effectively reduce the nitrate ion concentration to the statutory value in drinking and process waters.

Problem, ki ga rešuje izumThe problem solved by the invention

Prekomerna uporaba naravnih ali umetnih gnojil na kmetijskih površinah znatno povečuje koncentracijo nitratnega iona v površinskih vodah in podtalnici, tudi do 200 mg/L. Uporaba takšnih vodnih tokov za preskrbo prebivalstva s pitno vodo povzroča rakotvorna obolenja in poškodbe centralnega živčnega sistema na ljudeh; problematičen pa je njihov učinek na druga živa bitja in kot tehnološka voda.Excessive use of natural or artificial fertilizers on agricultural land significantly increases the concentration of nitrate ion in surface water and groundwater, up to 200 mg / L. The use of such waterways to supply the population with drinking water causes carcinogenic diseases and damage to the central nervous system in humans; however, their impact on other living beings and as technological water is problematic.

Stanje tehnikeThe state of the art

Doslej je bilo na voljo več metod za odstranjevanje nitratnega iona iz vodnih medijev, na primer:So far, several methods have been available to remove nitrate ion from aqueous media, for example:

• ionska izmenjava, • ultrafiltracija, • reverzna osmoza, • biološka denitrifikacija in • heterogeno katalizirana redukcija v kapljevinasti fazi.• ion exchange, • ultrafiltration, • reverse osmosis, • biological denitrification, and • heterogeneously catalyzed reduction in the liquid phase.

Pomanjkljivost prvih treh fizikalno-kemijskih postopkov je v tem, da producirajo odpadne (sekundarne) vodne tokove z zelo visoko vsebnostjo nitratnega iona, katerih izpust v okolico, še zlasti v kontinentalnih področjih, predstavlja za okolje nesprejemljivo obremenitev. V času visoke ekološke osveščenosti imata tako nadaljnjo perspektivo le biološka denitrifikacija in heterogeno katalizirana redukcija nitratnega iona, saj obe tehniki omogočata selektivno pretvorbo nitratnega iona preko vmesnih produktov v neškodljivi dušik brez kakršnekoli produkcije odpadnih voda. Tudi proces biološke denitrifikacije ima nekaj pomanjkljivosti, ki se kažejo še zlasti v počasnosti in težavnosti vodenja reakcije. Dodatne pomisleke pri uvajanju procesa biološke denitrifikacije na področju čiščenja pitnih voda pa vzbujajo velika verjetnost kontaminacije toka očiščene vode z mikroorganizmi iz biološkega denitrifikacijskega reaktorja, nepopolna poraba v vodo dodanih organskih spojin (npr., metanol, ocetna kislina) kot vir ogljika in s tem posledično povečana poraba klora v procesu dezinfekcije kot končne stopnje čiščenja. Zato metoda heterogeno katalizirane redukcije, ki se sicer nahaja še v različnih razvojnih fazah, predstavlja alternativo biološki denitrifikaciji, saj je od le-te tudi do 100-krat hitrejša.The disadvantage of the first three physicochemical processes is that they produce waste (secondary) water courses with a very high content of nitrate ion, whose discharge into the environment, especially in continental areas, presents an unacceptable load for the environment. In times of high ecological awareness, only biological denitrification and heterogeneously catalyzed reduction of nitrate ion have such a further perspective, since both techniques allow selective conversion of nitrate ion via intermediates into harmless nitrogen without any wastewater production. The process of biological denitrification also has some drawbacks, which are particularly evident in the slowness and difficulty of managing the reaction. Additional considerations for the introduction of the biological denitrification process in the field of drinking water, however, raise the high likelihood of contamination of the stream of purified water by micro-organisms from the biological denitrification reactor, incomplete consumption of organic compounds added to water (eg methanol, acetic acid) as a carbon source and, consequently, increased consumption of chlorine in the disinfection process as a final cleaning step. Therefore, the heterogeneously catalyzed reduction method, which is still in various developmental stages, is an alternative to biological denitrification, since it is up to 100 times faster.

Proces heterogeno katalizirane hidrogenacije nitratnega iona, ki ga lahko predstavimo z naslednjo kemijsko reakcijo:The process of heterogeneously catalyzed hydrogenation of a nitrate ion, which can be represented by the following chemical reaction:

2NO3 + 5H2--> Nz + 2QH- + 4H2q (i) se vrši v dvo- ali trifaznem reaktorskem sistemu, v katerem kontaktiraijo z nitratnim ionom kontaminirano vodno fazo in redukcijsko sredstvo (tj. vodik ali vodik vsebujočo plinsko mešanico) na aktivnem mestu trdnega katalizatorja. Redukcija nitratnega iona preko vmesnih intermediatov v dušik poteka pri zelo milih reakcijskih pogojih: temperatura do 298 K in celokupni tlak od 1 do 10 bar, pri čemer je lahko parcialni tlak vodika ali enak celokupnemu ali pa bistveno nižji. Horold et al. (Catal. Today, 17, 21-30 (1993)) so pri poskusih katalitske redukcije nitratnega iona v reaktorju z goščo uporabljali bimetalni katalizator, tj. na y-A12O3 nanešeni Pd (5 ut. %) in Cu (1.25 ut. %) kovinski fazi. Kot je razvidno iz rezultatov njihovega dela, uporabljeni katalizator kaže tako visoko aktivnost za hidrogenacijo nitratnega iona v vodni raztopini kot tudi kemijsko stabilnost. Njegova edina pomanjkljivost je v tvorbi amonijevega iona kot stranskega produkta reakcije, kar znižuje selektivnost reakcije (le-ta znaša 82 molskih odstotkov pri naslednjih eksperimentalnih pogojih: reakcijska temperatura: 283 K; parcialni tlak vodika: 1.0 bar; celotni obratovalni tlak: 1.0 bar; začetna koncentracija nitratnega iona: 100 mg/L; koncentracija katalizatorja: 1.6 g/L). Pintar in Levec (SI patent, 9500357, 7. januar (1998)) sta razvila Pd-Cu/y-Al2C>3 bimetalni katalizator, kjer sta kovinski fazi nanešeni na aluminijevem oksidu z metodo mokre impregnacije v takšnem zaporedju, ki zagotavlja, da se preko 90 odstotkov začetne množine nitratnega iona pretvori v dušik. Pintar et al. (J. Catal.,2NO 3 + 5H 2 - > Nz + 2QH - + 4H2 q (i) is carried out in a two- or three-phase reactor system in which the contaminated aqueous phase and the reducing agent (i.e. hydrogen or hydrogen-containing gas mixture) are contacted with a nitrate ion. at the active site of the solid catalyst. Reduction of nitrate ion via intermediate to nitrogen occurs at very mild reaction conditions: temperature up to 298 K and overall pressure from 1 to 10 bar, with partial hydrogen pressure or equal to the whole or substantially lower. Horold et al. (Catal. Today, 17, 21-30 (1993)) used bimetallic catalyst, ie a bimetallic catalyst, in experiments on catalytic reduction of nitrate ion in a slurry reactor. Pd (5% by weight) and Cu (1.25% by weight) metal phase applied to the y-A1 2 O3. As can be seen from the results of their work, the catalyst used shows both high activity for hydrogenation of nitrate ion in aqueous solution as well as chemical stability. Its only drawback is the formation of ammonium ion as a by-product of the reaction, which reduces the selectivity of the reaction (82 mol% under the following experimental conditions: reaction temperature: 283 K; hydrogen partial pressure: 1.0 bar; total operating pressure: 1.0 bar; initial nitrate ion concentration: 100 mg / L; catalyst concentration: 1.6 g / L). Pintar and Levec (SI patent, 9500357, January 7 (1998)) have developed a Pd-Cu / y-Al2C> 3 bimetallic catalyst where metal phases are deposited on aluminum oxide by a wet impregnation method in such a sequence that ensures that more than 90 percent of the initial amount of nitrate ion is converted to nitrogen. Pintar et al. (J. Catal.,

174, 72-87 (1998)) so pokazali, da se pri odstranjevanju nitratnega iona iz vodnih raztopin oziroma pitnih vod, ki vsebujejo znatne množine hidrogenkarbonatnega iona (nestalna trdota), selektivnost reakcije ob uporabi katalizatorja, ki je predmet izuma, obravnavanega v SI patentu 9500357 (1998), znatno poslabša. Pintar et al. (J. Catal., 174, 72-87 (1998)) tudi navajajo, da z vidika današnjega stanja tehnike direktno čiščenje z nitratnimi ioni onesnažene pitne vode z uporabo metode katalitske hidrogenacije ni možno, saj koncentracije nastalega amonijevega iona v očiščeni vodi presegajo zakonsko predpisano vrednost (tj., 0.5 mg/L NHj).174, 72-87 (1998)) have shown that, when removing nitrate ion from aqueous solutions or drinking water containing significant amounts of hydrogen carbonate ion (non-constant hardness), the selectivity of the reaction using the catalyst of the invention discussed in SI 9500357 (1998), significantly deteriorates. Pintar et al. (J. Catal., 174, 72-87 (1998)) also state that it is not possible to directly purify with nitrate ions of contaminated drinking water using the catalytic hydrogenation method, since the concentrations of the formed ammonium ion in the purified water exceed the legal the prescribed value (i.e., 0.5 mg / L NH3).

Izmed vseh industrijskih procesov, ki učinkovito odstranjujejo presežne množine nitratnega iona iz pitne vode, je postavitev procesa ionske izmenjave ekonomsko najugodnejša (Kapoor in Viraraghavan, J. Environ. Eng, 123(4), 371-380 (1997)). Kot je že omenjeno zgoraj, pomanjkljivost te tehnike predstavlja nastanek sekundarnega toka vodne raztopine, ki praviloma vsebuje zelo visoke koncentracije nitratnih, sulfatnih in kloridnih ionov, pri čemer je njegov izpust v okolico ekološko sporen. Hoek et al. (Water, Air, and Soil Pollution, 37, 41-53 (1988)) ter Clifford in Liu (/. 85(4), 135-143 (1993)) so pomanjkljivost fizikalnokemijskega procesa ionske izmenjave odpravili tako, da so kolono z ionskim izmenjevalcem povezali z biološkim denitrifikacijskim reaktorjem, ki omogoča regeneracijo z nitratnimi ioni nasičene ali delno izrabljene ionske izmenjevalne mase v zaprtem tokokrogu. Na tak način je moč drastično znižati množino regeneracijske raztopine natrijevega klorida, ki se jo izpušča v okoliške vodotoke. Clifford in Liu (J. AWWA, 85(4), 135-143 (1993)) še navajata, da se z uporabo kombiniranega procesa, ki sestoji iz kolone z ionskim izmenjevalcem in sekvenčnega šaržnega reaktorja, v katerem se nahajajo mikroorganizmi, količina porabljenega natrijevega klorida zmanjša za 50 odstotkov, množina regeneracijske lužnice, ki se jo izpušča v okolico, pa za 90 odstotkov.Of all the industrial processes that effectively remove excess nitrate ion from drinking water, setting up an ion exchange process is the most economically advantageous (Kapoor and Viraraghavan, J. Environ. Eng, 123 (4), 371-380 (1997)). As mentioned above, the drawback of this technique is the formation of a secondary stream of aqueous solution, which as a rule contains very high concentrations of nitrate, sulfate and chloride ions, with its release into the environment being environmentally controversial. Hoek et al. (Water, Air, and Soil Pollution, 37, 41-53 (1988)) and Clifford and Liu (/. 85 (4), 135-143 (1993)) eliminated the disadvantages of the physicochemical ion exchange process by eliminating the column with The ion exchanger is connected to a biological denitrification reactor that enables regeneration with nitrate ions of a saturated or partially exhausted ion exchange mass in a closed circuit. In this way it is possible to drastically reduce the amount of sodium chloride regeneration solution discharged into the surrounding watercourses. Clifford and Liu (J. AWWA, 85 (4), 135-143 (1993)) further state that by using a combined process consisting of an ion exchanger column and a sequential batch reactor containing microorganisms, the amount consumed Sodium chloride is reduced by 50 percent and the amount of regenerative liquor discharged into the environment by 90 percent.

OPIS IZUMADESCRIPTION OF THE INVENTION

Predmet tega izuma je proces za čiščenje z nitratnim ionom onesnaženih voda, ki združuje fizikalno-kemijski proces ionske izmenjave z metodo heterogeno katalizirane hidrogenacije na tak način, da učinkovito odpravlja njuni pomanjkljivosti, tj.: (i) nastanek sekundarnega vodnega toka z visoko vsebnostjo nitratnih, sulfatnih in kloridnih ionov; (ii) kontaminacijo očiščene vode s produciranimi amonijevimi ioni, ki se tvorijo zaradi nezadovoljive selektivnosti PdCu bimetalnih katalizatorjev v prisotnosti hidrogenkarbonatnih ionov. Shematsko je kombinirani proces, ki ga obravnava predloženi izum, predstavljen na sliki 1.The object of the present invention is a process for purification with nitrate ion of contaminated water, which combines the physicochemical process of ion exchange with the method of heterogeneously catalyzed hydrogenation in such a way that effectively eliminates their disadvantages, ie: (i) formation of secondary water stream with high nitrate content , sulfate and chloride ions; (ii) contamination of purified water with the production of ammonium ions, which is formed due to the unsatisfactory selectivity of PdCu bimetallic catalysts in the presence of hydrogen carbonate ions. Schematically, the combined process of the present invention is presented in Figure 1.

V koloni (1) se nahaja sloj močno bazične ionske izmenjevalne mase (npr., IMAC HP-555 proizvajalca Rohm and Haas Co.) v kloridni formi. Pri temperaturi okolice oziroma medija in celokupnem tlaku do 10 bar pričnemo vanjo črpati z nitratnimi ioni onesnaženo vodo tako, da le-ta prehaja preko nasutega sloja ionskega izmenjevalca preferenčno v smeri od spodaj navzgor, pri čemer linearna hitrost vodnega toka, izračunana na prazen presek kolone, znaša do 60 m/h. Pri tem se v vodi raztopljeni nitratni ion ekvimolarno izmenja s kloridnim ionom, ki vstopa v raztopino z ionske izmenjevalne mase. Ker maksimalna dovoljena koncentracija za nitratni ion v pitni vodi znaša 50 mg/L, lahko v kolono z ionskim izmenjevalcem vodimo le tolikšen del onesnažene vode, preostanek medtem teče po obtočni cevi, da je na mestu z oznako (2), kjer se očiščeni tok vode združi z neočiščenim, koncentracija nitratnega iona v raztopini nižja od najvišje dovoljene. V trenutku, ko je koncentracija nitratnega iona v toku vode na mestu (2) višja ali enaka 50 mg/L, prenehamo z uvajanjem vodnega toka, onesnaženega z nitratnimi ioni, v kolono (1), oziroma ga, če imamo v sistem vključenih več kolon z ionskim izmenjevalcem, preusmerimo na drugo kolono, v kateri se ionska izmenjevalna masa nahaja v kloridni formi.Column (1) contains a layer of strongly basic ion exchange mass (e.g., IMAC HP-555 manufactured by Rohm and Haas Co.) in chloride form. At ambient or medium temperatures and overall pressures up to 10 bar, the contaminated water is pumped into it by nitrate ions so that it passes through the nascent layer of the ion exchanger preferentially from the bottom up, with the linear velocity of the water flow calculated at the empty cross-section of the column , is up to 60 mph. In doing so, the nitrate ion dissolved in water is equimolarly exchanged with the chloride ion entering the solution from the ion exchange mass. Since the maximum permissible concentration for nitrate ion in drinking water is 50 mg / L, only so much of the contaminated water can be led into the ion exchanger column, the remainder flowing through the circulation pipe to the point (2) where the purified stream is combined with the crude, the concentration of nitrate ion in the solution is lower than the maximum allowed. At the moment when the concentration of nitrate ion in the water flow at the site (2) is higher or equal to 50 mg / L, we stop introducing the water stream contaminated with nitrate ions into the column (1), or if more are included in the system. of the ion exchanger columns, switch to another column in which the ion exchange mass is in chloride form.

V nasičevalnik (3), v katerem se nahaja vodna raztopina natrijevega klorida oziroma vodna raztopina kalcijevega klorida (regeneracijska raztopina), pri čemer znaša koncentracija kloridnega iona do 20 g/L, pričnemo uvajati redukcijsko sredstvo, tj. vodik oziroma vodika vsebujoči plin, preferenčno plinsko mešanico H2N2, pri čemer se koncentracija dušika v plinski mešanici giblje od 5 do 95 volumskih odstotkov. Istačasno vključimo tudi črpalko (4), ki občrpava vodno raztopino kloridnega iona skozi nasičevalnik in katalitskim reaktor, tako da vodna raztopina kloridnega iona prehaja skozi katalitski reaktor v smeri od spodaj navzgor, pri čemer njena linearna hitrost znaša do 0.5 m/s. Nasičevalnik je opremljen tudi z mešalno šobo (3a), ki omogoča dobro kontaktiranje kapljevinaste in plinaste faze. Hkrati z vključitvijo črpalke (4) aktiviramo tudi dovajanje nevtralizacijskega sredstva, tj. vodne raztopine klorovodikove kisline, ki zagotavlja, da se PH vrednost vodne raztopine kloridnega iona giblje v območju od 5.0 do 7.0, preferenčno v območju od 5.0 do 5.5. Ko je celokupni tlak v sistemu enak nastavljeni vrednosti, vklopimo črpalko (5), ki občrpava vodno raztopino kloridnega iona skozi kolono z ionskim izmenjevalcem in nasičevalnik, tako da vodna raztopina kloridnega iona prehaja skozi kolono z ionskim izmenjevalcem, preferenčno v smeri od zgoraj navzdol, pri čemer njena linearna hitrost znaša do 60 m/h. Pri tem se v regeneracijski raztopini prisotni kloridni ion ekvimolarno izmenja z nitratnim ionom, ki vstopa v raztopino z ionske izmenjevalne mase. Zaradi stalnega občrpavanja vodne raztopine kloridnega iona skozi katalitski reaktor, v katerem se nahaja Pd-Cu bimetalni katalizator, v regeneracijski raztopini prisotni nitratni ion reagira z vodikom in se pretvarja v dušik, produkta heterogeno katalizirane reakcije pa sta po enačbi (1) tudi voda in ekvimolarna množina hidroksilnih ionov. Nastali dušik se separira od vodika v plinski mešanici s pomočjo membranskega separatorja (6) in se spušča v okolico. Ko se koncentracija nitratnega iona v vodni raztopini kloridnega iona zniža pod 40 mg/L, prenehamo z občrpavanjem regeneracijske raztopine skozi kolono (1). Ker se v letej ionska izmenjevalna masa ponovno nahaja v kloridni formi, lahko pričnemo kolono (1) znova uporabljati za odstranjevanje nitratnih ionov iz onesnaženega vodnega toka. Medtem pa regeneracijsko raztopino, če imamo v sistem vključenih več kolon z ionskim izmenjevalcem, pričnemo občrpavati skozi kolono, v kateri se ionska izmenjevalna masa nahaja v nitratni obliki. Po končani regeneraciji nasičene oziroma delno izrabljene ionske izmenjevalne mase, vodne raztopine kloridnega iona zaradi nizke vsebnosti nitratov ni potrebno spuščati v okolico in jo lahko uporabimo v nadaljnjih regeneracijskih ciklih.A reducing agent is introduced into the saturator (3) containing the aqueous sodium chloride solution or the aqueous calcium chloride solution (regeneration solution), where the chloride ion concentration is up to 20 g / L. hydrogen or hydrogen containing gas, the preferential gas mixture H2N2, wherein the concentration of nitrogen in the gas mixture ranges from 5 to 95% by volume. At the same time, we include a pump (4) which draws an aqueous solution of chloride ion through a saturator and a catalytic reactor so that the aqueous solution of chloride ion passes through the catalytic reactor from the bottom up, with its linear velocity up to 0.5 m / s. The saturator is also equipped with a mixing nozzle (3a) which allows the liquid and gas phase to be well contacted. At the same time by activating the pump (4), we also activate the delivery of the neutralizing agent, ie. aqueous hydrochloric acid solution, which ensures that the pH value of the hydrochloride ion aqueous solution ranges from 5.0 to 7.0, preferably in the range from 5.0 to 5.5. When the total system pressure is equal to the setpoint, switch on the pump (5), which draws the aqueous chloride ion solution through the ion exchanger column and the saturator, so that the aqueous chloride ion solution passes through the ion exchanger column, preferentially from top to bottom, with a linear speed of up to 60 mph. In this solution, the chloride ion present in the regeneration solution is equimolarly exchanged with the nitrate ion entering the solution from the ion exchange mass. Due to the constant pumping of an aqueous solution of chloride ion through a catalytic reactor containing a Pd-Cu bimetallic catalyst, the nitrate ion present in the regeneration solution reacts with hydrogen and is converted to nitrogen, and the products of heterogeneously catalyzed reaction are water and equimolar amount of hydroxyl ions. The resulting nitrogen is separated from the hydrogen in the gas mixture by means of a membrane separator (6) and discharged into the environment. When the concentration of nitrate ion in the aqueous chloride ion solution drops below 40 mg / L, stop the regeneration solution being pumped through the column (1). As the ion exchange mass is again in chloride form in the fly, the column (1) can be reused to remove nitrate ions from the polluted water stream. In the meantime, if more than one ion exchanger column is included in the regeneration solution, we begin to pump through the column in which the ion exchanger is in nitrate form. After the regeneration of the saturated or partially exhausted ion exchange mass is completed, the aqueous chloride ion solution does not need to be released into the environment due to its low nitrate content and can be used in further regeneration cycles.

V katalitskem reaktorju se lahko nahaja sloj katalizatorja, sestavljen iz delcev γAI2O3 poljubnih oblik, na katere sta nanešeni Pd in Cu kovinski fazi v takšnem zaporedju, da Pd kovinska faza prekriva Cu kovinsko fazo, pri čemer se koncentracija Pd kovinske faze na nosilcu giblje od 0.3 do 10 utežnih odstotkov, koncentracija Cu kovinske faze pa znaša od 0.05 do 5 utežnih odstotkov. Podrobnejšo pripravo Pd-Cu/v-A^Oj bimetalnih katalizatorjev, ki se uporabljajo v predloženem izumu, obravnava SI patent (Pintar in Levec, 9500357, 7. januar (1998)).The catalytic reactor may contain a catalyst bed composed of γAI2O3 particles of any shape, on which the Pd and Cu metal phases are deposited in such a sequence that the Pd metal phase overlaps the Cu metal phase, with the concentration of Pd metal phase on the support varying from 0.3 up to 10% by weight, and the Cu metal phase concentration ranges from 0.05 to 5% by weight. A more detailed preparation of Pd-Cu / v-A ^ O bimetallic catalysts used in the present invention is addressed by the SI patent (Pintar and Levec, 9500357, January 7 (1998)).

V katalitskem reaktorju se lahko nahajajo monolitni bloki s preseki kanalov različnih oblik in efektivnega premera do 1 cm, na katere sta nanešeni Pd in Cu kovinski fazi v takšnem zaporedju, da Pd kovinska faza prekriva Cu kovinsko fazo, pri čemer se koncentracija Pd kovinske faze na nosilcu giblje od 0.3 do 10 utežnih odstotkov, koncentracija Cu kovinske faze pa znaša od 0.05 do 5 utežnih odstotkov. Podrobnejšo pripravo Pd-Cu bimetalnih katalizatorjev, ki se uporabljajo v predloženem izumu, obravnava SI patent (Pintar in Levec, 9500357, 7. januar (1998)).Monolithic blocks with cross sections of channels of different shapes and effective diameters up to 1 cm on which Pd and Cu metal phases are applied in such a sequence that the Pd metal phase overlaps the Cu metal phase with the concentration of Pd metal phase at the carrier ranges from 0.3 to 10 weight percent, and the Cu metal phase concentration ranges from 0.05 to 5 weight percent. A more detailed preparation of the Pd-Cu bimetallic catalysts used in the present invention is contemplated by the SI patent (Pintar and Levec, 9500357, January 7 (1998)).

Zaradi ohranjanja elektronevtralnosti se v katalitskem reaktorju pretvorjeni nitratni ion nadomesti s hidroksilnim ionom, zaradi česar se pri prehajanju skozi katalitični sloj dvigne pH vrednost vodne raztopine. V nevtralnem ali bazičnem področju pH vrednosti bi se lahko v vodni raztopini kloridnega iona akumulirale znatne množine nitritnega iona. V izogib temu je nasičevalna posodo opremljena z regulatorjem pH vrednosti, ki v vodno raztopino kloridnega iona po potrebi dozira vodno raztopino klorovodikove kisline. Dodane količine klorovodikove kisline zadostujejo tudi za ohranjanje stalne koncentracije kloridnih ionov v regeneracijski raztopini, z drugimi besedami, za nadomeščanje v procesu regeneracije porabljene množine kloridnih ionov.In order to maintain electroneutrality, the nitrate ion converted in the catalytic reactor is replaced by a hydroxyl ion, which in turn increases the pH of the aqueous solution when passing through the catalytic layer. In the neutral or basic pH range significant amounts of nitrite ion could accumulate in the aqueous chloride ion solution. In order to avoid this, the saturation vessel is equipped with a pH regulator, which, if necessary, doses the aqueous hydrochloric acid solution into the aqueous chloride ion solution. The added amounts of hydrochloric acid are also sufficient to maintain a constant concentration of chloride ions in the regeneration solution, in other words, to replace the amount of chloride ions consumed in the regeneration process.

Za redukcijo potreben reagent, tj. vodik oziroma vodika vsebujoč plin, preferenčno plinsko mešanico H2-N2, lahko uvajamo v nasičevalnik, s tem da se mesto uvajanja vodika oziroma plinske mešanice H2-N2 nahaja nad gladino vodne raztopine kloridnega iona v nasičevalniku. V tem primeru teče skozi katalitski reaktor v smeri od spodaj navzgor vodna raztopina, vsebujoč kloridne (in nitratne) ione ter raztopljeni vodik, pri čemer je katalitski reaktor obravnavan kot dvofazni reaktorski sistem.A reagent is required for reduction. hydrogen or hydrogen-containing gas, the preferential H2-N2 gas mixture, can be introduced into the saturator, so that the hydrogen or gas mixture H2-N2 injection site is located above the surface of the aqueous chloride ion solution in the saturator. In this case, an aqueous solution containing chloride (and nitrate) ions and dissolved hydrogen flows through the catalytic reactor in a bottom-up direction, the catalytic reactor being considered as a two-phase reactor system.

Za redukcijo potreben reagent, tj. vodik oziroma vodika vsebujoč plin, preferenčno plinsko mešanico H2-N2, lahko uvajamo neposredno v katalitski reaktor, s tem da se mesto uvajanja vodika oziroma plinske mešanice H2-N2 nahaja na spodnjem delu katalitičnega sloja. V tem primeru tečeta skozi katalitski reaktor sotočno v smeri od spodaj navzgor vodna raztopina, vsebujoč kloridne (in nitratne) ione, ter plinasta faza, pri čemer je katalitski reaktor obravnavan kot trifazni reaktorski sistem.A reagent is required for reduction. hydrogen or hydrogen containing gas, the preferential H2-N2 gas mixture, can be introduced directly into the catalytic reactor, with the hydrogen or gas mixture site of H2-N2 being located at the bottom of the catalytic layer. In this case, an aqueous solution containing chloride (and nitrate) ions flows through the catalytic reactor in a downstream direction, containing the chloride (and nitrate) ions, and the gaseous phase, with the catalytic reactor being considered as a three-phase reactor system.

IZVEDBENI PRIMERIEXECUTIVE EXAMPLES

Primer 1: Odstranjevanje nitratnega iona iz toka vodne raztopine z metodo ionske izmenjaveExample 1: Removal of nitrate ion from a stream of aqueous solution by ion exchange method

V termostatirani stekleni cevki z notranjim premerom 0.9 cm se je nahajal strnjeni sloj močno bazične ionske izmenjevalne mase IMAC HP-555 (Rohm and Haas Co.) v kloridni obliki. V kolono smo s pomočjo batne črpalke (LDC Analytical, model 3200) uvajali modelno vodno raztopino nitratnega iona, ki smo jo pripravili z raztapljanjem znane množine KNO3 v destilirani vodi. Vodna raztopina nitratnega iona je preko strnjenega sloja ionskega izmenjevalca prehajala v smeri od spodaj navzgor. Eksperimentalni pogoji, pri katerih smo vodili fizikalno-kemijski proces ionske izmenjave, tj. izmenjave nitratnega iona na ionski izmenjevalni masi IMAC HP-555, so predstavljeni v tabeli 1. Poteku odstranjevanja nitratnega iona iz vodne raztopine smo sledili tako, da smo v toku kapljevinaste faze na izstopu iz sloja ionskega izmenjevalca določevali trenutno koncentracijo nitratnega iona s pomočjo pretočne injekcijske analize (Perkin-Elmer UV/VIS spektrofotometer, model Lambda 40P; Perkin-Elmer FIAS modul, model 300). Rezultati meritev so za različne koncentracije nitratnega iona v napajalni raztopini prikazani na sliki 2.In a thermostated glass tube with an inside diameter of 0.9 cm there was a solid layer of strongly basic IMAC HP-555 ion exchange mass (Rohm and Haas Co.) in chloride form. A model aqueous nitrate ion solution was introduced into the column using a piston pump (LDC Analytical, model 3200), which was prepared by dissolving a known amount of KNO3 in distilled water. The aqueous nitrate ion solution passed from the bottom upwards through the compacted layer of the ion exchanger. The experimental conditions under which we conducted the physicochemical process of ion exchange, i. The exchange of nitrate ion on the IMAC HP-555 ion exchanger mass is presented in Table 1. The course of removal of the nitrate ion from the aqueous solution was followed by determining the current nitrate ion concentration at the outlet of the ion exchanger layer by flow injection. analyzes (Perkin-Elmer UV / VIS spectrophotometer, Lambda 40P model; Perkin-Elmer FIAS module, model 300). The measurement results are shown in Figure 2 for different concentrations of nitrate ion in the feed solution.

Tabela 1. Eksperimentalni pogoji procesa ionske izmenjave nitratnega iona v koloni s strnjenim slojem ionskega izmenjevalca IMAC HP-555.Table 1. Experimental conditions of the nitrate ion exchange process in an IMAC HP-555 condensed ion exchange column.

Temperatura, K Temperature, K 298 298 Celotni obratovalni tlak, bar Total operating pressure, bar 1.0 1.0 Masa ionskega izmenjevalca v strnjenem sloju, g The mass of the ion exchanger in the compacted layer, g 1.50 1.50 Povprečni premer zrn ionskega izmenjevalca, mm Average diameter of ion exchanger grains, mm 0.43 0.43 Nasipna gostota sloja, g/cm3 Bulk density of the layer, g / cm 3 0.32 0.32 Poroznost sloja, / Porosity of the layer, / 0.43 0.43 Vstopna koncentracija nitratnega iona, mg/L Input nitrate ion concentration, mg / L 50.0 - 200.0 50.0 - 200.0 Volumski pretok kapljevinaste faze, mL/min Liquid phase volume flow, mL / min 9.5 9.5 Volumski pretok kapljevinaste faze, BV/h Liquid phase volume flow, BV / h 120 120 Linearna hitrost kapljevinaste faze, m/h Linear velocity of the liquid phase, m / h 9.0 9.0

Matematična analiza dobljenih podatkov potrjuje, da množina izmenjanega nitratnega iona na enoto mase ionske izmenjevalne mase ni odvisna od koncentracije nitratnega iona v napajalnem toku. Kapaciteta uporabljene ionske izmenjevalne mase IMAC HP-555 za izmenjavo nitratnega iona pri danih pogojih znaša 2.86 mmol/g (0.92 ekv/liter ionske izmenjevalne mase). Isti rezultat je bil dobljen tudi z določitvijo kapacitete ionskega izmenjevalca s pomočjo argentometrične titracijske metode.The mathematical analysis of the data obtained confirms that the amount of exchanged nitrate ion per unit mass of the ion exchange mass does not depend on the concentration of nitrate ion in the feed stream. The capacity of the used IMAC HP-555 ion exchange mass to exchange nitrate ion under the given conditions is 2.86 mmol / g (0.92 eq / liter ion exchange mass). The same result was obtained by determining the capacity of the ion exchanger by the argentometric titration method.

Opravljeni so bili tudi poskusi, s katerimi smo ugotavljali vpliv v vodni raztopini prisotnih anionov na izmenjalno kapaciteto ionskega izmenjevalca IMAC HP-555 za nitratni ion. Le-ti so pokazali, da se kapaciteta ionskega izmenjevalca v prisotnosti sulfatnega, kloridnega in hidrogenkarbonatnega iona zmanjšuje v naslednjem zaporedju: SO4~> Cl“ >> HCO3. Z analizo prebojnih krivulj, pridobljenih s poskusi, ko je bila kot kapljevinasta faza namesto destilirane uporabljena pitna voda, je bilo ugotovljeno, da na zmanjšanje kapacitete uporabljene ionske izmenjevalne mase za izmenjavo nitratnega iona vplivata le sulfatni in kloridni ion.Experiments have also been carried out to determine the influence in aqueous solution of anions present on the exchange capacity of the IMAC HP-555 ion exchanger for nitrate ion. They showed that the capacity of the ion exchanger in the presence of sulfate, chloride and hydrogen carbonate ion decreases in the following order: SO4 ~> Cl “>> HCO3. By analyzing the breakthrough curves obtained from experiments when drinking water was used as the liquid phase instead of distilled, it was found that only the sulphate and chloride ions were affected by the reduction capacity of the ion exchange mass used to exchange the nitrate ion.

Primer 2: Regeneracija ionske izmenjevalne mase, nasičene z nitratnimi ioniExample 2: Regeneration of an ion exchange mass saturated with nitrate ions

V termostatirani stekleni cevki z notranjim premerom 0.9 cm se je nahajal strnjeni sloj močno bazične ionske izmenjevalne mase IMAC HP-555 (Rohm and Haas Co.) v nitratni obliki. V kolono z ionskim izmenjevalcem smo s pomočjo batne črpalke (LDC Analytical, model 3200) uvajali vodno raztopino kloridnega iona, ki smo jo pripravili z raztapljanjem znane množine NaCl v destilirani vodi. Vodna raztopina kloridnega iona je preko sloja ionskega izmenjevalca prehajala v smeri od spodaj navzgor. Eksperimentalni pogoji, pri katerih smo regenerirali z nitratnimi ioni nasičeno izmenjevalno maso IMAC HP-555, so predstavljeni v tabeli 2. Poteku izmenjave nitratnih ionov na izmenjevalni masi s kloridnimi ioni v vodni raztopini smo sledili tako, da smo v toku kapljevinaste faze na izstopu iz sloja ionskega izmenjevalca določali trenutno koncentracijo nitratnega iona s pomočjo pretočne injekcijske analize (Perkin-Elmer UV/VIS spektrofotometer, model Lambda 40P; Perkin-Elmer FIAS modul, model 300). Rezultati meritev so za različne volumske pretoke regeneracijske raztopine z vstopno koncentracijo natrijevega klorida, CNaci,vstopna=5 g/L, prikazani na sliki 3.A thermostated glass tube with an internal diameter of 0.9 cm contained a compacted layer of strongly basic IMAC HP-555 ion exchange mass (Rohm and Haas Co.) in nitrate form. An aqueous solution of chloride ion was introduced into the ion exchanger column using a piston pump (LDC Analytical, model 3200), which was prepared by dissolving a known amount of NaCl in distilled water. The aqueous chloride ion solution passed from the bottom upwards through the ion exchanger layer. The experimental conditions under which IMAC HP-555 saturated saturated exchange mass was regenerated with nitrate ions are presented in Table 2. The course of exchange of nitrate ions on the exchange mass with chloride ions in aqueous solution was followed by leaving the liquid phase at the exit from the liquid phase. of the ion exchanger layer was determined by the current nitrate ion concentration by flow injection analysis (Perkin-Elmer UV / VIS spectrophotometer, Lambda 40P model; Perkin-Elmer FIAS module, model 300). The results of the measurements are shown in Figure 3 for different volume flows of the regeneration solution with an inlet concentration of sodium chloride, CN a ci, inlet = 5 g / L.

Iz slike 3 je razvidno, da pri izbranih pogojih regeneracije z nitratnimi ioni nasičene ionske izmenjevalne mase IMAC HP-555 ob uporabi vodne raztopineFigure 3 shows that under the selected conditions of regeneration with nitrate ions, the saturated ion exchange mass IMAC HP-555 using aqueous solution

NaCl s cNaci,vstopna-5 g/L v času 3.5 - 4 h več kot 99 odstotkov ionskega izmenjevalca preide iz nitratne v kloridno obliko. Kljub temu, da je bila pri regeneraciji ionske izmenjevalne mase v tem izvedbenem primeru uporabljena vodna raztopina z razmeroma nizko koncentracijo natrijevega klorida, pa izračuni kažejo, da je bilo učinkovito izrabljene le od pet do osem odstotkov skozi strnjeni sloj ionskega izmenjevalca prečrpane množine kloridnega iona.NaCl sc Na ci, an inlet-5 g / L during 3.5 - 4 h more than 99 percent of the ion exchanger switches from nitrate to chloride form. Although an aqueous solution with a relatively low concentration of sodium chloride was used in the regeneration of the ion exchange mass in this embodiment, the calculations show that only five to eight percent of it was efficiently consumed through the solidified layer of the ion exchanger by the amount of chloride ion pumped.

Tabela 2. Eksperimentalni pogoji procesa regeneracije ionske izmenjevalne mase IMAC HP-555, nasičene z nitratnimi ioni.Table 2. Experimental conditions of the IMAC HP-555 ion exchange mass regeneration process saturated with nitrate ions.

Temperatura, K 298Temperature, K 298

Celotni obratovalni tlak, bar 1.0Total operating pressure, bar 1.0

Masa ionskega izmenjevalca v strnjenem sloju, g 2.25Mass of the ion exchanger in the compacted layer, g 2.25

Povprečni premer zrn ionskega izmenjevalca, mm 0.43Average diameter of ion exchanger grains, mm 0.43

Nasipna gostota sloja, g/cm3 0.32Bulk density of the layer, g / cm 3 0.32

Poroznost sloja, / 0.43Layer porosity, / 0.43

Vstopna koncentracija kloridnega iona, g/L 5.0Input concentration of chloride ion, g / L 5.0

Volumski pretok regeneracijske raztopine, mL/min 3.0 - 7.0Volume flow of the regeneration solution, mL / min 3.0 - 7.0

Volumski pretok regeneracijske raztopine, BV/h 25.6 - 60Volume flow of regeneration solution, BV / h 25.6 - 60

Linearna hitrost regeneracijske raztopine, m/h 2.8 - 6.6Linear velocity of the regeneration solution, m / h 2.8 - 6.6

Primer 3: Zaporedni poskusi ionske izmenjave nitratnega iona in regeneracije nasičenega ionskega izmenjevalcaExample 3: Successive attempts at ion exchange of nitrate ion and regeneration of a saturated ion exchanger

V termostatirani stekleni cevki z notranjim premerom 0.9 cm se je nahajal strnjeni sloj močno bazične ionske izmenjevalne mase IMAC HP-555 (Rohm and Haas Co.) v kloridni obliki. V kolono z ionskim izmenjevalcem smo s pomočjo batne črpalke (LDC Analytical, model 3200) uvajali vodno raztopino nitratnega iona, ki smo jo pripravili z raztapljanjem znane množine KNO3 v destilirani vodi. Vodna raztopina nitratnega iona je preko strnjenega sloja ionskega izmenjevalca prehajala v smeri od spodaj navzgor. Eksperimentalni pogoji, pri katerih smo študirali fizikalno-kemijski proces ionske izmenjave, tj. izmenjave nitratnega iona na ionski izmenjevalni masi IMAC HP-555, so predstavljeni v tabeli 3.In a thermostated glass tube with an inside diameter of 0.9 cm there was a solid layer of strongly basic IMAC HP-555 ion exchange mass (Rohm and Haas Co.) in chloride form. An aqueous nitrate ion solution was introduced into the ion exchanger column using a piston pump (LDC Analytical, model 3200), which was prepared by dissolving a known amount of KNO3 in distilled water. The aqueous nitrate ion solution passed from the bottom upwards through the compacted layer of the ion exchanger. The experimental conditions under which we studied the physicochemical process of ion exchange, i. nitrate ion exchanges on the IMAC HP-555 ion exchange mass are presented in Table 3.

Tabela 3. Eksperimentalni pogoji ionske izmenjave nitratnega iona v izmenjevalnoregeneracijskem ciklu ob uporabi ionskega izmenjevalca IMAC HP-555.Table 3. Experimental conditions of nitrate ion exchange in an exchange-regeneration cycle using the IMAC HP-555 ion exchanger.

Temperatura, K 298Temperature, K 298

Celotni obratovalni tlak, bar 1.0Total operating pressure, bar 1.0

Masa ionskega izmenjevalca v strnjenem sloju, g 2.25Mass of the ion exchanger in the compacted layer, g 2.25

Povprečni premer zrn ionskega izmenjevalca, mm 0.43Average diameter of ion exchanger grains, mm 0.43

Nasipna gostota sloja, g/cm3 0.32Bulk density of the layer, g / cm 3 0.32

Poroznost sloja, / 0.43Layer porosity, / 0.43

Vstopna koncentracija nitratnega iona, mg/L 200Input nitrate ion concentration, mg / L 200

Volumski pretok kapljevinaste faze, mL/min 9.5Liquid phase volume flow, mL / min 9.5

Volumski pretok kapljevinaste faze, BV/h 81.1Liquid phase volume flow, BV / h 81.1

Linearna hitrost kapljevinaste faze, m/h 9.0Linear velocity of the liquid phase, m / h 9.0

Poteku odstranjevanja nitratnega iona iz vodne raztopine smo sledili tako, da smo v toku kapljevinaste faze na izstopu iz sloja ionskega izmenjevalca določevali trenutno koncentracijo nitratnega iona s pomočjo pretočne injekcijske analize (Perkin-Elmer UV/VIS spektrofotometer, model Lambda 40P; Perkin-Elmer FIAS modul, model 300). Rezultati meritev so za različne izmenjevalno-regeneracijske cikle prikazani na sliki 4. Ko je bila koncentracija nitratnega iona v toku vodne raztopine na izstopu iz kolone ionskega izmenjevalca enaka koncentraciji nitratnega iona v napajalni raztopini, smo v kolono z nasutim slojem ionske izmenjevalne mase namesto vodne raztopine nitratnega iona pričeli uvajati regeneracijsko raztopino natrijevega klorida s CNaci,vstopna=5 g/L. Le-to smo v kolono z ionskim izmenjevalcem uvajali tako, da je prehajala preko nasutega sloja ionske izmenjevalne mase v smeri od spodaj navzgor. Proces regeneracije z nitratnimi ioni nasičenega ionskega izmenjevalca smo vršili štiri ure, preostali eksperimentalni pogoji regeneracijskega dela cikla pa so podani v tabeli 4. Po štirih urah smo v kolono z ionskim izmenjevalcem, v kateri se je slednji nahajal v kloridni obliki, ponovno pričeli uvajati vodno raztopino kalijevega nitrata s cN0- vstopna =200 mg/L.The course of removal of the nitrate ion from the aqueous solution was followed by determining the current nitrate ion concentration at the outlet of the ion exchanger layer by flow injection analysis (Perkin-Elmer UV / VIS spectrophotometer, Lambda 40P model; Perkin-Elmer FIAS module, model 300). The results of the measurements are shown in Figure 4 for the various exchange-regeneration cycles. When the concentration of nitrate ion in the flow of aqueous solution at the outlet of the column of the ion exchanger was equal to the concentration of nitrate ion in the feed solution, we replaced the column with a saturated layer of ion exchange mass instead of aqueous solution. of nitrate ion begin to introduce a regeneration solution of sodium chloride with CN a ci, inlet = 5 g / L. This was introduced into the ion exchanger column by passing it from the bottom up into the impregnated layer of the ion exchanger. The process of regeneration with nitrate ions of a saturated ion exchanger was carried out for four hours, and the remaining experimental conditions of the regeneration part of the cycle are given in Table 4. After four hours, we began to re-introduce water into the column with the ion exchanger in which it was in chloride form. potassium nitrate solution sc N0 - inlet = 200 mg / L.

Postopek ionske izmenjave nitratnega iona in regeneracije z nitratnimi ioni nasičene ionske izmenjevalne mase smo ponovili štirikrat, pri čemer ionskega izmenjevalca nismo menjavali.The process of ion exchange of the nitrate ion and regeneration with the nitrate ions of the saturated ion exchange mass were repeated four times, without changing the ion exchanger.

Tabela 4. Eksperimentalni pogoji regeneracije z nitratnimi ioni nasičenega ionskega izmenjevalca IMAC HP-555 v izmenjevalno-regeneracijskem ciklu.Table 4. Experimental regeneration conditions with nitrate ions of the saturated IMAC HP-555 ion exchanger in the exchange-regeneration cycle.

Temperatura, K 298Temperature, K 298

Celotni obratovalni tlak, bar 1.0Total operating pressure, bar 1.0

Masa ionskega izmenjevalca v strnjenem sloju, g 2.25Mass of the ion exchanger in the compacted layer, g 2.25

Povprečni premer zrn ionskega izmenjevalca, mm 0.43Average diameter of ion exchanger grains, mm 0.43

Nasipna gostota sloja, g/cm3 0.32Bulk density of the layer, g / cm 3 0.32

Poroznost sloja, / 0.43Layer porosity, / 0.43

Vstopna koncentracija kloridnega iona, g/L 5,0Input concentration of chloride ion, g / L 5,0

Volumski pretok regeneracijske raztopine, mL/min 7.0Volume flow of the regeneration solution, mL / min 7.0

Volumski pretok regeneracijske raztopine, BV/h 60Volume flow of regeneration solution, BV / h 60

Linearna hitrost regeneracijske raztopine, m/h 6.6Linear velocity of the regeneration solution, m / h 6.6

Slika 5 prikazuje kapaciteto ionske izmenjevalne mase IMAC HP-555 kot funkcijo števila izmenjevalno-regeneracijskih ciklov. Razvidno je, da se pri izbranih eksperimentalnih pogojih, kljub uporabi regeneracijske raztopine z razmeroma nizko koncentracijo natrijevega klorida, kapaciteta ionskega izmenjevalca s številom ciklov ne spreminja, kar potrjuje tudi neodvisna določitev izmenjalne kapacitete ionske izmenjevalne mase po petem izmenjevalno-regeneracijskem ciklu s pomočjo argentometrične titracijske metode.Figure 5 shows the capacity of the IMAC HP-555 ion exchange mass as a function of the number of exchange-regeneration cycles. It is evident that under the chosen experimental conditions, despite the use of a relatively low sodium chloride concentration solution, the capacity of the ion exchanger with the number of cycles does not change, which is also confirmed by the independent determination of the exchange capacity of the ion exchange mass after the fifth exchange-regeneration cycle by means of argentometric titration methods.

Primer 4: Priprava katalizatorjevExample 4: Preparation of catalysts

Pd-Cu/y-Al2O3 bimetalni katalizator je bil pripravljen na naslednji način:The Pd-Cu / y-Al2O3 bimetallic catalyst was prepared as follows:

Kot nosilec aktivnih komponent so bile uporabljene kroglice γ-Αΐ2θ3 (NikkiUniversal Co., Ltd., Tokio, Japonska; tip NST-5) s povprečnim premerom 1.7 mm in specifično površino (BET metoda) 171 m2/g. Celotni volumen por in povprečni premer por sta znašala 1.02 g/cm3 in 16.1 nm. Kot prekurzorja za tvorbo Pd in Cu kovinskih faz sta bila uporabljena Pd(NO3)2ŽH2O (Fluka, p.a.) in Cu(NO3)23H2O (Merck, p.a.). Vodna raztopina soli posameznega prekurzorja kovinske faze je bila nanešena na aluminijev oksid z metodo impregnacije pri sobni temperaturi. Katalizator smo sintetizirali tako, da je bila na nosilec najprej nanešena bakrova sol, nato pa je sledil nanos paladijeve soli. Impregnaciji nosilca z vodnimi raztopinami soli je sledilo sušenje materiala pri T=423 K, pretvorba nitratov v okside pri T=773 K, redukcija v pretoku čistega vodika pri T=773 K in ohlajanje v atmosferi dušika. Tako izdelan katalizator vsebuje 1.0 ut. % Pd in 0.3 ut. % Cu, pri čemer se oba elementa nahajata v kovinskem stanju. V nadaljnjih izvedbenih primerih je ta katalizator označen kot KAT-1.The γ-Αΐ2θ3 beads (NikkiUniversal Co., Ltd., Tokyo, Japan; type NST-5) with an average diameter of 1.7 mm and a specific surface area (BET method) of 171 m 2 / g were used as the carrier of the active components. The total pore volume and average pore diameter were 1.02 g / cm 3 and 16.1 nm, respectively. Pd (NO3) 2ŽH2O (Fluka, pa) and Cu (NO 3 ) 23H 2 O (Merck, pa) were used as precursors for the formation of Pd and Cu metal phases. The aqueous solution of the salts of each precursor of the metal phase was applied to aluminum oxide by an impregnation method at room temperature. The catalyst was synthesized by first applying copper salt to the support followed by the application of palladium salt. The impregnation of the carrier with aqueous salt solutions was followed by drying of the material at T = 423 K, conversion of nitrates to oxides at T = 773 K, reduction in the flow of pure hydrogen at T = 773 K, and cooling in a nitrogen atmosphere. The catalyst thus produced contains 1.0 wt. % Pd and 0.3 wt. % Cu, with both elements being in metallic state. In further embodiments, this catalyst is designated KAT-1.

Po zgoraj opisanem postopku mokre impregnacije je bil pripravljen še Pd-Cu/γAI2O3 bimetalni katalizator, ki vsebuje 0.4 ut. % Pd in 0.12 ut. % Cu. V nadaljnjih izvedbenih primerih je označen kot KAT-2.Following the wet impregnation process described above, a Pd-Cu / γAI2O3 bimetallic catalyst containing 0.4 wt. % Pd and 0.12 wt. % Cu. In further embodiments, it is designated KAT-2.

Primer 5: Redukcija nitratnega iona v pretočnem reaktorju s strnjenim slojem Pd-Cu/Y-AJ2O3 bimetalnega katalizatorja KAT-1Example 5: Reduction of nitrate ion in a Pd-Cu / Y-AJ 2 O 3 condensed-flow reactor with a bimetallic catalyst KAT-1

V termostatirani stekleni cevi z notranjim premerom 2.0 cm se je nahajal strnjeni sloj Pd-Cu/y-Al2O3 bimetalnega katalizatorja KAT-1, katerega smo sintetizirali po 15 postopku, opisanem v izvedbenem primeru 4. V reaktor s strnjenim slojem katalizatorja smo s pomočjo batne črpalke (LDC Analytical, model 3200) uvajali vodno raztopino nitratnega iona, ki smo jo pripravili z raztapljanjem znane množine kalijevega nitrata v destilirani vodi. Plinsko mešanico H2-N2 z znano koncentracijo vodika smo pripravljali s pomočjo elektronskih regulatorjev masnega pretoka (MKS) in jo uvajali v katalitski reaktor na njegovi spodnji strani. Vodna raztopina nitratnega iona in plinska mešanica H2-N2 sta preko nasutega sloja PdCu/y-A12O3 bimetalnega katalizatorja KAT-1 prehajali sotočno v smeri od spodaj navzgor. Eksperimentalni pogoji, pri katerih smo študirali katalitsko hidrogenacijo vodnih raztopin nitratnega iona v trifaznem pretočnem reaktorju, so predstavljeni v tabeli 5.In a thermostated glass tube with a diameter of 2.0 cm there was a solidified layer of Pd-Cu / y-Al2O3 bimetallic catalyst KAT-1, which was synthesized according to the 15 procedure described in Example 4. In the reactor with a solidified catalyst layer, a piston was used. pumps (LDC Analytical, model 3200) introduced an aqueous nitrate ion solution, which was prepared by dissolving a known amount of potassium nitrate in distilled water. The H2-N2 gas mixture of known hydrogen concentration was prepared by means of electronic mass flow regulators (MKS) and introduced into the catalytic reactor on its underside. The aqueous nitrate ion solution and the H2-N2 gas mixture passed through the nascent PdCu / y-A1 2 O 3 layer of the bimetallic catalyst KAT-1 downstream. The experimental conditions under which the catalytic hydrogenation of aqueous nitrate ion solutions in a three-phase flow reactor was studied are presented in Table 5.

Tabela 5. Eksperimentalni pogoji hidrogenacije nitratnega iona v trifaznem pretočnem reaktorju s strnjenim slojem Pd-Cu/y-Al2O3 katalizatorja KAT-1.Table 5. Experimental conditions for the nitration ion hydrogenation in a three-phase flow reactor with a solidified layer of Pd-Cu / y-Al2O3 catalyst KAT-1.

Temperatura, K Temperature, K 298 298 Celotni obratovalni tlak, bar Total operating pressure, bar 1.0 1.0 Parcialni tlak vodika, bar Hydrogen partial pressure, bar 0.1 0.1 Masa katalizatorja KAT-1 v strnjenem sloju, g Mass of the KAT-1 catalyst in a compacted layer, g 25 25 Povprečni premer katalizatorskih zrn, mm Average diameter of catalyst grains, mm 1.7 1.7 Nasipna gostota sloja, g/cm3 Bulk density of the layer, g / cm 3 0.46 0.46 Poroznost sloja, / Porosity of the layer, / 0.43 0.43 Vstopna koncentracija nitratnega iona, mg/L Input nitrate ion concentration, mg / L 70.0 70.0 Volumski pretok kapljevinaste faze, mL/min Liquid phase volume flow, mL / min 4.0 - 10.8 4.0 - 10.8 Zadrževalni čas kapljevinaste faze v reaktorju, min Holding time of the liquid phase in the reactor, min 1.3 - 3.5 1.3 - 3.5 Volumski pretok plinaste faze, mL/min Gaseous phase volume flow, mL / min 80 80 pH vrednost vodne raztopine, / pH of the aqueous solution, / 5.3 5.3

Poteku destruktivne redukcije nitratnega iona oziroma njegovemu odstranjevanju iz vodne raztopine smo sledili tako, da smo v toku kapljevinaste faze na izstopu iz katalitičnega sloja določevali trenutne koncentracije nitratnega, nitritnega in amonijevega iona s pomočjo pretočne injekcijske analize (Perkin-Elmer UV/VIS spektrofotometer, model Lambda 40P; Perkin-Elmer FIAS modul, model 300). Rezultati poskusov katalitske hidrogenacije nitratnega iona v modelnih raztopinah so za različne volumske pretoke kapljevinaste faze prikazani na slikah 6 in 7.The course of the destructive reduction of the nitrate ion or its removal from the aqueous solution was followed by determining the current concentrations of nitrate, nitrite and ammonium ion during the liquid phase at the outlet of the catalytic layer by means of flow injection analysis (Perkin-Elmer UV / VIS spectrophotometer, model Lambda 40P; Perkin-Elmer FIAS module, model 300). The results of the experiments on the catalytic hydrogenation of the nitrate ion in the model solutions are shown in Figures 6 and 7 for different liquid phase volumetric flow rates.

Slika 6 prikazuje konverzijo nitratnega iona v toku kapljevinaste faze na izstopu iz katalitičnega sloja v odvisnosti od kvocienta --. V območjuFigure 6 shows the conversion of the nitrate ion to the liquid phase at the exit of the catalytic layer as a function of the quotient -. In the area

Φ t T · C vol.,L NOJ, vstopna izbranih volumskih pretokov kapljevinaste faze z vstopno koncentracijo nitratnega iona cNQ- vstopna =70 mg/L je bila koncetracija slednjega v vodni raztopini na izstopu iz reaktorja s strnjenim slojem katalizatorja nižja od zakonsko predpisane vrednosti (tj., 50 mg/L). Opravljeni poskusi tudi potrjujejo, da je pri vodenju procesa katalitske hidrogenacije nitratnega iona pri pogojih, zapisanih v tabeli 5, akumulacija nitritnega iona kot vmesnega produkta reakcije zanemarljiva.T t T · C vol., L NOJ, the inlet of the selected liquid phase liquid flow rates with an inlet nitrate ion concentration c NQ - inlet = 70 mg / L, the concentration of the latter in aqueous solution at the outlet of the reactor with a solidified catalyst bed was lower than the statutory limit. values (i.e., 50 mg / L). The experiments carried out also confirm that the accumulation of nitrite ion as an intermediate of the reaction is negligible when conducting the catalytic hydrogenation process of the nitrate ion under the conditions described in Table 5.

Slika 7 prikazuje koncentracijo amonijevega iona kot stranskega produkta reakcije v toku kapljevinaste faze na izstopu iz katalitičnega sloja v odvisnosti od kvocientaFigure 7 shows the concentration of ammonium ion as a by-product of the reaction in the liquid phase flow at the exit of the catalytic layer as a function of the quotient

--. Koncentracija amonijevega iona v vodni raztopini je pri vseh ^vol.,L ^NOj,vstopna volumskih pretokih kapljevinaste faze, razen pri 4>Voi.,L=4-0 mL/min, nižja od zakonsko dopustne vrednosti (tj., 0.5 mg/L NHj).-. The concentration of ammonium ion in aqueous solution is, at all ^ vols, L ^ NOj, the inlet volume flow rates of the liquid phase except at 4> V oi., L = 4-0 mL / min, lower than the legal value (i.e., 0.5 mg / L NH3).

Opravljeni so bili tudi poskusi katalitske hidrogenacije vodnih raztopin nitratnega iona v pretočnem trifaznem reaktorju s strnjenim slojem katalizatorja, v katerih je bila kot medij namesto destilirane vode uporabljena pitna voda z naslednjo sestavo: c(Na+): 5.7 mg/L; c(K+): 1.5 mg/L; c(Ca2+); 105.0 mg/L; c(Mg2+); 22.8 mg/L; c(Cl“); 11.5 mg/L; c(NOJ); 47.7 mg/L; c(HCOJ); 316.6 mg/L; c(SO2):Attempts have been made to catalytically hydrogenate aqueous solutions of nitrate ion in a three-phase flow reactor with a solid catalyst bed in which drinking water of the following composition was used as medium instead of distilled water: c (Na + ): 5.7 mg / L; c (K + ): 1.5 mg / L; c (Ca 2+ ); 105.0 mg / L; c (Mg 2+ ); 22.8 mg / L; c (Cl “); 11.5 mg / L; c (NOJ); 47.7 mg / L; c (HCOJ); 316.6 mg / L; c (SO 2 ):

36.5 mg/L. Kljub temu, da je bila pri teh meritvah vstopna koncentracija nitratnega iona nižja, so se v nasprotju s poskusi katalitske hidrogenacije nitratnega iona, izvedenih z modelnimi raztopinami kalijevega nitrata, v prisotnosti hidrogenkarbonatnega iona v kapljevinasti fazi tvorile znatne množine amonijevega iona (1.8 - 4.3 mg/L), kar je v skladu z opažanji, o katerih poročajo Pintar et al. (J. Catal., 174, 72-87 (1998)).36.5 mg / L. Although the initial nitrate ion concentration was lower in these measurements, significant amounts of ammonium ion (1.8 - 4.3 mg) were formed in the presence of the hydrogen carbonate ion in the liquid phase, in contrast to the catalytic hydrogenation experiments performed with potassium nitrate model solutions. / L), which is consistent with the observations reported by Pintar et al. (J. Catal. 174, 72-87 (1998)).

Primer 6: Regeneracija z nitratnimi ioni nasičene ionske izmeqjevalne mase in simultana redukcija nitratnega iona v trifaznem pretočnem reaktorju s strnjenim slojem Pd-Cu/y-Al2O3 bimetalnega katalizatorja KAT-2Example 6: Regeneration with saturated ion exchange mass nitrate ions and simultaneous reduction of nitrate ion in a three-phase flow reactor with a solid-state layer Pd-Cu / y-Al2O 3 of the bimetallic catalyst KAT-2

Ta izvedbeni primer opisuje potek kombiniranega procesa regeneracije z nitratnimi ioni nasičene ionske izmenjevalne mase IMAC HP-555 in simultanega odstranjevanja nitratnega iona iz regeneracijske raztopine, ki je bil izveden v laboratorijski eksperimentalni napravi, shematsko prikazani na sliki 1.This embodiment describes the progress of a combined process of regeneration with the nitrate ions of a saturated IMAC HP-555 ion exchange mass and the simultaneous removal of a nitrate ion from a regeneration solution performed in a laboratory experimental apparatus, schematically shown in Figure 1.

V termostatiranem nasičevalniku se je nahajala regeneracijska raztopina natrijevega klorida s cNaci=5.0 g/L. pH vrednost regeneracijske raztopine smo kontrolirali s pomočjo avtotitratorja (Metrohm, model Titrino GPD 751), ki je vanjo po potrebi doziral vodno raztopino klorovodikove kisline (chci=0.25 mol/L). pH vrednost regeneracijske raztopine se s časom ni spreminjala (gibala se je v območju od 4.99 do 5.01). Nasičevalnik je bil preko batnih črpalk (LDC Analytical, model 3200), ki sta na sliki 1 označeni s ciframa 4 in 5, v zaprtih tokokrogih povezan s kolono z ionskim izmenjevalcem in s katalitskim reaktorjem.In the thermostated saturator there was a regeneration solution of sodium chloride sc Na ci = 5.0 g / L. The pH of the regeneration solution was controlled by an autotitrator (Metrohm, model Titrino GPD 751), which, if necessary, dosed with aqueous hydrochloric acid (chci = 0.25 mol / L). The pH of the regeneration solution did not change over time (it ranged from 4.99 to 5.01). The saturator was connected via a piston pump (LDC Analytical model 3200) in Fig. 1 with figures 4 and 5, in closed circuits, connected to an ion exchanger column and a catalytic reactor in closed circuits.

V termostatirani stekleni cevki z notranjim premerom 0.9 cm se je nahajal strnjeni sloj močno bazične ionske izmenjevalne mase IMAC HP-555 (Rohm and Haas Co.) v nitratni obliki. S pomočjo batne črpalke (5) smo skozi kolono z ionskim izmenjevalcem prečrpavali vodno raztopino kloridnega iona, ki se je nahajala v nasičevalniku, pri čemer je kapljevinasta faza skozi strnjeni sloj ionske izmenjevalne mase tekla v smeri od spodaj navzgor. Eksperimentalni pogoji, pri katerih smo vodili regeneracijo z nitratnimi ioni nasičene ionske izmenjevalne mase, so zapisani v tabeli 6. Z občrpavanjem vodne raztopine kloridnega iona skozi kolono z ionskim izmenjevalcem in nasičevalnik se je v njej akumuliral z ionske izmenjevalne mase sproščeni nitratni ion. Z namenom odstranjevanja v regeneracijski raztopini akumuliranega nitratnega iona smo vodno raztopino kloridnega iona istočasno vodili skozi trifazni pretočni reaktor na način, ki je podrobneje opisan v nadaljevanju tega izvedbenega primera.A thermostated glass tube with an internal diameter of 0.9 cm contained a compacted layer of strongly basic IMAC HP-555 ion exchange mass (Rohm and Haas Co.) in nitrate form. By means of a piston pump (5), an aqueous solution of chloride ion contained in the saturator was pumped through the ion exchanger column, the liquid phase flowing from the bottom upwards through the solidified layer of the ion exchange mass. The experimental conditions under which regeneration with nitrate ions of a saturated ion-exchange mass was conducted were recorded in Table 6. By pumping an aqueous solution of chloride ion through an ion exchanger column, the saturator accumulated in it a nitrate ion released from the ion-exchange mass. In order to remove the accumulated nitrate ion in the regeneration solution, the aqueous chloride ion solution was simultaneously passed through a three-phase flow reactor in the manner described in more detail in the following embodiment.

Tabela 6. Eksperimentalni pogoji kombiniranega procesa regeneracije z nitratnimi ioni nasičene ionske izmenjevalne mase in simultanega odstranjevanja nitratnih ionov iz regeneracijske raztopine z uporabo heterogeno katalizirane hidrogenacije v trifaznem pretočnem reaktorju.Table 6. Experimental conditions of the combined regeneration process with nitrate ions of saturated ion exchange mass and simultaneous removal of nitrate ions from the regeneration solution using heterogeneously catalyzed hydrogenation in a three-phase flow reactor.

Temperatura, K 298Temperature, K 298

Celotni obratovalni tlak, bar 1.0Total operating pressure, bar 1.0

Parcialni tlak vodika, bar 0.5Hydrogen partial pressure, bar 0.5

Masa ionskega izmenjevalca v strnjenem sloju, g 1.50The mass of the ion exchanger in the compacted layer, g 1.50

Povprečni premer zrn ionskega izmenjevalca, mm 0.43Average diameter of ion exchanger grains, mm 0.43

Nasipna gostota strnjenega sloja ionskega izmenjevalca, g/cm3 0.32Bulk density of the compacted ion exchanger layer, g / cm 3 0.32

Poroznost strnjenega sloja ionskega izmenjevalca, / 0.43Porosity of the compacted ion exchanger layer, / 0.43

Volumen regeneracijske raztopine v nasičevalniku, L 1.0Volume of the regeneration solution in the saturator, L 1.0

Koncentracija NaCl v regeneracijski raztopini, g/L 5.0NaCl concentration in the regeneration solution, g / L 5.0

Volumski pretok regeneracijske raztopine skozi kolono z 8.2 ionskim izmenjevalcem in skozi katalitski reaktor, mL/minVolume flow of the regeneration solution through a 8.2 ion exchanger column and through a catalytic reactor, mL / min

Masa katalizatorja KAT-2 v strnjenem sloju, g 25Mass of the KAT-2 catalyst in the compacted layer, g 25

Povprečni premer katalizatorskih zrn, mm 1.7Average diameter of catalyst grains, mm 1.7

Nasipna gostota katalitičnega sloja, g/cm3 0.46Bulk density of catalytic bed, g / cm 3 0.46

Poroznost katalitičnega sloja, / 0.43Catalytic layer porosity, / 0.43

Volumski pretok plinaste faze skozi katalitski reaktor, 80 mL/min pH vrednost regeneracijske raztopine v nasičevalniku, / 5.0Volume flow of the gaseous phase through the catalytic reactor, 80 mL / min pH value of the regeneration solution in the saturator, / 5.0

V termostatirani stekleni cevi z notranjim premerom 2.0 cm se je nahajal strnjeni sloj Pd-Cu/y-Al2O3 bimetalnega katalizatorja KAT-2, katerega smo sintetizirali po postopku, opisanem v izvedbenem primeru 4. Skozi reaktor s strnjenim slojem katalizatorja smo s pomočjo batne črpalke (4) prečrpavali vodno raztopino natrijevega klorida, ki se je nahajala v nasičevalniku. Plinsko mešanico H2-N2 z znano koncentracijo vodika smo pripravljali s pomočjo elektronskih regulatorjev masnega pretoka (MKS) in jo uvajali v katalitski reaktor na njegovi spodnji strani. Regeneracijska raztopina in plinska mešanica H2-N2 sta preko nasutega sloja PdCu/y-Al2O3 bimetalnega katalizatorja KAT-2 prehajali sotočno v smeri od spodaj navzgor. Eksperimentalni pogoji v katalitskem reaktorju, pri katerih se je v regeneracijski raztopini akumulirani nitratni ion v prisotnosti raztopljenega vodika pretvarjal v dušik, so podani v tabeli 6. Poteku destruktivne redukcije oziroma odstranjevanju nitratnega iona iz regeneracijske raztopine smo sledili tako, da smo v vodni raztopini kloridnega iona, ki se je nahajala v nasičevalniku, določevali trenutne koncentracije nitratnega, nitritnega in amonijevega iona s pomočjo pretočne injekcijske analize (Perkin-Elmer UV/VIS spektrofotometer, model Lambda 40P; Perkin-Elmer FIAS modul, model 300). Rezultati poskusa regeneracije z nitratnimi ioni nasičene ionske izmenjevalne mase in simultanega odstranjevanja nitratnega iona iz regeneracijske raztopine s pomočjo katalitske hidrogenacije v trifaznem pretočnem reaktorju so prikazani na sliki 8.In a thermostated glass tube with an internal diameter of 2.0 cm there was a solidified layer of Pd-Cu / y-Al2O3 bimetallic catalyst KAT-2, which was synthesized according to the procedure described in example 4. Through a reactor with a solidified layer of catalyst, a piston pump was used. (4) pumped an aqueous solution of sodium chloride contained in the saturator. The H2-N2 gas mixture with known hydrogen concentration was prepared by means of electronic mass flow regulators (MKS) and introduced into the catalytic reactor on its underside. The regeneration solution and the H2-N2 gas mixture passed through the nascent PdCu / y-Al2O3 layer of the bimetallic KAT-2 catalyst in a downward direction. The experimental conditions in the catalytic reactor, in which the nitrate ion in the regeneration solution was converted to nitrogen in the presence of dissolved hydrogen, are given in Table 6. The course of the destructive reduction or removal of the nitrate ion from the regeneration solution was followed by the aqueous chloride solution. The saturator ions were used to determine the current concentrations of nitrate, nitrite and ammonium ions using flow injection analysis (Perkin-Elmer UV / VIS spectrophotometer, Lambda 40P model; Perkin-Elmer FIAS module, model 300). The results of an experiment of regeneration with nitrate ions of a saturated ion exchange mass and simultaneous removal of a nitrate ion from a regeneration solution by catalytic hydrogenation in a three-phase flow reactor are shown in Figure 8.

Slika 8 prikazuje časovne odvisnosti koncentracij nitratnega, nitritnega in amonijevega iona v vodni raztopini natrijevega klorida, ki se je nahajala v nasičevalniku. Iz nje je razvidno, da je s predloženim izumom iz regeneracijske raztopine moč popolnoma odstraniti akumulirano množino nitratnih ionov, tako da se jo lahko ponovno uporabi v nadaljnjih regeneracijskih ciklih. Po končanem procesu regeneracije izrabljene ionske izmenjevalne mase in simultane destruktivne hidrogenacije nitratnega iona je koncentracija nitritnega iona v vodni raztopini natrijevega klorida nižja od zakonsko predpisane vrednosti (tj., 0.02 mg/L). Slika 8 prikazuje tudi časovno odvisnost tvorbe amonijevega iona kot stranskega produkta reakcije. Končna množina nastalih NH4 ionov je zanemarljivo majhna v primerjavi s koncentracijo kloridnega iona v regeneracijski raztopini in ne vpliva na izmenjevalno kapaciteto ionske izmenjevalne mase IMAC HP-555.Figure 8 shows the time dependences of the concentrations of nitrate, nitrite and ammonium ion in an aqueous solution of sodium chloride contained in the saturator. It is apparent from the present invention that the accumulated amount of nitrate ions can be completely removed from the regeneration solution by the present invention so that it can be reused in subsequent regeneration cycles. Following the completion of the regeneration process of spent ion exchange mass and simultaneous destructive hydrogenation of the nitrate ion, the concentration of the nitrite ion in aqueous sodium chloride solution is lower than the legal value (i.e., 0.02 mg / L). Figure 8 also shows the time dependence of ammonium ion formation as a by-product of the reaction. The final amount of NH 4 ions formed is negligible compared to the concentration of chloride ion in the regeneration solution and does not affect the exchange capacity of the IMAC HP-555 ion exchange mass.

Po končanem poskusu kombiniranega procesa regeneracije izrabljene ionske izmenjevalne mase in simultane destruktivne hidrogenacije nitratnega iona v trifaznem pretočnem reaktorju s strnjenim slojem katalizatorja smo z uporabo argentometrične titracijske metode določili kapaciteto ionske izmenjevalne mase IMAC HP-555 za izmenjavo nitratnega iona. Le-ta je bila enaka začetni kapaciteti in je znašala 2.86±0.01 mmol/g.After completing the experiment of a combined process of regeneration of spent ion exchange mass and simultaneous destructive hydrogenation of nitrate ion in a three-phase flow reactor with a solidified catalyst layer, the IMAC HP-555 ion exchange mass capacity for exchange of nitrate ion was determined using an argentometric titration method. This was equal to the initial capacity and amounted to 2.86 ± 0.01 mmol / g.

Katalizatorji, uporabni pri predmetnem izumu in prikazani v zgornjih izvedbenih primerih, so predmet SI patenta št. 9500357, ki ga vključujemo kot referenco.The catalysts useful in the present invention and shown in the above embodiments are the subject of SI patent no. 9500357, which is incorporated by reference.

V opisu citirani proizvajalec izmenjevalnih mas Rohm and Haas Co. je Rohm and Haas Company, Philadelphia, USA.Rohm and Haas Co. manufacturer cited in the description. is the Rohm and Haas Company, Philadelphia, USA.

OPIS SLIKDESCRIPTION OF THE IMAGES

Slika 1. Shematski prikaz kombiniranega procesa za simultano odstranjevanje nitratnega iona iz vodne raztopine kloridnega iona za regeneracijo z nitratnimi ioni nasičene ionske izmenjevalne mase s pomočjo heterogeno katalizirane hidrogenacije v pretočnem reaktorju. 1: kolona s strnjenim slojem ionskega izmenjevalca; 2: združitveno mesto očiščenega in neočiščenega toka kapljevinaste faze; 3: nasičevalnik; 3a: mešalna šoba; 4,5: črpalka;Figure 1. Schematic illustration of a combined process for the simultaneous removal of a nitrate ion from an aqueous solution of a chloride ion for regeneration with nitrate ions of a saturated ion exchange mass by means of heterogeneously catalyzed hydrogenation in a flow reactor. 1: Ion exchange condenser column; 2: merger point of the purified and untreated liquid phase flow; 3: saturator; 3a: mixing nozzle; 4,5: pump;

6: membranski separator.6: membrane separator.

Slika 2. Koncentracija nitratnega iona, izmerjena v toku kapljevinaste faze na izstopu iz kolone z ionskim izmenjevalcem, kot funkcija časa za različne vstopne koncentracije polutanta.Figure 2. Nitrate ion concentration measured in the liquid phase stream at the exit of an ion exchanger column as a function of time for different inlet concentrations of the pollutant.

Slika 3. Koncentracija nitratnega iona, izmerjena v toku kapljevinaste faze na izstopu iz kolone z ionskim izmenjevalcem, kot funkcija časa za različne volumske pretoke regeneracijske raztopine.Figure 3. Nitrate ion concentration, measured in the liquid phase flow at the exit of an ion exchanger column, as a function of time for different volume flows of the regeneration solution.

Slika 4. Koncentracija nitratnega iona, izmerjena v toku kapljevinaste faze na izstopu iz kolone z ionskim izmenjevalcem, kot funkcija časa za več zaporednih izmenjevalnoregeneracijskih ciklov.Figure 4. Nitrate ion concentration measured in the liquid phase stream at the exit of an ion exchanger column as a function of time for several consecutive exchange regeneration cycles.

Slika 5. Kapaciteta ionske izmenjevalne mase kot funkcija števila izmenjevalnoregeneracijskih ciklov.Figure 5. Ion exchange mass capacity as a function of the number of exchange-regeneration cycles.

Slika 6. Konverzija nitratnega iona, izmerjena v toku kapljevinaste faze na izstopu iz reaktorja s strnjenim slojem Pd-Cu/y-Al2O3 bimetalnega katalizatorja KAT-1, kot funkcija l^kat razmerja -«b-,Fig. 6. Conversion of nitrate ion measured in the liquid phase stream at the outlet of the reactor with the solidified layer Pd-Cu / y-Al2O3 of the bimetallic catalyst KAT-1, as a function of the l ^ kat ratio - «b-.

ΦνοΙ.Χ ' CNO J .vstopnaΦνοΙ.Χ ' C NO J .input

Slika 7. Koncentracija nastalega amonijevega iona, izmerjena v toku kapljevinaste faze na izstopu iz reaktorja s strnjenim slojem Pd-Cu/y-Al2O3 bimetalnega katalizatorja KAT-1, kot funkcija razmerja _mkat. ,Figure 7. Concentration of formed ammonium ion, measured in the liquid phase stream at the outlet of the Pd-Cu / y-Al2O3 condensation layer of the bimetallic catalyst KAT-1, as a function of the ratio _ m cat. ,

Φ vol.X ®NOj .vstopnaΦ vol.X ® NO

Slika 8. Časovne odvisnosti koncentracij nitratnih, nitritnih in amonijevih ionov, izmerjenih v regeneracijski raztopini med potekom kombiniranega procesa regeneracije ionske izmenjevalne mase z vodno raztopino kloridnega iona in simultane redukcije nitratnega iona v pretočnem reaktorju s strnjenim slojem Pd-Cu/y-Al2O3 bimetalnega katalizatorja KAT-2.Figure 8. Time dependences of the concentrations of nitrate, nitrite and ammonium ions measured in the regeneration solution during the combined process of regeneration of the ion exchange mass with an aqueous solution of chloride ion and simultaneous reduction of the nitrate ion in a flow reactor with a compacted layer of Pd-Cu / y-Al2O3 bimetallic catalyst KAT-2.

Claims (6)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1 .Proces za čiščenje z nitratnim ionom onesnaženih voda, vključno pitnih in tehnoloških voda, z uporabo trdnih katalizatorjev po SI patentu št. 9500375, označen s tem, da sestoji iz:A process for the purification of nitrate ion contaminated waters, including drinking water and process water, using solid catalysts according to SI patent no. 9500375, characterized in that it consists of: • kontaktiranja nitratnega iona vsebujoče vode z ionsko izmenjevalno maso, • regeneracije z nitratnimi ioni nasičene ali delno izrabljene ionske izmenjevalne mase z vodno raztopino kloridnega iona ter • kontaktiranja nitratnega iona vsebujoče vodne raztopine kloridnega iona in vodika ali vodika vsebujoče plinaste faze na trdnih katalizatorjih.• contacting nitrate ion containing water with ion exchange mass; • regeneration with nitrate ions of saturated or partially used ion exchange mass with aqueous chloride ion solution; and • contacting nitrate ion containing aqueous solution of chloride ion and hydrogen or hydrogen containing gas phase catalysts. 2. Proces po zahtevku 1, označen s tem, da sestoji iz:Process according to claim 1, characterized in that it consists of: • odstranjevanja nitratnega iona iz vodnega toka s pomočjo ionske izmenjave, ki poteka v koloni s strnjenim slojem ionske izmenjevalne mase pri temperaturi okolice oziroma medija in celokupnem tlaku do 10 bar, pri čemer je linearna hitrost vodnega toka manjša ali enaka 60 m/h, vodna raztopina pa preko strnjenega sloja ionskega izmenjevalca preferenčno prehaja v smeri od spodaj navzgor;• removal of nitrate ion from the water stream by ion exchange, which takes place in a column with a condensed layer of ion exchange mass at ambient or medium temperature and overall pressure up to 10 bar, with a linear velocity of water flow less than or equal to 60 m / h, aqueous and the solution preferentially passes from the bottom upwards through the compacted layer of the ion exchanger; • regeneracije z nitratnimi ioni nasičenega oziroma delno izrabljenega sloja ionske izmenjevalne mase s pomočjo vodne raztopine kloridnega iona, ki v zaprtem tokokrogu kroži z linearno hitrostjo do 60 m/h skozi kolono s strnjenim slojem ionskega izmenjevalca in nasičevalnik, pri čemer je koncentracija kloridnega iona v regeneracijski raztopini manjša ali enaka 20 g/L, medtem ko regeneracija ionske izmenjevalne mase poteka pri temperaturi okolice oziroma medija in celokupnem tlaku do 10 bar tako, da vodna raztopina kloridnega iona prehaja preko strnjenega sloja ionskega izmenjevalca preferenčno v smeri od zgoraj navzdol;• regeneration with nitrate ions of a saturated or partially used layer of ion exchange mass by means of an aqueous solution of chloride ion, which in a closed circuit circulates at a linear speed up to 60 m / h through a column with a condensed layer of ion exchanger and saturator, the concentration of chloride ion in a regeneration solution of less than or equal to 20 g / L, while regeneration of the ion-exchange mass takes place at ambient and medium temperatures and overall pressures of up to 10 bar so that the aqueous chloride ion solution passes through the condensed layer of the ion exchanger preferentially from top to bottom; • dovajanja redukcijskega sredstva - vodika oziroma vodik vsebujočega plina - v “nasičevalnik;• supplying a reducing agent - hydrogen or hydrogen containing gas - to the “saturator; • istočasnega odstranjevanja nitratnih ionov iz vodne raztopine kloridnega iona na tak način, da jo v zaprtem tokokrogu črpamo z linearno hitrostjo do 0.5 m/s skozi katalitski reaktor, v katerem nitratni ion reagira z raztopljenim vodikom in se pretvarja v dušik, pri čemer reakcija poteka pri temperaturi okolice oziroma medija in celokupnem tlaku do 10 bar, medtem ko vodna raztopina kloridnega iona, vsebujoč nitratni ion, prehaja skozi katalitski reaktor preferenčno v smeri od spodaj navzgor, • dovajanja nevtralizacijskega sredstva - vodne raztopine klorovodikove kisline - v nasičevalnik, tako da se pH vrednost vodne raztopine kloridnega iona giblje v območju od 5.0 do 7.0, preferenčno v območju od 5.0 do 5.5;• simultaneous removal of nitrate ions from an aqueous solution of chloride ion in such a way that it is pumped in a closed circuit at a linear speed up to 0.5 m / s through a catalytic reactor in which the nitrate ion reacts with dissolved hydrogen and is converted to nitrogen, the reaction being carried out at ambient or medium temperature and overall pressure of up to 10 bar, while the aqueous chloride ion solution containing the nitrate ion passes through the catalytic reactor preferentially from the bottom up, • supplying the neutralizing agent - aqueous hydrochloric acid solution - to the saturator, the pH value of the aqueous chloride ion solution ranges from 5.0 to 7.0, preferably in the range from 5.0 to 5.5; • ločbe nastalega dušika od vodika v membranskem separatorju in njegovega izpusta v okolico.• the separation of the resulting nitrogen from the hydrogen in the membrane separator and its release into the environment. 3. Proces po zahtevku 2, označen s tem, da se v nasičevalnik dovaja plinska mešanica H2-N2, pri čemer se volumski delež dušika v mešanici giblje od 5 do 95 volumskih odstotkov.Process according to claim 2, characterized in that a H2-N2 gas mixture is fed into the saturator, with the nitrogen content of the mixture ranging from 5 to 95% by volume. 4. Proces po zahtevku 2, označen s tem, da se vodik oziroma plinska mešanica H2-N2 dovaja neposredno v katalitski reaktor na njegovem dnu ter prehaja katalitični sloj v smeri od spodaj navzgor.Process according to claim 2, characterized in that the hydrogen or the H2-N2 gas mixture is fed directly into the catalytic reactor at its bottom and passes from the bottom to the catalytic layer. 5. Proces po zahtevku 2, označen s tem, da je vir kloridnega iona v regeneracijski raztopini natrijev klorid.Process according to claim 2, characterized in that the source of the chloride ion in the regeneration solution is sodium chloride. 6. Proces po zahtevku 2, označen s tem, da je vir kloridnega iona v regeneracijski raztopini kalcijev klorid.Process according to claim 2, characterized in that the source of the chloride ion in the regeneration solution is calcium chloride.
SI9800182A 1998-06-26 1998-06-26 Process for treatment with nitrate ion contaminated water SI9800182A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI9800182A SI9800182A (en) 1998-06-26 1998-06-26 Process for treatment with nitrate ion contaminated water
PCT/SI1999/000018 WO2000000438A1 (en) 1998-06-26 1999-06-23 A process for purification of waters polluted with the nitrate ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9800182A SI9800182A (en) 1998-06-26 1998-06-26 Process for treatment with nitrate ion contaminated water

Publications (1)

Publication Number Publication Date
SI9800182A true SI9800182A (en) 1999-12-31

Family

ID=20432292

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9800182A SI9800182A (en) 1998-06-26 1998-06-26 Process for treatment with nitrate ion contaminated water

Country Status (2)

Country Link
SI (1) SI9800182A (en)
WO (1) WO2000000438A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1121976A1 (en) * 2000-02-03 2001-08-08 Engelhard Corporation Chemical process in reactor with structured catalyst
CN114768888A (en) * 2022-05-12 2022-07-22 南京霖厚环保科技有限公司 Continuous series operation and circulation saturated ion exchange system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630772B2 (en) * 1984-04-30 1994-04-27 ヘスケット,ドン・イ− Fluid treatment method

Also Published As

Publication number Publication date
WO2000000438A1 (en) 2000-01-06

Similar Documents

Publication Publication Date Title
Pintar et al. Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water
Pintar et al. Catalytic denitrification: direct and indirect removal of nitrates from potable water
Lin et al. Removal of nitrogenous compounds from aqueous solution by ozonation and ion exchange
EP0752976B1 (en) Oxidation process
PL199224B1 (en) Method for mineralization of organic pollutants in water by catalytic ozonization
SI9800182A (en) Process for treatment with nitrate ion contaminated water
JP3252696B2 (en) Purification method of exhaust gas containing oxidizable nitrogen compound
JP2010149050A (en) Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst
JP2845642B2 (en) Nitrogen removal equipment
JPH08192192A (en) Method for treating flue gas desulfurization drain
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
Pintar et al. A novel process for the removal of nitrates from drinking water
JP2005095784A (en) Cleaning method of nitrate nitrogen-containing wastewater
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JP3401844B2 (en) Ammonia-containing water treatment method
CN105271503A (en) Method for enhanced removal of ammonia nitrogen in water through catalytic ozonation
JP3213678B2 (en) Method for treating wastewater containing sulfur compounds and / or halogen compounds and ammonia nitrogen
JP3213677B2 (en) Method for treating wastewater containing sulfur compounds and / or halogen compounds and ammonia nitrogen
JP3521445B2 (en) Treatment of wastewater containing ammonia
JPH07185569A (en) Treatment of nitrate radical-containing waste water
JPH0970589A (en) Treatment of waste water containing nitrate nitrogen
JP2000167570A (en) Treatment of waste water
JP2547269B2 (en) Treatment of wastewater containing phosphorus compounds
JPH11347574A (en) Method for reacting substance dissolved in liquid with hardly dissolvable gas
JP3477804B2 (en) Method for treating water containing ammonia and nitrate ions

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20060410