SI8310997A - Activator of a plasminogen of human tissue. - Google Patents
Activator of a plasminogen of human tissue. Download PDFInfo
- Publication number
- SI8310997A SI8310997A SI8310997A SI8310997A SI8310997A SI 8310997 A SI8310997 A SI 8310997A SI 8310997 A SI8310997 A SI 8310997A SI 8310997 A SI8310997 A SI 8310997A SI 8310997 A SI8310997 A SI 8310997A
- Authority
- SI
- Slovenia
- Prior art keywords
- plasminogen activator
- dna
- cells
- plasminogen
- human tissue
- Prior art date
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Z uporabo rekombinantnih tehnik je proizveden aktivator plazminogena človeškega tkiva (t-PA) v uporabnih količinah. Ta izum prav tako omogoča proizvodnjo t-PA, ki je brez kontaminantov, ki ga spremljajo v njegovem naravnem celičnem okolju. Prav tako so opisani postopki, nosilci za expresijo in razne celice gostiteljev, ki so uporabni v proizvodnji.Using recombinant techniques, it is produced human tissue plasminogen activator (t-PA) v usable quantities. This invention also makes it possible the production of t-PA which is contaminant free by they monitor in his natural cellular environment. Also described are methods, carriers for expression and various host cells useful in manufacturing.
Description
Področje izumaFIELD OF THE INVENTION
Izum je s področja genetskega inženirstva.The invention is in the field of genetic engineering.
Tehnični problemA technical problem
Predloženi izum se nanaša na aktivator plazminogena človeškega tkiva, ki ustreza tistemu v človeškem serumu in/ali tkivih, kot tudi na postopek za njegovo pridobivanje.The present invention relates to a human tissue plasminogen activator corresponding to that in human serum and / or tissues, as well as a process for its production.
Stanje tehnikeThe state of the art
Predloženi izum je nastal z delom na osnovi odkritja DNA sekvence in izvedene aminokislinske sekvence aktivatorja človeškega plazminogena. To odkritje je omogočilo proizvodnjo aktivatorja človeškega plazminogena z uporabo rekombinantne DNA tehnologije, kar zopet omogoča proizvodnjo materiala ustrezne kvalitete in kvantitete za iniciiranje in izvajanje testiranja na živalih in kliničnega testiranja, kot nujnih pogojev za odobritev trženja, ki jih ne ovirajo restrikcije, ki so obvezno spremljale postopke izoliranja, ki so jih uporabljali v proizvodnji in ekstrakciji iz obstoječe celične kulture do sedaj. Ta izum je usmerjen na te spremljajoče izvedbe v vseh pogledih.The present invention is made by working on the basis of the discovery of a DNA sequence and a derived amino acid sequence of a human plasminogen activator. This discovery made it possible to produce a human plasminogen activator using recombinant DNA technology, which again allows the production of material of adequate quality and quantity to initiate and perform animal testing and clinical testing as necessary conditions for marketing approval, which are not impeded by mandatory restrictions monitor the isolation processes used in the production and extraction of existing cell culture so far. The present invention is directed to these accompanying embodiments in all aspects.
Publikacije in drugi materiali, ki jih tu uporabljamo za osvetljevanje teoretične osnove izuma in v določenih primerih, za zagotavljanje dodatnih detajlov, ki se nanašajo na uporabo izuma, so vključeni kot reference in zaradi pripravnosti, so v sledečem tekstu numerično NAVEDENI in ustrezno razvrščeni v skupine v priloženi bibliografiji.Publications and other materials used herein to illuminate the theoretical basis of the invention and, in certain cases, to provide additional details pertaining to the use of the invention, are incorporated by reference and prepared for the purpose of being hereinafter numerically stated and appropriately grouped in the attached bibliography.
A. Aktivator plazminogena človeškega tkivaA. Human tissue plasminogen activator
Fibrinolitični sistem je v dinamičnem ravnotežju s koagulacijskim sistemom, ob vzdrževanju nedotaknjenega, zaščitenega vaskularnega sloja. Koagulacijski sistem deponira fibrin kot matrico, ki služi za obnavljanje hemostatičnega stanja. Fibrinolitični sistem odstrani fibrinsko mrežo potem ko je doseženo hemostatično stanje. Fibrinolitični sistem se aktivira s proteolitičnim encimom, ki se generira iz prekurzorskega plazminogena proteina plazme. Plazminogen se prevaja v plazmin preko aktivacije z aktivatorjem.The fibrinolytic system is in dynamic balance with the coagulation system while maintaining an intact, protected vascular layer. The coagulation system deposits fibrin as a matrix that serves to restore the hemostatic state. The fibrinolytic system removes the fibrin network after the haemostatic state is reached. The fibrinolytic system is activated by a proteolytic enzyme generated from the precursor plasminogen of the plasma protein. Plasminogen is translated into plasmin via activation by an activator.
Trenutno sta na razpolago dva aktivatorja, streptokinaza in urokinaza. Oba sta indicirana za zdravljenje akutnih vaskularnih bolezni, kot so miokardni infarkt, kap, plučna embolija, tromboza globokih ven, periferne arterijske inkluzije in druge venske tromboze. Skupaj tvorijo te bolezni glavne nevarnosti za zdravje.There are currently two activators available, streptokinase and urokinase. Both are indicated for the treatment of acute vascular diseases such as myocardial infarction, stroke, pulmonary embolism, deep vein thrombosis, peripheral arterial inclusions, and other venous thromboses. Together, these diseases are major health hazards.
Vzročna etiološka osnova za te bolezni kaže na ali parcialno, ali v nekaterih primerih, na totalno okluzijo krvne žile s krvnim strdkom - trombusom ali tromboembolusom. Tradicionalna antikoagulacijska terapija, kot s heparinom ali kumarinom, ne naredi nič, da bi direktno povečala razgradnjo trombusa ali tromboembolusa. Prej citirani trombolitski sredstvi, streptokinaza in urokinaza, sta imeli praktično in učinkovito uporabo. Vendar pa ima vsako resne omejitve. Nobeno od njiju nima visoke afinitete do fibrina; zaradi tega obe aktivirata cirkulacijo in plazminogen vezan na fibrin, relativno brez razlike. Plazmin, ki se tvori v krožeči krvi, se nevtralizira razmeroma hitro in je izgubljen za koristno atrombolizo. Rezidualni plazmin bo degradiral nekaj proteinskih faktorjev za zamašitev, npr., fibrinogen, faktor V in faktor VIII, pri čemer izziva potencial za krvavitev. Nadalje je streptokinaza močno antigenska in pacienti z visokimi titri protiteles reagirajo neučinkovito na zdravljenje in jih ne moremo podvreči kontinualnemu zdravljenju. Terapija z urokinazo je draga, zaradi njenega zapletenega izoliranja iz človeškega urina ali kulture tkiva in zato, v glavnem, ni sprejeta za klinično prakso. Urokinaza je bila predmet številnih raziskav - glej npr. reference 1-6.The causal etiologic basis for these diseases indicates either partial or, in some cases, complete occlusion of the blood vessel with a blood clot - thrombus or thromboembolus. Traditional anticoagulation therapy, such as with heparin or coumarin, does nothing to directly increase the breakdown of the thrombus or thromboembolus. The previously cited thrombolytic agents, streptokinase and urokinase, have had practical and effective use. However, each has serious limitations. Neither of them has a high affinity for fibrin; as a result, both activate circulation and plasminogen bound to fibrin, relatively indistinguishably. Plasmin, which forms in circulating blood, neutralizes relatively quickly and is lost to beneficial atrombolysis. Residual plasmin will degrade some protein blockers, such as fibrinogen, factor V, and factor VIII, causing the potential for bleeding. Furthermore, streptokinase is strongly antigenic and patients with high antibody titers respond ineffectively to treatment and cannot be sustained on continuous treatment. Urokinase therapy is expensive, because of its complex isolation from human urine or tissue culture, and therefore is not generally accepted for clinical practice. Urokinase has been the subject of much research - see e.g. references 1-6.
Takoimenovane aktivatorje plazminogena so izolirali iz različnega človeškega tkiva, npr., tkiva maternice, krvi, seruma - glej v glavnem reference 7-11 in iz celične kulture (referenca 94). Prav tako so opisani njihovi preparati - glej reference 12-13. Glej prav tako reference 14-18. Aktivatorji plazminogena, ki so izvedeni iz teh izvorov, so vedno klasificiram v dve glavni skupini: aktivatorji plazminogena urokinaznega tipa (u-PA) in aktivatorji plazminogena po tipu tkiva (t-PA) na osnovi razlik v njihovih imunoloških lastnostih. (Okrajšavi t-PA in u-PA sta taki, kot sta bili predlagani na XXVIII Meeting of the International Committee on Thrombosis and Hemostasis, Bergamo, Italy, 27 July 1982).The so-called plasminogen activators were isolated from various human tissues, e.g., uterine tissue, blood, serum - see mainly references 7-11 and from cell culture (reference 94). Their preparations are also described - see references 12-13. See also references 14-18. Plasminogen activators derived from these sources are always classified into two main groups: urokinase-type plasminogen activators (u-PA) and tissue-type plasminogen activators (t-PA) based on differences in their immune properties. (The abbreviations t-PA and u-PA are as proposed at the XXVIII Meeting of the International Committee on Thrombosis and Hemostasis, Bergamo, Italy, 27 July 1982).
Pred kratkim je bila identificirana linija človeškega melanoma, ki izloča t-PA. Karakterizacija tega aktivatorja plazminogena melanoma je pokazala, da se je ne da razlikovati, niti imunološko niti po aminokislinski sestavi, od aktivatorja plazminogena, kije izoliran iz normalnega človeškega tkiva (referenca 19,88).The human melanoma lineage that secretes t-PA has recently been identified. Characterization of this plasminogen activator melanoma has shown that it is indistinguishable, neither immunologically nor in amino acid composition, from a plasminogen activator isolated from normal human tissue (reference 19,88).
Produkt so izolirali v relativno čisti obliki, okarakterizirali in ugotovili, da je visoko aktivno fibrinolitično sredstvo (20).The product was isolated in relatively pure form, characterized and found to be a highly active fibrinolytic agent (20).
Nekaj raziskav (npr. reference 95 do 98), v katerih so uporabljali t-PA prečiščen iz celične linije melanoma, je pokazalo njegovo visoko afiniteto za fibrin, v primerjavi z aktivatorji plazminogena urokinaznega tipa. Vendar pa je bilo intenzivno preučevanje človeškega t-PA kot potencialnega trombolitičnega sredstva oteženo zaradi njegove ekstremno nizke koncentracije v krvi, ekstraktih tkiv, perfurzatih žil in celičnih kulturah.Few studies (e.g., references 95 to 98) using t-PA purified from the melanoma cell line have shown its high affinity for fibrin compared to urokinase-type plasminogen activators. However, intensive study of human t-PA as a potential thrombolytic agent has been hampered by its extremely low concentration in blood, tissue extracts, vascular perfusion and cell cultures.
Ugotovili so, da bo uporaba rekombinantne DNA in spremljajočih tehnologij najbolj učinkovit način za zagotavljanje potrebnih velikih količin aktivatorja plazminogena tipa človeškega tkiva visoke kvalitete (prej imenovanega kot aktivator človeškega plazminogena), v bistvu brez drugega človeškega proteina. Takšni materiali bodo verjetno izražali bioaktivnost, ki bo omogočila njihovo klinično uporabo pri zdravljenju različnih kardiovaskularnih stanj in bolezni.They have found that the use of recombinant DNA and associated technologies will be the most effective way of providing the large quantities of high quality plasminogen activator (formerly referred to as human plasminogen activator), essentially free of other human protein, in the required amount. Such materials are likely to express bioactivity that will allow their clinical use in the treatment of various cardiovascular conditions and diseases.
B. Rekombinantna DNA tehnologijaB. Recombinant DNA technology
Rekombinantna DNA tehnologija je dosegla stanje določene izpopolnjenosti. Molekularni biologi so sposobni rekombinirati različne DNA sekvence z določeno lahkoto, pri čemer kreirajo nove DNA vrste, ki lahko proizvedejo obilne količine eksogenega proteinskega proizvoda v transformiranih mikrobih in celičnih kulturah. Pri roki so splošna sredstva in postopki za in vitro ligacijo raznih fragmentov DNA s topimi ali lepljivimi konci, tako da se proizvajajo močni nosilci za ekspresijo, ki so koristni v transformiranju določenih organizmov, tako da se usmerja njihova učinkovita sinteza želenega eksogenega proizvoda. Vendar pa ostaja na osnovi posameznega proizvoda, pot do neke mere mukotrpna in znanost še ni napredovala do faze, v kateri bi lahko delali regularna predvidevanja za uspeh. Dejansko delajo tisti, ki dosegajo uspešne rezultate brez utemeljene eksperimentalne osnove, z znatnim tveganjem neoperativnosti.Recombinant DNA technology has achieved a state of certain sophistication. Molecular biologists are able to recombine different DNA sequences with some ease, creating new DNA species that can produce copious amounts of exogenous protein product in transformed germs and cell cultures. General means and methods for in vitro ligation of various DNA fragments with blunt or sticky ends are at hand, so that strong expression carriers are produced that are useful in transforming particular organisms by directing their efficient synthesis of the desired exogenous product. However, on a product-by-product basis, the path is to some extent painstaking and science has not yet progressed to a stage where regular predictions for success could be made. Indeed, those who achieve successful results without a well-founded experimental basis work with a significant risk of inoperability.
DNA rekombinacija bistvenih elementov t.j. izvorov replikacije, ene ali več fenotipskih selekcijskih karakteristik, promotorjev ekspresije, vključkov heterolognega gena in preostalega vektorja, se v glavnem izvaja izven celice gostitelja. Dobljeni rekombinantni ekspresijski nosilec, ki se ga da replicirati, ali plazmid, se uvaja v celice s transformiranjem, in z rastjo transformanta dobimo velike količine rekombinantnega nosilca. Kadar je gen vnešen pravilno glede na dele, ki nadzirajo transkripcijo in translacijo kodiranega DNA sporočila, je dobljeni ekspresijski nosilec koristen za dejansko proizvodnjo polipeptidne sekvence, katero vstavljeni del kodira, in to je postopek znan kot ekspresija. Dobljeni proizvod lahko dobimo z rascepljanjem, po potrebi, celice gostitelja, v mikrobnih sistemih in regeneriranjem proizvoda z ustreznim prečiščevanjem iz drugih proteinov.DNA recombination of essential elements i.e. replication sources, one or more phenotypic selection characteristics, expression promoters, heterologous gene insertions, and the rest of the vector are mainly performed outside the host cell. The resulting recombinant replicable expression carrier or plasmid is introduced into cells by transformation, and with the growth of the transformant large amounts of the recombinant carrier are obtained. When the gene is inserted correctly with respect to the parts that control the transcription and translation of the encoded DNA message, the resulting expression carrier is useful for the actual production of the polypeptide sequence encoded by the inserted portion, a process known as expression. The resultant product can be obtained by cleavage, if necessary, of the host cell in microbial systems and regeneration of the product by appropriate purification from other proteins.
V praksi lahko uporaba rekombinantne DNA tehnologije izrazi povsem heterologne polipeptide- takoimenovana direktna ekspresija - ali alternativno, izrazi lahko heterologni polipeptid, ki je kondenziran z delom aminokislinske sekvence homolognega polipeptida. V zadnjih primerih včasih želeni bioaktivni proizvod napravijo bio-neaktiven v kondenziranem homolognem/heterolognem polipeptidu, dokler se ne razcepi v zunajcelični okolici. Glej reference (21) in (22).In practice, the use of recombinant DNA technology may express entirely heterologous polypeptides - so-called direct expression - or alternatively, may express a heterologous polypeptide that is fused to a portion of the amino acid sequence of a homologous polypeptide. In the latter cases, the desired bioactive product is sometimes made bio-inactive in a fused homologous / heterologous polypeptide until cleaved in the extracellular environment. See references (21) and (22).
Na podoben način je dobro razvita znanost o celici in tkivnih kulturah za preučevanje genetike in fiziologije celice. Pri roki so sredstva in postopki za vzdrževanje permanentnih celičnih linij, napravljenih s sukcesivnimi serijskimi transferji iz izolata normalnih celic. Za uporabo v raziskavah vzdržujejo takšne celične linije na trdnem nosilcu v tekoči podlagi, ali pa z rastjo v suspenziji, ki vsebuje nosilne hranljive sestavine. Izgleda, da povzroča proporcioniranje za velike preparate samo mehanske probleme. Za nadaljnjo osnovo usmerjamo pozornost na reference (23) in (24).In a similar way, the science of cell and tissue culture is well developed to study the genetics and physiology of the cell. The means and procedures for maintaining permanent cell lines made by successive serial transfers from normal cell isolate are at hand. For research use, they maintain such cell lines on a solid support in a liquid medium, or by growing in suspension containing nutrient carriers. It seems that, for large preparations, proportions only cause mechanical problems. For further basis, we turn our attention to references (23) and (24).
Na podoben način je proteinska biokemija koristna, v bistvu nujno dopolnilo, v biotehnologiji. Celice, ki proizvajajo želeni protein, prav tako proizvajajo stotine drugih proteinov, endogenih proizvodov metabolizma celice. Ti kontaminirajoči proteini, kakor tudi druge spojine, se lahko, če jih ne ločimo od želenega proteina, izkažejo kot toksični, če se dajo živali ali človeku ob terapevtskem zdravljenju z želenim proteinom. Zaradi tega omogočajo tehnike proteinske biokemije načrtovanje postopkov za ločevanje, ki so primerni za določeni sistem, ki ga opazujemo in za zagotavljanje homogenega proizvoda, ki je varen za nameravano uporabo. Proteinska biokemija prav tako dokazuje identiteto želenega proizvoda, pri čemer ga okarakterizira in zagotavlja, da ga celice proizvajajo verno, brez alteracij in mutacij. Ta veja znanosti je prav tako vključena v načrtovanje biotestov, preučevanje stabilnosti in druge postopke, ki jih moramo obvezno uporabiti predno izvajamo uspešne klinične raziskave in prodajo na tržišču.In a similar way, protein biochemistry is a useful, essentially necessary complement, in biotechnology. The cells that produce the desired protein also produce hundreds of other proteins, endogenous products of cell metabolism. These contaminating proteins, as well as other compounds, may, if not separated from the desired protein, prove to be toxic if given to an animal or a human during therapeutic treatment with the desired protein. For this reason, protein biochemistry techniques allow the design of separation processes that are appropriate for the particular system being observed and for providing a homogeneous product that is safe for its intended use. Protein biochemistry also proves the identity of the desired product, characterizing it and ensuring that cells produce it faithfully, without alterations and mutations. This branch of science is also involved in biotest design, stability studies, and other procedures that must be used before successful clinical research and marketing are conducted.
Opis rešitve tehničnega problema s primeriDescription of a solution to a technical case problem
Predloženi izum temelji na odkritju, da lahko rekombinantno DNA tehnologijo uspešno uporabljamo za proizvodnjo aktivatorja plazminogena človeškega tkiva (tPA), prednostno v direktni obliki, in v zadovoljujočih količinah za iniciiranje in izvedbo testiranja na živalih in kliničnega testiranja, kot predpogojev za sprejem na tržišču. Proizvod, človeški t-PA, je primeren za uporabo v vseh svojih oblikah, v profilaktičnem in terapevtskem zdravljenju ljudi za različna kardiovaskularna stanja ali bolezni. Pri tem je predloženi izum, v enem pomembnem vidiku, usmerjen na postopke za zdravljenje vaskularnih motenj pri človeških pacientih z uporabo t-PA in njegovih primernih farmacevtskih preparatov.The present invention is based on the discovery that recombinant DNA technology can be successfully used to produce human tissue plasminogen activator (tPA), preferably in direct form, and in sufficient quantities to initiate and perform animal and clinical testing as prerequisites for market acceptance. The product, human t-PA, is suitable for use in all its forms, in the prophylactic and therapeutic treatment of humans for various cardiovascular conditions or diseases. In one important aspect, the present invention is directed to methods for treating vascular disorders in human patients using t-PA and its suitable pharmaceutical preparations.
Predloženi izum nadalje obsega v bistvu čist aktivator plazminogena človeškega tkiva. Proizvod, proizveden z genetsko konstruiranimi mikroorganizmi ali sistemi celične kulture zagotavlja možnost za proizvodnjo aktivatorja plazminogena tkiva na mnogo bolj učinkovit način, kot je bilo to možno do sedaj, s čemer omogočimo komercialno izkoriščanje, ki do sedaj ni bilo možno. Nadalje, v odvisnosti od celice gostitelja, lahko aktivator plazminogena človeškega tkiva vsebuje spremljajočo sledečo glikozilacijo v večjem ali manjšem obsegu v primerjavi z naravnim materialom. V vsakem primeru pa bo t-PA brez kontaminantov, ki ga običajno spremljajo v njegovi ne-rekombinantni celični okolici.The present invention further comprises a substantially pure activator of human tissue plasminogen. A product produced with genetically engineered micro-organisms or cell culture systems provides the opportunity to produce a plasminogen activator in a much more efficient way than has been possible so far, allowing commercial exploitation that has not been possible so far. Further, depending on the host cell, the plasminogen activator of human tissue may contain accompanying glycosylation to a greater or lesser extent compared to the native material. In any case, t-PA will be free of contaminants, which are usually accompanied by its non-recombinant cellular environment.
Predloženi izum se prav tako nanaša na nosilce za ekspresijo DNA, ki se jih da replicirati, ki proizvajajo sekvence gena, ki kodirajo aktivator plazminogena človeškega tkiva v obliki, ki se lahko izrazi, na soje mikroorganizmov ali celične kulture, ki so z njimi transformirane in na mikrobne ali celične kulture takšnih transformiranih sojev ali kultur, ki lahko proizvedejo aktivator plazminogena človeškega tkiva. V nadaljnjih vidikih se predloženi izum nanaša na različne postopke, ki so uporabni za pripravo omenjenih genskih sekvenc, na nosilce za ekspresijo DNA, na soje mikroorganizmov in celične kulture in na njihove specifične izvedbe. Nadalje se ta izum nanaša na pripravo kultur omenjenih mikroorganizmov za fermentacijo in na celične kulture.The present invention also relates to replicable DNA expression carriers that produce gene sequences that encode a human tissue plasminogen activator in a form that can be expressed, to soybeans of microorganisms or cell cultures that are transformed and to microbial or cell cultures of such transformed strains or cultures capable of producing plasminogen activator of human tissue. In further aspects, the present invention relates to various methods useful for the preparation of said gene sequences, to carriers for DNA expression, to soybean microorganisms and cell cultures, and to their specific embodiments. Further, the present invention relates to the preparation of cultures of said microorganisms for fermentation and to cell cultures.
Kratek opis risbBrief description of the drawings
Slika 1 prikazuje 10 % natrijev dodecilsulfat poliakrilamidni gel elektroforeze (SDS PAGE) z 35s-metioninom označene proteine, ki se jih da oboriti z anti t-PA, ki je izločen iz celic melanoma z ali brez inhibitorja proteaze.Figure 1 shows 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) with 35 s- methionine labeled proteins that can be precipitated with anti t-PA secreted from melanoma cells with or without a protease inhibitor.
Slika 2 prikazuje elektroforezo imunoprecipitiranih translacijskih proizvodov mRNA frakcij, izvedenih iz celic melanoma.Figure 2 shows the electrophoresis of immunoprecipitated translational products of mRNA fractions derived from melanoma cells.
Slika 3 prikazuje shemo hibridizacije 96 bakterijskih kolonij, ki so transformirane s cDNA z uporabo 32P markiranega 14-mera kot sonde, ki je napravljen na osnovi sekvence 5 aminokislin človeškega t-PA.Figure 3 shows a hybridization scheme of 96 bacterial colonies transformed with cDNA using a 32 P-labeled 14-mer as a probe made based on a sequence of 5 amino acids of human t-PA.
Slika 4 je restrikcijski endonukleazni načrt cDNA človeškega t-PA polne dolžine.Figure 4 is a full-length restriction endonuclease blueprint of the human t-PA human t-PA.
Slike 5a, 5b in 5c prikazujejo sekvenco nukleotidov in izvedeno aminokislinsko sekvenco cDNA t-PA polne dolžine.Figures 5a, 5b and 5c show the nucleotide sequence and the derived full-length t-PA cDNA amino acid sequence.
Slika 6 je shema konstrukcije ekspresijskega plazmida pdeltaRIPA*.Figure 6 is a schematic diagram of the construction of the pdeltaRIPA * expression plasmid.
Slika 7 prikazuje rezultate fibrinskega testa na ploščici na fibrinolitično aktivnost E.coli celic transformiranih s pdeltaRIPA*.Figure 7 shows the results of a plate fibrin assay for fibrinolytic activity of E. coli cells transformed with pdeltaRIPA *.
Slika 8 je HPLC sled peptida iz tripsinskega izločka človeškega t-PA.Figure 8 is a HPLC trace of the peptide from the trypsin secretion of human t-PA.
Slika 9 prikazuje konstrukcijo plazmida, ki kodira za neposredno ekspresijo zrelegaFigure 9 shows the construction of a plasmid encoding for direct expression of the mature
Ί človeškega t-PA v E. coli.Ί Human t-PA in E. coli.
Slika 10 prikazuje rezultate fibrinskega testa na ploščici na fibrinolitsko aktivnost človeškega t-PA proizvedenega s pomočjo E.coli transformirane s pt-PAtrpl2.Figure 10 shows the results of a plate fibrin assay on the fibrinolytic activity of human t-PA produced by E.coli transformed with pt-PAtrpl2.
Slika 11 prikazuje konstrukcijo DHFR (mutantni ali divji tip)/t-PA plazmidov za kodiranje, ki so primerni za transformacijo v celicah tkivnih kultur sesalcev.Figure 11 shows the construction of DHFR (mutant or wild type) / t-PA coding plasmids that are suitable for transformation in mammalian tissue culture cells.
Slika 12 je shematski diagram aktivatorja plazminogena človeškega tkiva, kot smo ga pripravili s postopkom, kije ponazorjen v tukajšnjem poglavju E.l.12 is a schematic diagram of a human tissue plasminogen activator as prepared by the procedure illustrated in E.l.
Natančen opisA precise description
A. DefinicijeA. Definitions
Kot uporabljamo tukaj, aktivator plazminogena človeškega tkiva ah človeški t-PA ah t-PA označuje človeški zunanji (tkivnega tipa) aktivator plazminogena, proizveden z mikrobnimi ah sistemi celične kulture, v bioaktivnih oblikah, ki obsegajo proteazni del in ki ustrezajo tistim aktivatorjem plazminogena, ki so sicer nativni za človeško tkivo. Protein aktivatorja plazminogena človeškega tkiva, ki smo ga proizvedli tukaj, smo definirali s pomočjo determiniranega DNA gena in deduktivnega aminokislinskega sekvenciranja. Jasno je, da obstajajo naravne alelične variacije in se pojavljajo od posameznika do posameznika. Te variacije lahko ponazorimo s pomočjo aminokislinskih razlik v skupni sekvenci ah z izpuščanji, substitucijami, vmeščanji, inverzijami ah dodajanji aminokislin(e) v omenjeni sekvenci. Nadalje je lokacija in stopnja glikoziliranja odvisna od narave celične okolice gostitelja.As used herein, human tissue plasminogen activator ah human t-PA ah t-PA denotes a human external (tissue type) plasminogen activator produced by microbial ah cell culture systems, in bioactive forms comprising a protease moiety and corresponding to those plasminogen activators, which are otherwise native to human tissue. The human tissue plasminogen activator protein produced here was defined using determined DNA gene and deductive amino acid sequencing. Clearly, there are natural allelic variations and they occur from individual to individual. These variations can be illustrated by amino acid differences in the total sequence ah by omissions, substitutions, substitutions, inversions or addition of amino acids (e) in said sequence. Furthermore, the location and degree of glycosylation depends on the nature of the cellular environment of the host.
V uporabi rekombinantne DNA tehnologije obstaja potencial za pripravo različnih derivatov aktivatorja plazminogena človeškega tkiva, različno modificiranih s pomočjo enojnih ah večkratnih substitucij, izpuščanj, dodajanj ah zamenjav aminokislin, npr. s pomočjo direktne mutageneze mesta v osnovni DNA. Vključena bo priprava derivatov, ki vsebujejo bistveno kringle regijo in regijo serin proteaze, ki sta v glavnem karakteristični za aktivator plazminogena človeškega tkiva, ah so sicer modificirani kot je opisano zgoraj. Vse takšne alelične variacije in modifikacije, ki nastajajo v derivatih aktivatorja plazminogena človeškega tkiva, so vključene v obseg tega izuma, kakor tudi drugi sorodni aktivatorji človeškega zunanjega (tkivnega tipa) plazminogena, ki so si fizično in biološko podobni, vse dokler ostane bistvena, karakteristična aktivnost aktivatorja plazminogena človeškega tkiva v svoji vrsti nedotaknjena.In the use of recombinant DNA technology, there is the potential for the preparation of various plasminogen activator derivatives of human tissue, variously modified by single or multiple substitutions, omissions, addition or replacement of amino acids, e.g. by direct site mutagenesis in basic DNA. The preparation of derivatives containing the essential kringle region and the serine protease region, which are mainly characteristic of plasminogen activator of human tissue, will be included but otherwise modified as described above. All such allelic variations and modifications occurring in human tissue plasminogen activator derivatives are within the scope of the present invention, as well as other related human external (tissue type) plasminogen activators, which are physically and biologically similar, as long as they remain essential, characteristic the activity of human tissue plasminogen activator in its species is intact.
Pripravili smo aktivator plazminogena človeškega tkiva 1), ki ima metionin kot prvo aminokislino (ki je prisotna na osnovi vstavitve ATG startnega signalnega kodona pred strukturni gen) ali 2) ki ima, kjer je metionin intra- ali ekstracelično razcepljen, njegovo normalno prvo aminokislino, ali 3) ali skupaj z njegovim signalnim polipeptidom ali s konjugiranim proteinom, ki se razlikuje od konvencionalnega signalnega polipeptida, pri čemer lahko signalni polipeptid ali konjugat specifično razcepimo v intra- ali ekstra-celični okolici (glej referenco 21), ali 4) z direktno ekspresijo v zreli obliki, ne da bi bila potrebna cepitev kakršnegakoli tujega, odvečnega polipeptida. Zadnje je še posebno pomembno takrat, kadar dani gostitelj ne more, ali ne more učinkovito odvajati signalnega peptida, kadar je nosilec za ekspresijo namenjen da izrazi aktivator plazminogena človeškega tkiva skupaj z njegovim signalnim peptidom. V vsakem primeru se tako proizvedeni človeški t-PA, v svojih različnih oblikah, regenerira in prečisti do nivoja, ki je primeren za uporabo v zdravljenju različnih vaskularnih stanj ali bolezni.We have prepared a human tissue plasminogen activator 1) having methionine as the first amino acid (present on the basis of insertion of the ATG start signal codon before the structural gene) or 2) having, where methionine is intra- or extracellularly cleaved, its normal first amino acid, or 3) or together with its signal polypeptide or conjugated protein, which is different from the conventional signal polypeptide, wherein the signal polypeptide or conjugate can be specifically cleaved in an intra- or extra-cellular environment (see reference 21), or 4) by direct expression in the mature form without the need for cleavage of any foreign, redundant polypeptide. The latter is particularly important when a given host is unable or unable to efficiently release the signal peptide when the expression carrier is intended to express a human tissue plasminogen activator together with its signal peptide. In each case, the human t-PA thus produced, in its various forms, is regenerated and purified to a level suitable for use in the treatment of various vascular conditions or diseases.
Nadalje ima t-PA oblike, ki vključujejo tudi enoverižni protein (1-veriga) in protein z 2-verigama. Zadnji je izveden proteolitsko iz spojin z 2-verigama. Teoretizirajo, daje protein z 2-verigama povezan s proizvedenim fibrinom in da se proteolitska konverzija materiala z 1- v material z 2-verigama vrši na mestu konverzije plazminogena v plazmin. Predloženi izum zagotavlja dajanje proteina z 1-verigo za in vivo konverzijo točno kot je opisano, ali zagotavlja dajanje proteina z 2-verigama, za katerega je bilo prav tako prikazano, da je aktiven. Protein z 2-verigama lahko pripravimo z in vitro proteolitsko konverzijo potem, ko je proizveden material z 1-verigo. Takoimenovana kringle površina, je postavljena navzgor od dela serin proteaze in verjamejo, da igra pomembno funkcijo v vezavi njegovega aktivatorja plazminogena tkiva na fibrinsko matrico; zaradi tega opažamo specifično aktivnost sedanjega aktivatorja plazminogena tkiva proti občutljivim, obstoječim trombusom. Tu se proizvaja aktivator plazminogena tkiva, ki vsebuje encimatsko aktiven del, ki ustreza nativnemu materialu in izraz aktivator plazminogena človeškega tkiva definira proizvode, ki obsegajo takšen del sam ali skupaj z dopolnilnimi aminokislinskimi sekvencami do polne dolžine molekule.It further has t-PA forms, which also include single-stranded protein (1-strand) and 2-strand protein. The latter is proteolytically derived from 2-chain compounds. It is theorized that the 2-strand protein is associated with the fibrin produced and that the proteolytic conversion of the 1- to 2-strand material takes place at the site of plasminogen conversion to plasmin. The present invention provides the administration of a 1-chain protein for in vivo conversion exactly as described or provides the administration of a 2-chain protein, which has also been shown to be active. 2-strand protein can be prepared by in vitro proteolytic conversion after 1-strand material is produced. The so-called kringle surface is positioned upstream of the serine protease and is believed to play an important function in binding its plasminogen activator tissue to the fibrin matrix; therefore, we observe the specific activity of the present plasminogen tissue activator against sensitive, existing thrombus. Here, a plasminogen tissue activator is produced that contains an enzymatically active moiety corresponding to the native material, and the term human tissue plasminogen activator defines products that comprise such moiety alone or together with complementary amino acid sequences up to the full length of the molecule.
Če povzamemo predloženi izum, ima torej človeški t-PA funkcionalno definicijo; lahko katalizira konverzijo plazminogena v plazmin, se veže na fibrin in na osnovi imunoloških lastnosti ga klasificiramo kot t-PA, kot je prikazano zgoraj.To summarize the present invention, therefore, human t-PA has a functional definition; it can catalyze the conversion of plasminogen to plasmin, bind to fibrin and, based on its immunological properties, classify it as t-PA, as shown above.
V bistvu čista oblika kot uporabljamo za opisovanje stanja človeškega t-PA proizvedenega z izumom pomeni, da je brez proteinov ali drugih materialov, ki običajno spremljajo človeški t-PA, kadar je proizveden s pomočjo z ne-rekombinatnih celic t.j. v njegovi nativni okolici.In essence, pure form as used to describe the state of human t-PA produced by the invention means that it is free of proteins or other materials that normally accompany human t-PA when produced with the help of non-recombinant cells, i.e. in his native surroundings.
DHFR protein se nanaša na protein, ki ima lahko aktivnost, ki spremlja dihidrofolat reduktazo (DHFR) in ki mora biti zato proizveden s pomočjo celic, ki so sposobne preživeti na podlagi, ki nima hipoksantina, glicina in tinidina. (-HGT podlaga). V glavnem so celice, ki nimajo DHFR proteina, nesposobne rasti na tej podlagi, celice, ki vsebujejo DHFR protein, pa to delajo uspešno.DHFR protein refers to a protein that may have an activity that accompanies dihydrofolate reductase (DHFR) and which must therefore be produced by viable cells on a non-hypoxanthine, glycine and tinidine basis. (-HGT substrate). In general, cells lacking DHFR protein are unable to grow on this basis, and cells containing DHFR protein do so successfully.
Celice občutljive na ΜΤΧ so celice, ki ne morejo rasti na podlagah, ki vsebujejo inhibitor DHFR metotreksat (ΜΤΧ). Torej so celice občutljive na ΜΤΧ celice, ki v kolikor niso genetsko spremenjene ali na kak drug način dopolnjene, ne bodo rasle pod običajnimi pogoji na podlagi, ki je primerna za tip celice, kadar je koncentracija ΜΤΧ 0,2 /xg/ml ali večja. Nekatere celice, kot so bakterije, ne izražajo občutljivosti proti ΜΤΧ, zato ker ne omogočajo, da bi ΜΤΧ vstopil znotraj meje celice, celo tudi če vsebujejo DHFR, ki je sicer občutljiv na to zdravilo. V glavnem bodo celice, ki vsebujejo kot svoj DHFR protein DHFR divjega tipa, občutljive na metotreksat, če niso prepustne ali sposobne za potrošnjo glede na ΜΤΧ.Občut Cells sensitive to ΜΤΧ are cells that cannot grow on substrates containing the DHFR inhibitor methotrexate (ΜΤΧ). So cells are susceptible to ΜΤΧ cells that, unless genetically modified or otherwise supplemented, will not grow under normal conditions on a basis appropriate for the cell type when the concentration is ΜΤΧ 0.2 / xg / ml or greater . Some cells, such as bacteria, do not express sensitivity to zato because they do not allow it to enter within the cell boundary, even if they contain DHFR, which is otherwise sensitive to this drug. Basically, cells containing as their DHFR wild-type DHFR protein will be sensitive to methotrexate if they are not permeable or consumable according to ΜΤΧ.
DHFR divjega tipa se nanaša na dihidrofolat reduktazo, kot se običajno nahaja v določenem zadevnem organizmu. DHFR divjega tipa je v glavnem in vitro občutljiv na nizke koncentracije metotreksata.Wild-type DHFR refers to dihydrofolate reductase, as is commonly found in the particular organism in question. Wild-type DHFR is mainly in vitro sensitive to low concentrations of methotrexate.
DHFR z nizko afiniteto za vezavo na ΜΤΧ ima funkcionalno definicijo. To je DHFR protein, ki bo, kadar se generira v celicah, omogočil rast ΜΤΧ občutljivih celic v podlagi, ki vsebuje 0,2 gg/ml ali več ΜΤΧ. Razume se, da je takšna funkcionalna definicija odvisna od lahkote, s katero organizem proizvaja DHFR protein z nizko afiniteto za vezavo na ΜΤΧ, kot tudi od samega proteina. Vendar pa, kot se uporablja v kontekstu predloženega izuma, ni potrebno, da bi takšno ravnotežje med tema dvema mehanizmoma povzročalo zmedo. Izum funkcionira v zvezi z dajanjem sposobnosti preživetja proti tem nivojem ΜΤΧ in ni posledica tega, ali je sposobnost za to dana s povečano ekspresijo poleg notranje narave proizvedenega DHFR. Primeren DHFR protein, ki sodi v to definicijo, je opisan v U.S.DHFR with low affinity for binding to ΜΤΧ has a functional definition. It is a DHFR protein that, when generated in cells, will allow rast sensitive cells to grow in a substrate containing 0.2 gg / ml or more ΜΤΧ. Such a functional definition is understood to depend on the ease with which the organism produces a low-affinity DHFR protein for binding to ΜΤΧ as well as the protein itself. However, as used in the context of the present invention, such a balance between these two mechanisms need not be confused. The invention functions in relation to imparting viability against these levels ΜΤΧ and is not a consequence of whether the ability to do so is enhanced by expression in addition to the intrinsic nature of the DHFR produced. A suitable DHFR protein that falls within this definition is described in U.S. Pat.
prijavi serijska št. 459,151, kije bila vložena 19. januarja 1983 in ki je tu vključena kot referenca.report serial no. No. 459,151, filed Jan. 19, 1983, and incorporated herein by reference.
Vektor za ekspresijo vključuje vektorje, ki lahko izražajo DNA sekvence, ki se v njih nahajajo, kadar so takšne sekvence operativno povezane z drugimi sekvencami, ki lahko vplivajo na njihovo izražanje. Implicira se, čeprav to ni vedno posebej navedeno, da se morajo ti vektorji za ekspresijo replicirati v organizmih gostiteljev, ali kot epizomi ali kot integralni del kromosomne DNA. Jasno je, da jih bo pomanjkanje sposobnosti za repliciranje napravilo operativno neučinkovite. Povzeto, vektorju za ekspresijo se daje funkcionalna definicija in katerakoli DNA sekvenca, ki lahko izvede ekspresijo specifičnega DNA koda, ki se nahaja v njej, je vključena v ta termin, kadar ga uporabimo za specifično sekvenco. V glavnem so vektorji za ekspresijo, ki so uporabni v tehnikah rekombinantne DNA, pogosto v obliki plazmidov, ki se nanašajo na krožne pentlje DNA z dvojno verigo, ki v obliki njihovega vektorja niso vezane s kromosomom.The expression vector includes vectors that can express DNA sequences contained therein when such sequences are operatively linked to other sequences that may affect their expression. It is implicit, although it is not always specifically stated that these expression vectors must replicate in host organisms, either as episodes or as an integral part of chromosomal DNA. Clearly, lack of replication capability will make them operationally ineffective. In summary, the expression vector is given a functional definition and any DNA sequence that can express the specific DNA code contained therein is included in that term when used for a specific sequence. Generally, expression vectors useful in recombinant DNA techniques are often in the form of plasmids that refer to double-stranded circular DNA strands that are unrelated to their chromosome in the form of their vectors.
V predloženi prijavi se plazmid in vektor uporabljata izmenično, ker je plazmid najbolj običajno uporabljena oblika vektorja. Vendar pa je namen izuma, da vključi tudi takšne druge oblike vektorjev, ki imajo ekvivalentne funkcije in ki bodo prepoznavni v tehniki, kije opisana kasneje.In the present application, the plasmid and the vector are used interchangeably because the plasmid is the most commonly used form of the vector. However, it is an object of the invention to also include such other forms of vectors having equivalent functions and which will be recognized in the technique described later.
Rekombinantne celice gostitelja so celice, ki so bile transformirane z vektorji, ki so skonstruirani z uporabo rekombinantnih DNA tehnik. Kot je definiran tukaj, je t-PA proizveden v dobljenih količinah na osnovi te transformacije, raje kot v takšnih manjših količinah ali, kot je bolj običajno, v takšnih količinah, ki so manjše od tistih, ki se dajo detektirati, kot se lahko proizvedejo s pomočjo netransformiranega gostitelja. t-PA proizveden s pomočjo takšnih celic, lahko imenujemo rekombinantni t-PA.Recombinant host cells are cells that have been transformed with vectors that are constructed using recombinant DNA techniques. As defined herein, t-PA is produced in quantities obtained on the basis of this transformation, rather than in such smaller quantities or, as is customary, in quantities less than detectable than can be produced. with the help of an untransformed host. t-PA produced by such cells can be called recombinant t-PA.
B. Kulture celic gostiteljev in vektorjiB. Host cell cultures and vectors
Vektorji in postopki, ki so opisani tukaj, so primerni za uporabo v celicah gostiteljev v širokem intervalu prokariotskih in evkariotskih organizmov.The vectors and procedures described herein are suitable for use in host cells over a wide range of prokaryotic and eukaryotic organisms.
Seveda so v glavnem želeni prokarioti za kloniranje DNA sekvenc v konstrukciji vektorjev, ki so uporabni v izumu. Npr., še posebno je koristen E. coli K12 soj 294 (ATCC No. 31446). Drugi mikrobni soji, kijih lahko uporabljamo, vključujejo E. coli soje, kot so E. coli B in E. coli Χ17776 (ATCC No. 31537). Ti primeri so seveda namenjeni kot ilustrativni in ne kot omejujoči.Of course, prokaryotes for cloning DNA sequences in the construction of the vectors useful in the invention are generally desired. For example, the E. coli K12 strain 294 (ATCC No. 31446) is particularly useful. Other microbial strains that can be used include E. coli soybeans, such as E. coli B and E. coli Χ17776 (ATCC No. 31537). These examples are, of course, intended to be illustrative and not limiting.
Za ekspresijo pa lahko prav tako uporabljamo prokariote. Uporabljamo lahko prej omenjene soje, kot tudi E. coli W3110 (F, lambda', prototrofni, ATCC No. 27325), takšni bacili kot je Bacillus subtilis, in druge enterobakterije, kot so Salmonella tvphimurium ali Serratia marcesans in razne pseudomonas vrste.Prokaryotes may also be used for expression. The aforementioned soybeans can be used as well as E. coli W3110 (F, lambda ', prototrophic, ATCC No. 27325), such bacilli as Bacillus subtilis, and other enterobacteria such as Salmonella tvphimurium or Serratia marcesans and various pseudomonas species.
V glavnem se v zvezi s temi gostitelji uporabljajo plazmidni vektorji, ki vsebujejo replikon in kontrolne sekvence, ki so izvedene iz vrst, ki so kompatibilne s celicami gostitelja. Vektor običajno nosi mesto za replikacijo, kot tudi markirne sekvence, ki lahko zagotovijo fenotipsko selekcijo v transformiranih celicah. Npr. E. coli se tipično transformira z uporabo pBR 322, plazmida, ki je izveden iz E. coli vrst (Bolivar, et al. Gene 2: 95 (1977)). pBR322 vsebuje gene za odpornost na ampicilin in tetraciklin in tako zagotavlja prosta sredstva za identifikacijo transformiranih celic. pBR322 plazmid ali drugi mikrobni plazmid mora prav tako vsebovati, ali mora biti modificiran da to vsebuje, promotorje, ki se jih da uporabiti s pomočjo mikrobnega organizma za ekspresijo njegovih lastnih proteinov. Promotorji, ki se najbolj običajno uporabljajo v konstrukciji rekombinantne DNA, vključujejo promotorske sisteme za /3-laktamazo (penicilanazo) in laktozo (Chang et al. Nature, 275: 615 (1978); Itakura, et al, Science, 198: 1056 (1977); (Goeddel, et al Nature 281: 544 (1979)) in promotorski sistem za triptofan (trp) (Goeddel, et al, Nucleic Acids Res., 8: 4057 (1980); EPO Appl. Publ. No. 0036776). Čeprav so ti najbolj običajno uporabljani, pa so bili odkriti in uporabljani drugi mikrobni promotorji, in objavljeni so tudi detajli, ki se nanašajo na njihove nukleotidne sekvence, kar izkušenemu raziskovalcu omogoča, da jih operativno poveže s plazmidnimi vektorji (Siebenlist, et al. Celi 20: 269 (1980)). Pole prokariotov se lahko prav tako uporabljajo tudi evkariotski mikrobi, kot so kulture kvasa. Med evkariotskimi organizmi se najpogosteje uporabljajo Saccharomvces cerevisiae ali navaden pekarski kvas, čeprav je dostopno tudi večje število drugih sojev. Za ekspresijo v Saccharomvces se običajno uporablja plazmid YRp7, npr. (Stinchcomb, et al, Nature, 282: 39 (1979), Kingsman et al, Gene, 7: 141 (1979); Tschemper, et al, Gene, 10: 157 (1980)). Ta plazmid že vsebuje trpi gen, ki zagotavlja selekcijski marker za mutantni soj kvasa, ki nima sposobnosti rasti v triptofanu, npr. ATCC No. 44076 ali PEP4-1 (Jones, Genetics, 85: 12 (1977)). Prisotnost trpi poškodbe kot karakteristike genoma celice gostitelja, kvasa tedaj zagotavlja učinkovito okolico za detekcijo transformiranja s pomočjo rasti v odsotnosti triptofana.Generally, plasmid vectors containing replicon and control sequences derived from species compatible with host cells are used in connection with these hosts. The vector typically carries a replication site as well as marker sequences that can provide phenotypic selection in transformed cells. E.g. E. coli is typically transformed using pBR 322, a plasmid derived from E. coli species (Bolivar, et al. Gene 2: 95 (1977)). pBR322 contains genes for resistance to ampicillin and tetracycline, thus providing free agents for the identification of transformed cells. The pBR322 plasmid or other microbial plasmid must also contain, or be modified to contain, promoters that can be used by the microbial organism to express its own proteins. Promoters most commonly used in the construction of recombinant DNA include promoter systems for β-lactamase (penicillanase) and lactose (Chang et al. Nature, 275: 615 (1978); Itakura, et al., Science, 198: 1056 ( 1977); (Goeddel, et al Nature 281: 544 (1979)) and the tryptophan (trp) promoter system (Goeddel, et al. Nucleic Acids Res. 8: 4057 (1980); EPO Appl. Publ. No. 0036776 Although most commonly used, other microbial promoters have been discovered and used, and details pertaining to their nucleotide sequences have been published, allowing an experienced researcher to operatively link them to plasmid vectors (Siebenlist, et al.) Ecclesiastes 20: 269 (1980) .Eurokiotic microbes such as yeast cultures may also be used for polio prokaryotes, most commonly used in eukaryotic organisms are Saccharomvces cerevisiae or common baker's yeast, although a large number of other strains are also available. in Saccha romvces commonly used plasmid YRp7, e.g. (Stinchcomb, et al, Nature, 282: 39 (1979); Kingsman et al, Gene, 7: 141 (1979); Tschemper, et al, Gene, 10: 157 (1980)). This plasmid already contains a trump gene that provides a selection marker for a mutant yeast strain lacking the ability to grow in tryptophan, e.g. ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85: 12 (1977)). Presence suffers damage as a characteristic of the host cell genome, the yeast then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
Primerne sekvence za promocijo v vektorjih kvasa vključujejo promotorje zaSuitable sequences for promotion in yeast vectors include promoters for
3-fosfoglicerad kinazo (Hitzeman, et al., J. Biol. Chem., 255: 2073 (1980)) ali druge glikolitske sisteme (Hess, et al., J. Adv. Enzvme Reg.. 7: 149 (1968); Holland et al., Biochemistrv, 17: 4900 (1978)), kot so enolaza, gliceraldehid-3-fosfat dehidrogenaza, heksokinaza, piruvat dekarboksilaza, fosfofruktokinaza, glukoza-6-fosfat izomeraza, 3-fosfoglicerad mutaza, piruvat kinaza, triosefosfat izomeraza, fosfoglukoza izomeraza in glukokinaza. Ob konstrukciji primernih ekspresijskih plazmidov se terminalne sekvence, ki spremljajo te gene, prav tako ligirajo v 3’ nosilec za ekspresijo želene sekvence, ki se mora izraziti za zagotovitev poliadeniliranja mRNA in terminacije. Drugi promotorji, ki imajo dodatno sposobnost kontrolirane transkripcije s pomočjo pogoja rasti, so promotorske regije za alkoholdehidrogenazo 2, izocitohrom C, kislo fosfatazo, degradativne encime, ki spremljajo metabolizem dušika, in prej omenjeno gliceraldehid-3-fosfat dehidrogenazo in encime, ki so odgovorni za izkoriščanje maltoze in galaktoze (Holland, ibid.). Primeren je katerikoli plazmidni vektor, ki vsebuje promotor, ki je kompatibilen s kvasom, izvor replikacije in terminalne sekvence.3-phosphoglycerad kinase (Hitzeman, et al., J. Biol. Chem., 255: 2073 (1980)) or other glycolytic systems (Hess, et al., J. Adv. Enzymes Reg. 7: 149 (1968) Holland et al., Biochemistry, 17: 4900 (1978)) such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerad mutase, pyruvate ketosephosphate, pyruvate ketosephosphate isomerase, phosphoglucose isomerase and glucokinase. In constructing suitable expression plasmids, the terminal sequences accompanying these genes are also ligated into the 3 'carrier to express the desired sequence, which must be expressed to provide polyadenylation of mRNA and termination. Other promoters that have the additional ability of controlled transcription by growth condition are the promoter regions for alcoholdehydrogenase 2, isocitochrome C, acid phosphatase, degradative enzymes that accompany nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase and the enzymes responsible for the exploitation of maltose and galactose (Holland, ibid.). Any plasmid vector containing a yeast compatible promoter, replication origin and terminal sequences is suitable.
Poleg mikroorganizmov, se lahko kot gostitelji uporabljajo prav tako kulture celic, ki so izvedene iz večceličnih organizmov. V principu funkcionira katerakoli takšna celična kultura, ne glede na to ali je od vretenčarjev ali nevretenčarjev. Seveda pa je največje zanimanje za celice vretenčarjev in propagacija celic vretenčarjev v kulturi (tkivni kulturi), je v zadnjih letih postala rutinski postopek /Tissue Culture Academic Press, Kruse and Patterson, editors (1973)/. Primeri takšnih uporabnih celičnih linij gostiteljev so VERO in HeLa celice, celične linije jajčnikov kitajskega hrčka (CHO), in W138, BHK, COS-7 in MDCK celične linije. Ekspresijski vektorji za takšne celice običajno vključujejo (po potrebi) izvor replikacije, promotor, ki je lociran pred genom, ki ga je potrebno izraziti, skupaj s katerimikoli mesti potrebnimi za vezavo ribosoma, mesti za rezanje RNA, mestom za poliadeniliranje in transkripcijskimi terminalnimi sekvencami.In addition to microorganisms, cell cultures derived from multicellular organisms may also be used as hosts. In principle, any such cell culture functions, whether it is from vertebrates or invertebrates. Of course, the greatest interest in vertebrate cells and the propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (Tissue Culture Academic Press, Kruse and Patterson, editors (1973)). Examples of such useful host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, and W138, BHK, COS-7 and MDCK cell lines. Expression vectors for such cells typically include (as appropriate) the origin of replication, a promoter located in front of the gene to be expressed, along with any ribosome binding sites, RNA slicing sites, polyadenylation sites, and transcriptional terminal sequences.
Za uporabo v celicah sesalcev, se kontrolne funkcije na vektorjih za ekspresijo pogosto zagotavljajo s pomočjo virusnega materiala. Npr., promotorji, ki se običajno uporabljajo, so izvedeni iz polioma, Adenovirusa 2 in najpogosteje iz Simian Virusa 40 (SV40). Prejšnji in kasnejši promotorji SV40 virusa so še posebej koristni zaradi tega, ker se jih da pridobivati iz virusa kot fragment, ki prav tako vsebuje SV40 virusni izvor replikacije (Fiers, et al, Nature, 273: 113 (1978), vključen tu kot referenca). Prav tako se lahko uporabljajo manjši in večji SV40 fragmenti, pod pogojem, daje vključena sekvenca s približno 250 bp, ki se razteza od Hind III mesta proti Bgl I mestu, ki se nahaja v virusnem izvoru replikacije. Nadalje je prav tako možno, in pogosto želeno, da se uporablja promotorske ali kontrolne sekvence, ki običajno spremljajo želeno sekvenco gena, pod pogojem, da so takšne kontrolne sekvence kompatibilne s celičnimi sistemi gostiteljev.For use in mammalian cells, control functions on expression vectors are often provided by viral material. For example, promoters commonly used are derived from polio, Adenovirus 2, and most commonly from Simian Virus 40 (SV40). Previous and later SV40 promoters of the virus are particularly useful because they can be obtained from the virus as a fragment also containing the SV40 viral replication origin (Fiers, et al, Nature, 273: 113 (1978), incorporated herein by reference ). Smaller and larger SV40 fragments may also be used, provided that a sequence of about 250 bp extending from the Hind III site to the Bgl I site located in the viral replication source is included. Further, it is also possible, and often desirable, to use promoter or control sequences that typically accompany the desired gene sequence, provided that such control sequences are compatible with host cell systems.
Izvor replikacije lahko zagotovimo ali s konstrukcijo vektorja tako, da vključimo nek eksogeni izvor, kot je tisti, ki se izvede iz SV40 ali drugega virusnega (npr., Polioma, Adeno, VSV, BPV, itd.) izvora, ali pa ga lahko zagotovimo s pomočjo mehanizma za kromosomno replikacijo celic gostitelja. Če je vektor integriran v kromosom celice gostitelja, je slednji pogosto zadosten.The origin of replication can be provided either by constructing a vector to include an exogenous source, such as one derived from SV40 or another viral (e.g., polio, Adeno, VSV, BPV, etc.) source, or can be provided. through a mechanism for chromosomal replication of host cells. If the vector is integrated into the host cell chromosome, the latter is often sufficient.
Ob izboru želenih celic gostiteljev za transfekcijo s pomočjo vektorja v smislu izuma, ki obsega DNA sekvence, ki kodirajo tako t-PA kot DHFR protein, je ustrezno da izberemo gostitelja glede na tip uporabljenega DHFR proteina. Če uporabljamo DHFR protein divjega tipa, je želeno, da izberemo celice gostitelja, ki so deficitne z DHFR, tako da omogočimo uporabo sekvence za kodiranje DHFR, kot markerja za uspešno transfekcijo v selektivni podlagi, ki nima hipoksantina, glicina in timidina. Ustrezna celica gostitelja je v tem primeru celična linija jajčnika kitajskega hrčka (CHO), kije deficitna z DHFR aktivnostjo, kije napravljena in proparigrana, kot je opisano v Utlaub and Chasin, Proč. Natl. Acad. Sci. (USA) 77: 4216 (1980), kije tu vključeno kot referenca. Po drugi strani pa, če DHFR protein z nizko afiniteto za ΜΤΧ uporabljamo kot kontrolno sekvenco, ni potrebno uporabljati DHFR deficitnih celic. Ker je mutantni DHFR rezistenten proti metotreksatu, lahko uporabljamo podlage, ki vsebujejo ΜΤΧ kot sredstvo za selekcijo, pod pogojem, da same celice gostitelja niso občutljive na metotreksat. Izgleda pa, da so mnoge ekvariotske celice, ki so sposobne absorpcije ΜΤΧ, občutljive na metotreksat. Ena takšna celična linija je CHO linija, CHO-K1ATCC št. CCL 61.When selecting the desired host cells for vector transfection according to the invention comprising DNA sequences encoding both the t-PA and the DHFR protein, it is appropriate to select the host according to the type of DHFR protein used. When using wild-type DHFR protein, it is desirable to select DHFR-deficient host cells by enabling the use of the DHFR encoding sequence as a marker for successful transfection in a selective basis lacking hypoxanthine, glycine and thymidine. A suitable host cell in this case is a Chinese hamster ovary (CHO) cell line defective by DHFR activity, made and paraphrased, as described in Utlaub and Chasin, Away. Natl. Acad. Sci. (USA) 77: 4216 (1980), which is incorporated herein by reference. On the other hand, if DHFR protein with low affinity for ΜΤΧ is used as a control sequence, it is not necessary to use DHFR deficit cells. Because the mutant DHFR is methotrexate resistant, substrates containing ΜΤΧ can be used as a selection agent, provided that the host cells themselves are not sensitive to methotrexate. However, many EQ cells capable of absorption appear to be sensitive to methotrexate. One such cell line is the CHO line, CHO-K1ATCC no. CCL 61.
Primeri, ki so prikazani nižje, opisujejo uporabo E. coli z uporabo lac i promotorskega sistema in uporabo CHO celic kot celic gostitelja in uporabo ekspresijskih vektorjev, ki vključujejo SV40 izvor replikacije kot promotor. Seveda je znotraj znanja strokovnjakov, da uporabljajo analogne tehnike za konstrukcijo ekspresijskih vektorjev za ekspresijo želene proteinske sekvence v alternativnih prokariotskih ali evkariotskih kulturah celic gostiteljev.The examples shown below describe the use of E. coli using the lac i promoter system and the use of CHO cells as host cells and the use of expression vectors that include the SV40 origin of replication as a promoter. Of course, it is within the knowledge of those skilled in the art that they use analog techniques to construct expression vectors for the expression of a desired protein sequence in alternative prokaryotic or eukaryotic cultures of host cells.
Zadovoljujoče količine človeškega t-PA proizvajamo s pomočjo celičnih kultur, kasnejša čiščenja z uporabo sekundarne sekvence za kodiranje pa jačajo celo tudi višje nivoje proizvodnje. Sekundarna sekvenca za kodiranje obsega dehidrofolat reduktazo (DHFR), na katero vplivamo s pomočjo parametra kontroliranega od zunaj, kot je metotreksat, tako da omogočamo kontrolo ekspresije s pomočjo kontrole koncentracije metotreksata (ΜΤΧ).Satisfactory amounts of human t-PA are produced by cell cultures, and subsequent purification using a secondary coding sequence enhances even higher levels of production. The secondary coding sequence comprises dehydrofolate reductase (DHFR), which is influenced by an externally controlled parameter such as methotrexate by allowing expression control by controlling methotrexate concentration (ΜΤΧ).
C. Uporabljani postopkiC. Procedures used
Če se kot celice gostitelja uporabljajo celice brez močnih celičnih membranskih barier, se transfekcija izvaja s postopkom obarjanja s kalcijevim sulfatom, kot je opisano v Graham and Van der Eb, Virologv, 52: 546 (1978). Vendar pa se lahko prav tako uporabljajo tudi drugi postopki za uvajanje DNA v celice, kot s pomočjo nuklearne injekcije ali s pomočjo kondenzacije protoplasta.When cells without strong cell membrane barriers are used as host cells, transfection is performed by a calcium sulfate staining process, as described in Graham and Van der Eb, Virologv, 52: 546 (1978). However, other methods for introducing DNA into cells may also be used, such as by nuclear injection or by condensation of the protoplast.
Če se uporabljajo prokariotske celice ali celice, ki vsebujejo v bistvu celične membranske konstrukcije, je želen postopek za transfekcijo obdelava s kalcijem ob uporabi kalcijevega klorida, kot je opisano v Cohen, F.N. et al Proč. Natl. Acad. Sci. (USA), 69: 2110 (1972).When prokaryotic cells or cells containing substantially cell membrane constructions are used, the desired transfection process is calcium treatment using calcium chloride as described in Cohen, F.N. et al. Natl. Acad. Sci. (USA), 69: 2110 (1972).
Konstrukcijo primernih vektorjev, ki vsebujejo želene sekvence za kodiranje in kontrolo, izvajamo s standardnimi tehnikami ligacije. Izolirani plazmidi ali DNA fragmente cepimo, krojimo in religiramo v želeno obliko, da oblikujemo potrebne plazmide.The construction of suitable vectors containing the desired sequences for encoding and control is performed using standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, cut and ligated to the desired shape to form the required plasmids.
Cepitev izvedemo z obdelavo restrikcijskega encima (ali več encimov) v primernem pufru. V glavnem se uporablja 1 gg plazmida ali DNA fragmenta z okoli 1 enoto encima v okoli 20 gl puferske raztopine. (Ustrezne količine pufra in substrata za določene restrikcijske encime so specificirane s strani proizvajalca). Operativni čas inkubacije je okoli 1 ura na 37 °C. Po inkubaciji protein ločimo z ekstrakcijo s fenolom in kloroformom, in nukleinsko kislino izoliramo iz vodne frakcije z obarjanjem z etanolom.The cleavage is carried out by treating the restriction enzyme (or several enzymes) in suitable buffer. Mostly, 1gg of plasmid or DNA fragment with about 1 unit of enzyme in about 20g of buffer solution is used. (Appropriate amounts of buffer and substrate for specific restriction enzymes are specified by the manufacturer). The incubation operative time is about 1 hour at 37 ° C. After incubation, the protein is separated by extraction with phenol and chloroform, and the nucleic acid is isolated from the aqueous fraction by ethanol precipitation.
Če so potrebni topi konci, preparat tretiramo 15 minut na 15° z 10 enotami polimeraze I (Klenow), ekstrahiramo s fenol-kloroformom in oborimo z etanolom.If blunt ends are required, the preparation is treated for 15 minutes at 15 ° with 10 units of polymerase I (Klenow), extracted with phenol-chloroform and precipitated with ethanol.
Ločevanje razcepljenih fragmentov po velikosti izvajamo z uporabo 6 %-nega poliak15 rilamidnega gela, kot je opisano v Goeddel, D., et al, Nucleic Acids Res., 8: 4057 (1980), kije tu vključen kot referenca.Separation of cleaved fragments by size is performed using a 6% polyac15 rilamide gel as described in Goeddel, D., et al, Nucleic Acids Res., 8: 4057 (1980), which is incorporated herein by reference.
Za ligacijo približno ekvimolarih količin želenih komponent, ki so ustrezno skrojene na koncu, da zagotovimo korektno ujemanje, le te obdelamo z okoli 10 enotami T4 DNA ligaze na 0,5 μ-g DNA (kadar kot komponente uporabljamo razcepljene vektorje, je lahko koristno, da preprečimo religacijo razcepljenega vektorja s predhodno obdelavo z bakterijsko alkalno fosfatazo).For the ligation of approximately equimolar amounts of desired components, which are suitably tailored at the end to ensure correct matching, they are treated with about 10 units of T4 DNA ligase per 0.5 μ-g DNA (when splitting vectors are used as components, it may be useful, to prevent split vector religion by pretreatment with bacterial alkaline phosphatase).
Za analizo, za potrditev točne sekvence v skonstruiranih plazmidih, uporabljamo ligacijske zmesi za transformiranje E. coli Ki2 soja 294 (ATCC 31446), in uspešne transformante izberemo na osnovi rezistentnosti na ampicilin ali tetraciklin, kadar je to potrebno. Plazmide iz transformantov pripravimo, analiziramo z restrikcijo in/ali sekvenciranjem s pomočjo postopka po Messing, et al, Nucleic Acids Res., 9:309 (1981) ali iz Maxam, et al, Methods in Enzvmologv, 65:499 (1980).For analysis, to confirm the exact sequence in the engineered plasmids, ligation mixtures were used to transform E. coli Ki2 strain 294 (ATCC 31446), and successful transformants were selected based on ampicillin or tetracycline resistance when needed. Plasmids from transformants are prepared, analyzed by restriction and / or sequencing using the procedure of Messing, et al, Nucleic Acids Res., 9: 309 (1981) or Maxam, et al, Methods and Enzymology, 65: 499 (1980).
Amplifikacijo sekvenc za kodiranje DHFR proteina izvedemo z rastjo celičnih kultur gostitelja v prisotnosti približno 20-500,000 nM koncentracije metotreksata, kompetitivnega inhibitorja DHFR aktivnosti. Seveda je učinkovit interval koncentracije zelo odvisen od narave DHFR gena, proteina in lastnosti gostitelja. Jasno je, da se ne da ugotoviti splošno definiranih zgornjih in spodnjih mej. Prav tako se lahko uporabljajo primerne koncentracije drugih analogov folne kisline ali drugih spojin, ki inhibirajo DHFR. Seveda pa je sam ΜΤΧ primeren, lahko dostopen in učinkovit.Amplification of DHFR protein coding sequences is performed by growth of host cell cultures in the presence of about 20-500,000 nM concentration of methotrexate, a competitive inhibitor of DHFR activity. Of course, the effective concentration interval depends very much on the nature of the DHFR gene, protein, and host properties. Clearly, there is no way to identify the generally defined upper and lower limits. Appropriate concentrations of other folic acid analogues or other DHFR inhibiting compounds may also be used. Of course, it is convenient, easily accessible and efficient.
D. Splošen opis prednostnih izvedbD. General description of preferred embodiments
Aktivator plazminogena človeškega tkiva dobimo po naslednjem protokolu:Human tissue plasminogen activator is obtained according to the following protocol:
1. Človeške celice melanoma, ki proizvajajo aktivator plazminogena tkiva, gojimo, dokler ne stečejo.1. Human melanoma cells producing plasminogen activator tissue are cultured until they mature.
2. Celične granule iz takšnih celičnih kultur ekstrahiramo v prisotnosti inhibitorjev ribonukleaze, tako da izoliramo vso RNA citoplazme.2. Cell granules from such cell cultures are extracted in the presence of ribonuclease inhibitors by isolating all RNA cytoplasm.
3. Oligo-dT kolona izolira celotno informacijsko RNA (mRNA) v poliadenilirani obliki. Takšno mRNA frakcioniramo še po velikosti z elektroforezo na kislina-karbamid agaroznem gelu.3. The oligo-dT column isolates the entire information RNA (mRNA) in polyadenylated form. Such mRNA is further fractionated by acid-urea gel agarose gel electrophoresis.
4. Gelsko frakcijo, ki vsebuje specifično RNA aktivatorja plazminogena tkiva, identificiramo na naslednji način:4. The gel fraction containing the specific plasmidogen activator tissue RNA is identified as follows:
RNA iz vseh frakcij gela prevedemo v in vitro sistemu retikulocitnega lizata kunca, ki je dopolnjen z mikrosomi pankreasa psa. Dobljene proizvode translacije nato imuno-precipitiramo s specifičnim IgG protitelesom aktivatorja plazminogena človeškega tkiva.RNA from all gel fractions is translated into an in vitro rabbit reticulocyte lysate system supplemented with dog pancreatic microsomes. The resulting translation products are then immuno-precipitated with a specific human tissue plasminogen activator IgG antibody.
5. Ustrezno RNA (21 do 24S) prevedemo v ustrezno komplementarno enoverižno DNA (cDNA), iz katere se proizvaja dvojnoverižna cDNA. Po poli-dC krojenju jo vstavimo v vektor, kot je plazmid, ki nosi en ali več fenotipskih markerjev.5. The corresponding RNA (21 to 24S) is converted to the corresponding complementary single stranded DNA (cDNA) from which the double stranded cDNA is produced. After poly-dC tailoring, it is inserted into a vector such as a plasmid carrying one or more phenotypic markers.
6. Tako pripravljene vektorje uporabljamo za transformiranje bakterijskih celic, tako da zagotovimo knjižnico klonirane DNA. Napravimo skupino radiomarkiranih sintetičnih deoksioligonuleotidov, ki so komplementarni s kodoni za znane aminokislinske sekvence v t-PA, kot je npr. skupina 8 14merov, 5’-dTC(Q)CA(g)TA(^)TCCCA-3’ komplementaren s sekvencami, ki kodirajo znano - glej nižje - aminokislinsko sekvenco : triptofan glutaminska kislina - tirozin - cistein - asparaginska kislina (W-E-Y-C-D) in se uporablja za sondiranje biblioteke kolonij.6. The vectors thus prepared are used to transform bacterial cells by providing a library of cloned DNA. We make a group of radiomarked synthetic deoxyoligonuleotides that are complementary to codons for known amino acid sequences in t-PA, such as e.g. group 8 14-mer, 5'-dTC (Q) CA (g) TA (^) TCCCA-3 'complementary to sequences encoding known - see below - amino acid sequence: tryptophan glutamic acid - tyrosine - cysteine - aspartic acid (WEYCD) and is used to probe a library of colonies.
7. Iz pozitivnih cDNA klonov izoliramo plazmidno DNA in jo sekvenciramo.7. Plasmid DNA is isolated from the positive cDNA clones and sequenced.
8. Sekvencirano DNA, ki kodira t-PA nato krojimo in vitro za vstavljanje v ustrezni nosilec za ekspresijo, ki ga uporabimo za transformiranje ustrezne celice gostitelja, kateri dovolimo, da raste v kulturi in da proizvede želeni aktivator plazminogena človeškega tkiva.8. The sequenced DNA encoding t-PA is then digested in vitro for insertion into a suitable expression carrier, which is used to transform a suitable host cell that is allowed to grow in culture and produce the desired plasminogen activator of human tissue.
9. Tako proizveden aktivator plazminogena človeškega tkiva ima približno 251 amino kislin v svojem encimatskem serin proteaznem delu in kringle, ki vsebuje sekvenco navzgor od njega, za katero se trenutno verjame, da je odgovorna za vezavo fibrina. Zreli protein plus njegova signalna presekvenca imata skupaj 562 aminokislin.9. The human tissue plasminogen activator thus produced has approximately 251 amino acids in its enzymatic serine protease moiety and a kringle containing an upstream sequence which is currently believed to be responsible for fibrin binding. The mature protein plus its signal sequence has a total of 562 amino acids.
Predhodni postopek je sam po sebi uspešen za proizvodnjo čistega t-PA. Postopki v smislu izuma, ki se uporabljajo za dopolnilno sekvenco za kodiranje, ki je občutljiva na metotreksat, omogočajo proizvodnjo v celičnih tkivnih kulturah antigensko aktiv17 nega t-PA proteina v večjih količinah od 0,1 pg na celico na dan. S primerno uporabo pogojev za amplifikacijo lahko dobimo večje količine od 20 pg na celico na dan. V spremenjenih pogojih lahko dosežemo nivoje ekspresije gena, ki vodijo do proizvodnje več kot 9 x 10‘6 Plough enot na celico na dan ali, s primerno amplifikacijo, več kot 18 x 10-4 Plough enot t-PA aktivnosti.The pre-process is itself successful in producing pure t-PA. The methods of the invention used for the methotrexate-sensitive complementary coding sequence allow the production of antigenically active t-PA protein in cell cultures of greater than 0.1 pg per cell per day. Appropriate amplification conditions can yield greater than 20 pg per cell per day. Under the changed conditions, gene expression levels leading to the production of more than 9 x 10 ' 6 Plow units per cell per day or, with appropriate amplification, more than 18 x 10 -4 Plow units of t-PA activity can be achieved.
V tem vidiku izuma uporabljamo prednost metotreksata kot zdravila, ki, čeprav je normalno usoden za celice, ki ga lahko uporabljajo, omogoča celicam, da rastejo v prisotnosti kontroliranih nivojev ΜΤΧ z amplifikacijo gena ki kodira sekvenco za kodiranje DHFR (Schimke, Robert T. et al, Science, 202: 1051 (1978); Biedler, J.L. et al, Cancer Res. 32:153 (1972); Chang, S.E., et al, Celi, 7: 391 (1976)).In this aspect of the invention, we use the advantage of methotrexate as a drug that, although normally fatal to cells that can use it, allows cells to grow in the presence of controlled levels ΜΤΧ by amplifying a gene encoding a DHFR coding sequence (Schimke, Robert T. et al, Science 202: 1051 (1978); Biedler, JL et al, Cancer Res. 32: 153 (1972); Chang, SE, et al, Celi, 7: 391 (1976).
Za ta vidik izuma je pomemben prikaz, da lahko amplifikacija gena za DHFR izzove amplifikacijo spremljajočih sekvenc, ki kodirajo druge proteine. Izgleda da je to primer, kadar je spremljajoči protein površinski antigen hepatitisa B (HBsAg) (Christman, J Et al, Proč. Natl. Acad. Sci., 79: 1815 (1982): E. coli protein XGPRT (Tingold, Gordon, et al, J. Moleč, and Appl. Gen., 1: 165 (1981)); in endogena sekvenca kombinacije plazmidov DHFR/SV40 (Kaufman, R.F. et al. J. Moleč. Biol., 159: 601 (1982)).For this aspect of the invention, it is an important demonstration that amplification of the DHFR gene can induce amplification of the accompanying sequences encoding other proteins. This seems to be the case where the accompanying protein is the hepatitis B surface antigen (HBsAg) (Christman, J Et al, Proc. Nat. Acad. Sci., 79: 1815 (1982): E. coli protein XGPRT (Tingold, Gordon. et al, J. Molec, and Appl. Gen. 1: 165 (1981); and the endogenous sequence of the DHFR / SV40 plasmid combination (Kaufman, RF et al. J. Molec. Biol., 159: 601 (1982)) .
Drugi mehanizmi za zagotavljanje rezistentnosti na metotreksat vključujejo zmanjševanje afinitete za vezavo DHFR proteina, tako da je manj občutljiv na metotreksat (Flintoff, W.F. et al Šomat. Celi Genet., 2: 245 (1976) toda tudi v tem primeru izgleda, da se pojavlja amplifikacija.Other mechanisms for providing methotrexate resistance include reducing the affinity for binding of DHFR protein so that it is less sensitive to methotrexate (Flintoff, WF et al. Somat. Full Genet. 2: 245 (1976), but even in this case it appears to occur amplification.
Izgleda, da se geni tako za DHFR divjega tipa, kot za DHFR, ki je rezistenten proti ΜΤΧ, na osnovi njihove zmanjšane kapacitete za vezavo, amplificirajo ob prisotnosti ΜΤΧ. Zaradi tega se v principu ta vidik izuma nanaša na uporabo vpliva amplifikacije DHFR sekvence na sekvence za kodiranje spremljajočega proteina, kar omogoča povečane nivoje ekspresije t-PA sekvence v prisotnosti ΜΤΧ, ali na osnovi predhodnega tretiranja transformiranih celic z ΜΤΧ.Genes for both wild-type DHFR and ΜΤΧ-resistant DHFR appear to be amplified in the presence of ΜΤΧ, based on their reduced binding capacity. Therefore, in principle, this aspect of the invention relates to the use of the effect of DHFR sequence amplification on sequences to encode a flanking protein, allowing increased levels of expression of the t-PA sequence in the presence of ΜΤΧ, or based on the pre-treatment of transformed cells with ΜΤΧ.
E. PrimeriE. Examples
Namen naslednjih primerov je ilustracija, in ne omejevanje izuma. Kot celične kulture gostitelja smo v tukajšnjih primerih uporabili kulture gostitelja E. coli in CHO celično linijo, ki je primerna za sekvenco za kodiranje DHFR tip proteina, ki jo je potrebno uvesti. Seveda pa so za postopek v smislu izuma primerne prav tako tudi druge evkariotske in prokariotske celice.The following examples are intended to illustrate and not limit the invention. In the case of the host cell cultures, we used E. coli host cultures and a CHO cell line, which is suitable for the DHFR encoding sequence of the type of protein to be introduced. Of course, other eukaryotic and prokaryotic cells are also suitable for the process of the invention.
E.l Ekspresija človeškega t-PA gena v E. coliE.l Expression of the human t-PA gene in E. coli
E.l.A Legende slikE.l.A Legends of Figures
Slika 1 je avtoradiogram 10 odstotnega SDS PAGE ki prikazuje imunoprecipitiran(e) z (35S)-metioninom markiran(e) protein(e) izločen(e) iz človeških melanomov celic v teku 3-urnega pulza in vivo, v prisotnosti (linija b) ali odsotnosti (linija a) proteaznega inhibitorja aprotinina. Po imunoprecipitaciji s specifičnim IgG aktivatorjem plazminogena, opazimo tri trakove (linija a), ki imajo molekulske mase približno 65,000, 63,000 in 35,000. V prisotnosti inhibitorja proteaze pa nismo opazili vrste molekulske mase 35,000. Kadar uporabljamo preimunološki serum (linija c) ni imunoprecipitiranih proizvodov. Migracije in molekulske mase 14C-markiranih proteinskih standardov so prikazane levo od linije a.Figure 1 is an autoradiogram of 10% SDS PAGE showing immunoprecipitated ( 35 S) -methionine-labeled protein (s) secreted from human melanoma cells during a 3-hour pulse in vivo, in the presence of (line b) or the absence (line a) of the protease inhibitor aprotinin. After immunoprecipitation with a specific IgG plasminogen activator, three bands (line a) having molecular weights of about 65,000, 63,000 and 35,000 were observed. In the presence of the protease inhibitor, however, no molecular weight type of 35,000 was observed. There are no immunoprecipitated products when using preimmune serum (line c). The migration and molecular weights of the 14 C-labeled protein standards are shown to the left of line a.
Slika 2 opisuje gelsko elektroforezo imunoprecipitiranih translacijskih proizvodov RNA frakcij, izoliranih iz kislina-karbamid agaroznega gela. Glavni trak je opažen v frakcijskih številih 7 in 8 po translaciji v prisotnosti mikrosoma pankreasa psa in nato imunološkega precipitiranja s specifičnim IgG aktivatorjem plazminogena tkiva. Ta trak ima molekulsko maso približno 63,000 daltonov. Velikost mRNA, ki migrira v frakcije 7 in 8 je približno 21 do 24 S. Položaji ribosomnih RNA markerjev, ki so določeni po elektroforezi na RNA karbamidnem gelu in vizualizirani z obarvanjem z etidijevim bromidom, so markirani nad ustreznimi linijami gela.Figure 2 describes the gel electrophoresis of immunoprecipitated translation products of RNA fractions isolated from an acid-urea agarose gel. The major band is observed in fractional numbers 7 and 8 after translation in the presence of the dog's pancreatic microsome and then immunologically precipitating with a specific plasminogen tissue IgG activator. This strip has a molecular weight of about 63,000 daltons. The size of the mRNA migrating to fractions 7 and 8 is approximately 21 to 24 S. The positions of ribosomal RNA markers, determined by electrophoresis on an RNA carbamide gel and visualized by ethidium bromide staining, are marked above the corresponding gel lines.
Slika 3 prikazuje shemo hibridizacije 96 kolonij z 32P-dTC(G)CA(£)TA(£)TCCCA (W-E-Y-C-D) sondo. 96 posameznih transformantov gojimo na mikrotitrski plošči, replikante nanesemo na ploščice in gojimo na nitrocelulozni membrani. Kolonije nato razcepimo, bakterijsko DNA filtriramo in filtre hibridiziramo s 32P-14-mer (W-E-Y-C-D) sondami. Filtre speremo, da ločimo nehibridizirano sondo in izpostavimo filmu z X-žarki. Ta avtoradiogram predstavlja sheme, dobljene z 48 posameznimi filtri (4600 neodvisnih kolonij). En primer pozitivnega cDNA klona aktivatorja plazminogena tkiva na filtru št. 25 je označen kot E10 (puščica).Figure 3 shows a hybridization scheme of 96 colonies with 32 P-dTC ( G ) CA (£) TA (£) TCCCA (WEYCD) probe. 96 individual transformants were grown on a microtiter plate, replicants were applied to the plates, and grown on a nitrocellulose membrane. The colonies were then cleaved, bacterial DNA was filtered, and the filters were hybridized with 32 P-14 mer (WEYCD) probes. The filters are washed to separate the non-hybridized probe and exposed to the X-ray film. This autoradiogram represents the schemes obtained with 48 individual filters (4600 independent colonies). One example of a positive plasminogen activator clone activator cDNA on filter no. 25 is designated E10 (arrow).
Slika 4 je restrikcijski endonukleazni načrt cDNA aktivatorja plazminogena človeškega tkiva polne dolžine. Število in velikost fragmentov proizvedenih s cepitvijo z restrikcijsko endonukleazo ocenimo z elektroforezo skozi 6 odstotne akrilamidne gele. Položaje mest potrdimo s sekvenco nukleinske kisline (predstavljena na sliki 5). Regija za kodiranje največjega odprtega okvira za odčitavanje je v škatli, zasenčena regija pa predstavlja domnevno sekvenco signalnega polipeptida, medtem ko točkasta regija predstavlja domnevno sekvenco zrelega aktivatorja plazminogena tkiva (527 aminokislin). 5’ konec mRNA je levo, medtem koje 3’ konec desno.Figure 4 is a full-length restriction endonuclease blueprint of the human tissue plasminogen activator cDNA. The number and size of fragments produced by restriction endonuclease cleavage were evaluated by electrophoresis through 6% acrylamide gels. The positions of the sites are confirmed by the nucleic acid sequence (presented in Figure 5). The region for encoding the largest open reading frame is in the box, and the shaded region represents the putative sequence of the signal polypeptide, while the dotted region represents the putative sequence of the mature plasminogen tissue activator (527 amino acids). The 5 'end of the mRNA is to the left, while the 3' end is to the right.
Slike 5A, 5B in 5C ilustrirajo nukleotidno sekvenco in izvedeno aminokislinsko sekvenco cDNA aktivatorja plazminogena človeškega tkiva polne dolžine. 35 aminokislin (-35 do - 1), ki so pred zrelo sekvenco, so opisane kot neprekinjena sekvenca. Domneva se, da ta 35-aminokislinska sekvenca sestoji iz hidrofilne pro sekvence, ki je predhodna serinu (+1) zrelega proteina, z okoli 12 do 15 aminokislinami, kateri je zopet predhoden konvencionalni hidrofobni signal (ki širi 5’ do -35). Ta tip pre-pro strukture na izločenih proteinih je opisan predhodno, npr. s preproalbuminom. Predpostavljajoč to teorijo, se vse molekule izločenega aktivatorja plazminogena tkiva začenjajo s serinom (+1) kot amino- terminusom. Druga teorija je, da je lahko hidrofilna sekvenca vključena s funkcijo aktivatorja plazminogena tkiva na analogen način, kot je tisti opažen s plazminogenom, kjer lahko peptid z 10,000 daltoni ločimo od amino terminalnega dela nativnega plazminogena (Glu-plazminogen, imenovan po aminoterminalnem ostanku), kar vodi do manjše molekule z novim aminoterminusom, označene Lys-plazminogen. Lys-plazminogen se laže aktivira v plazmin, prav tako pa ima tudi večjo afiniteto do fibrina kot Glu-plazminogen. Pokazano je bilo, da plazmin katalizira konverzijo Glu- v Lys-plazminogen. Ta tip kontrolnega mehanizma vodi do mehanizma pozitivne kontrole povratnega odziva. Prve količine tvorjenega plazmina, poleg degradiranja fibrina, prav tako vodijo do generiranja molekul plazminogena, ki se laže aktivirajo in se prav tako bolj čvrsto vežejo na njihov substrat kot nativni plazminogen. Rezultat je hitrejša degradacija plazmina. Hidrofilni peptid aktivatorja plazminogena tkiva bi lahko bil vključen v podoben mehanizem, pri čemer njegova cepitev vodi do modificirane vezave encima na fibrin. V vsakem primeru smatramo sekvenco s 35 aminokislinami za presekvenco zrelega proteina.Figures 5A, 5B and 5C illustrate the nucleotide sequence and derived amino acid sequence of a full-length plasminogen activator of human tissue plasminogen. The 35 amino acids (-35 to - 1) that precede the mature sequence are described as a continuous sequence. This 35-amino acid sequence is thought to consist of a hydrophilic pro sequence preceding the serine (+1) of the mature protein, with about 12 to 15 amino acids, which is again preceded by a conventional hydrophobic signal (which propagates 5 'to -35). This type of pre-pro structure on secreted proteins has been described previously, e.g. with preproalbumin. Assuming this theory, all molecules of the secreted plasminogen tissue activator begin with serine (+1) as the amino terminus. Another theory is that the hydrophilic sequence may be involved with the function of plasminogen tissue activator in an analogous manner, such as that observed with plasminogen, where a 10,000 daltons peptide can be separated from the amino terminal portion of the native plasminogen (Glu-plasminogen named after the amino terminal residue). leading to a smaller molecule with a new aminoterminus labeled Lys-plasminogen. Lys-plasminogen is more readily activated into plasmin and also has a greater affinity for fibrin than Glu-plasminogen. Plasmin have been shown to catalyze the conversion of Glu- to Lys-plasminogen. This type of control mechanism leads to a positive feedback control mechanism. The first amounts of plasmin formed, in addition to fibrin degradation, also lead to the generation of plasminogen molecules that are more readily activated and also more firmly bound to their substrate than native plasminogen. The result is faster plasmin degradation. The plasminogen activator hydrophilic peptide of the tissue could be involved in a similar mechanism, with its cleavage leading to a modified binding of the enzyme to fibrin. In each case, a 35 amino acid sequence is considered to be a sequence of a mature protein.
Slika 6 je shematski diagram konstrukcije plazmida pdeltaRIPA0 za ekspresijo aktivatorja plazminogena tkiva. Izhodni plazmid pPA25E10 najprej digeriramo s Pstl, da izoliramo fragment s 376 bp (baznimi pari), ki ga nato digeriramo kot je prikazano na sliki.6 is a schematic diagram of the construction of the plasmid pdeltaRIPA 0 for expression of a plasminogen activator of tissue. The starting plasmid pPA25E10 was first digested with Pstl to isolate the 376 bp fragment (base pairs), which was then digested as shown.
Slika 7 prikazuje rezultat fibrinskega testa na ploščici na fibrinolitično aktivnost ekspresijskega proizvoda, dobljenega preko pdeltaRIPA0 v transformiranih celicah.Figure 7 shows the result of a plate fibrin assay on the fibrinolytic activity of an expression product obtained via pdeltaRIPA 0 in transformed cells.
Slika 8 je HPLC sled peptidov iz tripsinskega izločka (njihovega aktivatorja plazminogena tkiva) (apsorbanca pri 210 nm). Puščica označuje pik, ki ustreza peptidu, ki smo ga uporabili za konstrukcijo nukleotidne sonde, ki smo jo uporabili z knjižnico kolonij. Ugotovili smo, da ima peptid predstavljen s tem pikom celo sekvenco: L-T-W-E-Y-C-D-V-P-S-C-S-T-C-G-L. Na podoben način smo sekvencirali tudi druge glavne pike in ugotovili smo, da potrjujejo korektno amino sekvenco aktivatorja plazminogena človeškega tkiva. Peptidni kod z eno črko, ki se nanaša na oznake aminokislin, je kot sledi:Figure 8 is an HPLC trace of peptides from trypsin secretion (their plasminogen tissue activator) (absorbance at 210 nm). The arrow indicates the dot corresponding to the peptide used to construct the nucleotide probe used with the colonies library. The peptide represented by this dot was found to have an entire sequence: L-T-W-E-Y-C-D-V-P-S-C-S-T-C-G-L. Similarly, the other major dots were sequenced and were found to confirm the correct amino sequence of the human tissue plasminogen activator. The one-letter peptide code that refers to amino acid labels is as follows:
Slika 9 opisuje konstrukcijo plazmida, ki kodira za direktno ekspresijo zrelega aktivatorja plazminogena človeškega tkiva v E. coli. 50 μ-g plazmida pPA17 digeriramo z Sau3AI HincII in Hhal in elektroforiramo na 6 odstotnem poliakrilamidnem gelu. Regeneriramo približno 0,5 μ-g 55 bp Sau3AI-HhaI fragmenta. Na podoben način približno 3 p,g 263 bp Hhal-Narl fragmenta prečistimo s 80 /xg klona pPA25E10 najprej z izoliranjem 300 bp Pstl-Narl fragmenta in nato digeriranjem tega fragmenta s Hhal. Vsa digeriranja izvajamo na 37 °C 1 uro in reakcijske produkte razstavimo in elektroeluiramo iz 6 odstotnih poliakrilamidnih gelov. Dva označena deoksioligonukleotida 5’ dAATTCATGTCTTATCAAGT (I) in 5’ GATCACTTGATAAGACATG (II) sintetiziramo s pomočjo fosfotriesterskega postopka v trdni fazi (51). 100 pmolov oligonukleotida II fosforiliramo v 30 gl reakciji, ki vsebuje 60 mM Tris (pH 8), 10 mM MgCl2, 15 mM beta-merkaptoetanola in 50 gCi/gama32P/ATP (Amersham 5,000 Ci mmol·1), dodamo 12 enot T4 polinukleotid kinaze in reakcijo pustimo, da teče na 37°C 15 min. Nato dodamo 1 gl 10 mM ATP in 12 enot T4 kinaze in reakcijo pustimo teči še 30 minut. Po fenol/CHCl3 ekstrakciji fosforiliran oligomer II in 5’ hidroksilni oligomer I spojimo z 0,5 μ% eluiranega 55 bp Sau3AI-HhaI fragmenta in 2 μ% 263 bp Hhal-Narl fragmenta in izvedemo obarjanje z etanolom. Te fragmente ligiramo na sobni temperaturi 4 ure v 60 μ\ 20 mM TrisHC1 (pH 7,5), 10 mM MgCl2, 10 mM ditiotreitola, 0,5 mM ATP in 1000 enot T4 DNA ligaze. Zmes 1 uro digeriramo s 48 enotami Nar I, 20 enotami EcoRI in 40 enotami Bgl II (da eliminiramo polimerizacijo preko ligacije kohezivnih Sau3AI terminusov) in elektroforiramo na 6 odstotnem gelu. Produkt s 338 bp (približno 0,1 gg) regeneriramo z elektroeluacijo. Preostale sekvence za kodiranje t-PA (aminokislineFigure 9 describes the construction of a plasmid encoding for direct expression of a mature human tissue plasminogen activator in E. coli. 50 μ-g of plasmid pPA17 was digested with Sau3AI HincII and Hhal and electrophoresed on a 6% polyacrylamide gel. We regenerate approximately 0.5 μ-g of the 55 bp Sau3AI-HhaI fragment. In a similar manner, approximately 3 p, g of the 263 bp Hhal-Narl fragment was purified from 80 / xg of the clone pPA25E10 first by isolating the 300 bp Pstl-Narl fragment and then digesting this fragment with Hhal. All digerations were carried out at 37 ° C for 1 hour and the reaction products were separated and electroeluted from 6 percent polyacrylamide gels. The two labeled deoxyoligonucleotides 5 'dAATTCATGTCTTATCAAGT (I) and 5' GATCACTTGATAAGACATG (II) were synthesized by a solid phase phosphotriester process (51). 100 pmoles of oligonucleotide II are phosphorylated in a 30 gl reaction containing 60 mM Tris (pH 8), 10 mM MgCl 2 , 15 mM beta-mercaptoethanol and 50 gCi / gamma 32 P / ATP (Amersham 5,000 Ci mmol · 1 ), 12 are added of T4 polynucleotide kinase units and the reaction was allowed to run at 37 ° C for 15 min. Then 1 g of 10 mM ATP and 12 units of T4 kinase were added and the reaction was allowed to proceed for another 30 minutes. After phenol / CHCl 3 extraction, phosphorylated oligomer II and 5 'hydroxyl oligomer I were combined with 0.5 μ% eluted 55 bp Sau3AI-HhaI fragment and 2 μ% 263 bp Hhal-Narl fragment and ethanol precipitated. These fragments were ligated at room temperature for 4 hours in 60 μ \ 20 mM TrisHC1 (pH 7.5), 10 mM MgCl 2 , 10 mM dithiothreitol, 0.5 mM ATP, and 1000 units of T4 DNA ligase. The mixture was digested for 1 hour with 48 Nar I units, 20 EcoRI units, and 40 Bgl II units (to eliminate polymerization via ligation of cohesive Sau3AI terminuses) and electrophoresed on a 6% gel. The 338 bp product (approximately 0.1 gg) is regenerated by electroelution. The remaining sequences for the coding of t-PA (amino acids
111-528) izoliramo na 1645 bp fragmentu z digeriranjem plazmida pPA25E10 s Narl in Bglll. Plazmid pLeIFAtrplO3 je derivat plazmida pLeIFA25 (52), v katerem je EcoRI mesto oddaljeno od LeIF A gena odstranjeno 53). Tri gg pLeIFAtrpl03 digeriramo z 20 enotami EcoRI in 20 enotami Bglll 90 minut na 37°C, elektroforiramo na 6 odstotnem poliakrilamidnem gelu in z elektroeluacijo regeneriramo velik vektorski fragment (okoli 4200 bp). Za končno konstrukcijo ligiramo 80 ng EcoRI-Bglll pLeIFAtrpl03 s 100 ng 1645 bp Narl-Bglll fragmenta v 20 ng 338 bp EcoRI-Narl fragmenta 10 ur na sobni temperaturi. To ligacijsko zmes uporabimo za transformiranje E. coli K-12 soja 294. Iz 38 od teh transformantov napravimo plazmidno DNA in jo digeriramo z EcoRI. Od teh plazmidov jih je deset vsebovalo želene 600 bp in 472 bp EcoRI fragmente. Analiza DNA sekvence je potrdila, da ni imel niti eden od teh plazmidov (pt-PAtrpl2) želene nukleotidne sekvence na spojih med trp promotorjem, sintetsko DNA in cDNA.111-528) was isolated on a 1645 bp fragment by digesting plasmid pPA25E10 with Narl and Bglll. Plasmid pLeIFAtrplO3 is a derivative of plasmid pLeIFA25 (52), in which the EcoRI site is removed from the LeIF A gene 53). Three gg of pLeIFAtrpl03 were digested with 20 EcoRI units and 20 Bglll units for 90 minutes at 37 ° C, electrophoresed on a 6% polyacrylamide gel, and a large vector fragment (about 4200 bp) was regenerated by electroelution. For the final construction, 80 ng of EcoRI-Bglll pLeIFAtrpl03 was ligated with 100 ng of a 1645 bp Narl-Bglll fragment in 20 ng 338 bp of EcoRI-Narl fragment for 10 hours at room temperature. This ligation mixture was used to transform E. coli K-12 strain 294. Plasmid DNA was made from 38 of these transformants and digested with EcoRI. Of these plasmids, ten contained the desired 600 bp and 472 bp EcoRI fragments. DNA sequence analysis confirmed that none of these plasmids (pt-PAtrpl2) had the desired nucleotide sequence at the junctions between the trp promoter, synthetic DNA and cDNA.
Slika 10 prikazuje rezultat fibrinskega testa na ploščici na fibrinolitično aktivnost ekspresij skega produkta aktivatorja plazminogena tkiva. Nočno kulturo E. coli W3110/pt-PAtrpl v Luria brozgi, ki vsebuje 5 gg ml·1 tetraciklina razredčimo 1:100 v M9 podlagi, ki vsebuje 0,2 % glukoze, 0,5 % kasamino kislin in 5 gg ml'1 tetraciklina. Celice gojimo na 37°C do Α55θ 0,2 in dodamo indolakrilno kislino do končne koncentracije 20 gg/ml. Vzorce zberemo s centrifugiranjem na Α55θ = 0,5-0,6 (okoli 2xl08 celic ml4) in jih takoj zamrznemo. Granule celic suspendiramo v 6M gvanidin hidrokloridu pri 5xl08 celic/ml, jih sonificiramo 10 sekund, inkubiramo na 24°C 30 min in nato dializiramo 4 ure proti 25 mMTris-HCl pH 8,0, 250 mM NaCl, 0,25 mM EDTA in 0,01 odstotnim Tween 80. Po dializi vzorce centrifugiramo pri 13.000 obratih 2 minuti in 10 gl supernatanta analiziramo na aktivnost aktivatorja plazminogena tkiva. Po postopku iz Granelli-Piperno and Reich (87), ploščico inkubiramo 3,5 ure na 37 °C in izmerimo cone cepljenja. Kvantifikacijo dosežemo s primerjavo z razredčinami prečiščene raztopine aktivatorja plazminogena tkiva melanoma.Figure 10 shows the result of a plate fibrin assay on the fibrinolytic activity of a plasminogen activator tissue expression product. Night culture of E. coli W3110 / pt-PAtrpl in Luria broth containing 5 gg ml · 1 tetracycline was diluted 1: 100 in M9 substrate containing 0.2% glucose, 0.5% casamino acids and 5 gg ml ' 1 tetracycline. Cells were grown at 37 ° C to Α 55θ 0.2 and indolacrylic acid was added to a final concentration of 20 gg / ml. Samples were collected by centrifugation at Α 55θ = 0.5-0.6 (about 2xl0 8 cells ml 4 ) and immediately frozen. The cell granules were suspended in 6M guanidine hydrochloride at 5x10 8 cells / ml, sonicated for 10 seconds, incubated at 24 ° C for 30 min, and then dialyzed for 4 h against 25 mMTris-HCl pH 8.0, 250 mM NaCl, 0.25 mM EDTA and 0.01 percent Tween 80. After dialysis, the samples were centrifuged at 13,000 rpm for 2 minutes and 10 g of the supernatant were analyzed for plasminogen activator activity. Following the procedure from Granelli-Piperno and Reich (87), the plate was incubated for 3.5 hours at 37 ° C and the vaccination zones were measured. Quantification is achieved by comparison with the dilutions of the purified plasminogen activator of melanoma tissue activator.
E.l.B. Izvor mRNA aktivatorja plazminogena tkivaE.l.B. Plasminogen activator activator mRNA source
Uporabili smo celice človeškega melanoma (Bowes). Celice melanoma kultiviramo do vlivnih monoslojev v 100 ml Earles minimalne osnovne podlage, dopolnjene z natrijevim bikarbonatom (0,12 % končna koncentracija), 2 mM glutamina in 10 odstotnem toplotno inaktiviranem serumu fetusa teleta. Da potrdimo, da celice melanoma aktivno proizvajajo aktivator plazminogena človeškega tkiva, celice človeškega melanoma gojimo do vlivanja v mikrotitrski skodeli s 24 vdolbinami. Ali v prisotnosti, ali v odsotnosti 0,33 μΜ inhibitorja proteaze aprotinina, celice speremo enkrat s slano raztopino, ki je napufrana s fosfatnim pufrom in dodamo 0,3 ml serumske podlage, ki je brez metionina. Dodamo 75 gCi(35S)-metionina in celice markiramo na 37°C 3 ure. Ko je 3 urno markiranje končano, podlage ločimo od celic in jih obdelamo s specifičnim IgG aktivatorjem plazminogena človeškega tkiva, ali s pre-imunološkim serumom za imunoprecipitacijo (54). Produkte imunoprecipitacije prikažemo z elektroforezo na 10 odstotnem SDS-akrilamidnem gelu. Košček gela fiksiramo, posušimo in podvržemo fluorografiji.Human melanoma (Bowes) cells were used. Melanoma cells were cultured to cast monolayers in 100 ml Earles minimal base medium supplemented with sodium bicarbonate (0.12% final concentration), 2 mM glutamine and 10% heat-inactivated calf fetal serum. To confirm that melanoma cells are actively produced by a human tissue plasminogen activator, human melanoma cells are cultured until cast in a 24-well microtiter cup. Either in the presence or in the absence of 0.33 μΜ protease inhibitor aprotinin, the cells were washed once with phosphate-buffered saline and 0.3 ml of methionine-free serum was added. 75 gCi ( 35 S) -methionine was added and the cells were labeled at 37 ° C for 3 hours. Once the 3-hour marking is complete, the substrates are separated from the cells and treated with a specific human tissue plasminogen activator IgG, or pre-immunostained immunoprecipitation serum (54). Immunoprecipitation products were displayed by electrophoresis on a 10% SDS-acrylamide gel. The gel was fixed, dried and subjected to fluorography.
E.l.C. Izoliranje informacijske RNA in frakcioniranie po velikostiE.l.C. Isolation of information RNA and fractionation by size
Celotno RNA iz celičnih kultur melanoma ekstrahiramo v bistvu kot je navedeno v Ward et al. 55). Celice granuliramo s centrifugiranjem in jih nato resuspendiramo v 10 mM NaCl, 10 mM Tris-HCl pH 7,5,1,5 mM MgCl2. Celice razklopimo z dodajanjem NP-40 (končna koncentracija 1 odstotek) in jedra granuliramo s centrifugiranjem. Supernatant vsebuje celotno RNA, ki jo nadalje prečistimo z večkratnimi ekstrakcijami s fenolom in kloroformom. Vodno fazo napravimo 0,2 M glede na NaCl in nato celotno RNA oborimo z dodatkom 2 volumnov etanola. Za prečiščevanje mRNA iz celokupnih preparatov RNA uporabimo oligo-D-Tcelulozno kromatografijo (54). Tipični dobitki iz 10 g gojenih celic melanoma so 5 do 10 mg celotne RNA in 50-20 gg Poli (A) plus mRNA.Total RNA from melanoma cell cultures was extracted essentially as reported in Ward et al. 55). Cells were granulated by centrifugation and then resuspended in 10 mM NaCl, 10 mM Tris-HCl pH 7.5,1.5 mM MgCl 2 . Cells were digested by addition of NP-40 (final concentration 1 percent) and the nuclei were granulated by centrifugation. The supernatant contains total RNA which is further purified by repeated extractions with phenol and chloroform. The aqueous phase was made 0.2 M relative to NaCl and then the entire RNA was precipitated by the addition of 2 volumes of ethanol. Oligo-D-Cellulose chromatography (54) is used to purify the mRNA from whole RNA preparations. Typical yields of 10 g of cultured melanoma cells are 5 to 10 mg of total RNA and 50-20 gg of Poly (A) plus mRNA.
Frakcioniranje PoliA+ (200 /tg) (56) izvedemo z elektroforezo skozi karbamidagarozne gele. Košček agaroznega gela (57, 58) je bil sestavljen iz 1,75 % agaroze, 0,025 M natrijevega citrata, pH 3,8 in 6 M karbamida. Elektroforezo izvajamo 7 minut na 25 miliamp in 4 °C. Gel nato frakcioniramo z rezilom britvice. Posamezne rezine raztopimo na 70 °C in ekstrahiramo 2-krat s fenolom in enkrat s kloroformom. Frakcije oborimo z etanolom in nato testiramo s pomočjo in vitro translacije v retikulocitnem lizatnem sistemu kuncev Bethesda Research Lab. (59, 60), ki je dopolnjen s mikrosomi pankreasa psa na naslednji način: translacije izvedemo z uporabo 25 /tCi (35S) metionina in 500 nanogrami vsake rezine gela RNA v končnem volumnu 30 /tl, ki vsebuje 25 mM HEPES, 48,3 mM kalijevega klorida, 10 mM kreatin fosfata, po 50 mM vsake od 19 aminokislin, 1,1 mM magnezijevega klorida,Fractionation of PolyA + (200 / tg) (56) was performed by electrophoresis through carbamidagarase gels. The agarose gel slice (57, 58) consisted of 1.75% agarose, 0.025 M sodium citrate, pH 3.8, and 6 M carbamide. Electrophoresis was performed for 7 minutes at 25 milliamps and 4 ° C. The gel was then fractionated with a razor blade. The individual slices were dissolved at 70 ° C and extracted twice with phenol and once with chloroform. The fractions were precipitated with ethanol and then tested by in vitro translation in the Bethesda Research Lab rabbit reticulocyte lysate system. (59, 60) supplemented with dog pancreatic microsomes as follows: translation is performed using 25 / tCi ( 35 S) methionine and 500 nanograms of each slice of RNA gel in a final volume of 30 / tl containing 25 mM HEPES, 48 , 3 mM potassium chloride, 10 mM creatine phosphate, 50 mM each of 19 amino acids, 1.1 mM magnesium chloride,
16,6 mM EDTA, 0,16 mM ditiotreitola, 8,3 mM hemina, 16,6 /tg/ml kreatin kinaze, 0,33 mM kalcijevega klorida, 0,66 mM EGTA, 23,3 mM natrijevega klorida.16.6 mM EDTA, 0.16 mM dithiothreitol, 8.3 mM hemin, 16.6 / tg / ml creatine kinase, 0.33 mM calcium chloride, 0.66 mM EGTA, 23.3 mM sodium chloride.
Inkubacije izvajamo na 30 °C 90 minut. Mikrosomne membrane pankreasa psa pripravimo iz grobih mikrosomov z uporabo EDTA za odstranitev ribosomov (61) in jih obdelamo z nukleazo, kot je opisano (62) in v translacijski zmesi so bile prisotne v končni koncentraciji 7 Α^θ enot/ml. Translacijske produkte ali imunoprecipitirane translacijske produkte analiziramo z elektroforezo na 10 odstotnih poliakrilamidnih gelih v natrijevem-dodecilsulfatu, kot je opisano prej (63). Neobarvane koščke gela fiksiramo, posušimo in podvržemo fluorografiji (64).Incubations were performed at 30 ° C for 90 minutes. The pancreatic microsomal membranes of the dog are prepared from coarse microsomes using EDTA to remove ribosomes (61) and treated with nuclease as described (62) and were present at a final concentration of 7 Α ^ θ units / ml in the translation mixture. Translational products or immunoprecipitated translational products were analyzed by electrophoresis on 10% polyacrylamide gels in sodium dodecyl sulfate as described previously (63). Unpainted gel pieces were fixed, dried and subjected to fluorography (64).
Dobljene translacijske produkte iz vsake frakcije gela imunoprecipitiramo s specifičnimi IgG aktivatorji plazminogena kunčjega anti-človeškega tkiva. Opazimo en glavni imunoprecipitiran polipeptidni pas v translaciji RNA frakcij številk 7 in 8 (migracija od 21 do 24 S), ki ima molekulsko maso približno 63,000 daltonov. Tega pasu nismo opazili, kadar smo za imunoprecipitacijo uporabili preimunološki IgG, kar kaže na to, da so ti polipeptidi specifični za aktivator plazminogena tkiva.The resulting translational products from each gel fraction were immunoprecipitated with specific IgG activators of rabbit anti-human tissue plasminogen. One major immunoprecipitated polypeptide band is observed in the translation of RNA fractions of numbers 7 and 8 (migration from 21 to 24 S) having a molecular weight of approximately 63,000 daltons. We did not observe this band when preimmunological IgG was used for immunoprecipitation, suggesting that these polypeptides are specific for plasminogen activator of tissues.
E.l.D. Priprava knjižnice kolonij, ki vsebujejo frekvence aktivatoria plazminogena tkiva /tg mRNA frakcionirane na gelu (rezina gela mRNA 7) uporabimo za pripravo dvojnoverižne cDNA s pomočjo standardnih postopkov (52, 65, 66). cDNA frakcioniramo po velikosti na 6 odstotnem poliakrilamidnem gelu. cDNA večjo od 350 baznih parov po dolžini (125 ng) elektroeluiramo. 30 ng cDNA razširimo z deoksi (C) ostanki z uporabo terminalne deoksinukleotidil transferaze (67) in kalimo s 300 ng plazmidne pBR322 (68), ki je bila na podoben način skrojena z deoksi(G) ostanki na Pstl mestu (67). Kaljeno zmes nato transformiramo v E. coli K12 soju 294 (ATCC št. 31446). Dobimo približno 4600 transformantov.E.l.D. The preparation of a colony library containing the activator frequencies of plasminogen tissue / tg mRNA fractionated on gel (slice of mRNA 7) was used to prepare double stranded cDNA using standard procedures (52, 65, 66). cDNA was fractionated by size on a 6% polyacrylamide gel. cDNAs greater than 350 base pairs in length (125 ng) are electroelected. 30 ng of cDNA was expanded with deoxy (C) residues using terminal deoxynucleotidyl transferase (67) and germinated with 300 ng of plasmid pBR322 (68), which was similarly tailored to deoxy (G) residues at the Pst1 site (67). The quenched mixture was then transformed into E. coli K12 strain 294 (ATCC No. 31446). We get about 4,600 transformants.
E.l.E Priprava DNA sondeE.l.E Preparation of DNA probe
Prečiščen aktivator plazminogena človeškega tkiva dobimo po postopku iz opisanih referenc (19,20).Purified human tissue plasminogen activator is obtained by the procedure described in references (19, 20).
Molekulo skeniramo z namenom locirati regije, ki so najprimernejše za pripravo sintetičnih sond, kot sledi:The molecule is scanned to locate the regions most suitable for the preparation of synthetic probes as follows:
Za pripravo proteinov, ki se jih da digerirati s tripsinom, smo izvedli redukcijo in karboksimetiliranje. Vzorec 2 mg aktivatorja plazminogena tkiva smo najprej dializirali proti 0,01 odstotnem Tween 80 preko noči pri sobni temperaturi. Liofilizirani protein smo nato raztopili v 12 ml 0,56 M Tris-HCl pufra (pH 8,6), 8 molarnem glede na karbamid in 5 mM EDTA. Disulfidne vezi smo reducirali z dodatkom 0,1 ml /3-merkapto etanola. To reakcijo smo izvedli pod dušikom v teku 2 ur na 45 °C. Reducirane disulfide smo alkilirali v karboksimetil derivat z dodatkom 1,0 ml 1,4 M jodoocetne kisline v 1 N NaOH. Po 20 minutah na sobni temperaturi smo reakcijo ustavili z dializo proti 0,01 odstotnem Tween 80 v teku 80 ur na sobni temperaturi in izvedli liofilizacijo.Reduction and carboxymethylation were performed to prepare trypsin-digestible proteins. A sample of 2 mg plasminogen activator was first dialyzed against 0.01% Tween 80 overnight at room temperature. The lyophilized protein was then dissolved in 12 ml of 0.56 M Tris-HCl buffer (pH 8.6), 8 molar with respect to the urea and 5 mM EDTA. Disulfide bonds were reduced by the addition of 0.1 ml / 3-mercapto ethanol. This reaction was carried out under nitrogen for 2 hours at 45 ° C. The reduced disulfides were alkylated into a carboxymethyl derivative by the addition of 1.0 ml of 1.4 M iodoacetic acid in 1 N NaOH. After 20 minutes at room temperature, the reaction was stopped by dialysis against 0.01% Tween 80 for 80 hours at room temperature and lyophilization was performed.
Dobljeni liofilizirani karboksimetilirani protein smo ponovno raztopili v 3 ml 0,1 M natrijevega fosfatnega pufra (pH 7,5). Dodali smo tripsin (TP CK) (razmerje 1 proti 50) in digerirali na 37 °C. Po 3 urah, 6 urah in 12 urah smo odvzeli alikvote (0,1 ml). Drugi dodatek tripsina smo izvedli po 12 urah. Po 24 urah smo reakcijo ustavili z zamrzovanjem vzorca, vse dokler se ga je še dalo injicirati na HPLC. Napredek digeriranja smo določili s pomočjo SDS gela na alikvotih. Vsi geli so bili prazni, razen slabega traku na alikvotu po 3 urah. To je nakazalo, da je digeriranje v 24 urah kompletno in da ni ostalo nobenih velikih peptidov.The resulting lyophilized carboxymethylated protein was redissolved in 3 ml of 0.1 M sodium phosphate buffer (pH 7.5). Trypsin (TP CK) (ratio 1 to 50) was added and digested at 37 ° C. Aliquots (0.1 ml) were withdrawn after 3 hours, 6 hours and 12 hours. A second trypsin supplement was performed after 12 hours. After 24 hours, the reaction was stopped by freezing the sample until it could still be injected with HPLC. Digerization progress was determined using an SDS gel on aliquots. All gels were empty except for a bad strip on an aliquot after 3 hours. This suggested that the digestion within 24 hours was complete and that no large peptides remained.
Vzorec (približno 0,5 ml) smo injicirali v Altex C-8 ultrasphere 5 μ kolono z visoko ločljivostjo v dveh delih. Uporabili smo postopni gradient acetonitrila (1 odstoten do 5 odstoten 5 minut, 5 odstoten do 35 odstoten 100 minut, 35-50 odstoten 30 minut). V enem od dveh preparativnih eksperimentov smo eluent spremljali na dveh valovnih dolžinah (210 nm in 280 nm). Razmerje absorpcij na dveh valovnih dolžinah smo uporabili za indiciranje peptidov, ki vsebujejo triptofan.The sample (approximately 0.5 ml) was injected into an Altex C-8 ultrasphere 5 μm high resolution column in two portions. A gradual acetonitrile gradient was used (1 percent to 5 percent for 5 minutes, 5 percent to 35 percent for 100 minutes, 35-50 percent for 30 minutes). In one of the two preparative experiments, the eluent was monitored at two wavelengths (210 nm and 280 nm). The absorption ratio at two wavelengths was used to indicate peptides containing tryptophan.
Najprej smo sekvencirali peptidne pike za katere je bilo najbolj verjetno, da vsebujejo triptofan, ali tiste, za katere smo verjeli, da so uporabni iz drugih razlogov. To je omogočilo določevanje sekvence okoli največjega števila triptofanov. Po sekvenciranju okoli 25 najboljših možnih peptidnih pikov, smo zbrali vse podatke o sekvenci, ki se jih da poravnati, tako da smo dobili preliminarni model primarne strukture aktivatorja plazminogena tkiva. Na osnovi teh podatkov in modelov smo locirali nekoliko možnih sond.We first sequenced the peptide dots that were most likely to contain tryptophan, or those that we believed were useful for other reasons. This allowed the determination of the sequence around the largest number of tryptophan. After sequencing around the top 25 possible peptide peaks, we aligned all sequence-aligned sequence data to obtain a preliminary model of the primary structure of the plasminogen activator tissue. Based on these data and models, several possible probes were located.
E. 1 .F. Identifikacija bakterijskih klonov, ki vsebujejo cDNA sekvence aktivatorja plazminogena tkivaE. 1 .F. Identification of bacterial clones containing plasmidogen activator tissue cDNA sequences
Kolonije smo posamezno inokulirali v jamice mikrotiterskih ploščic, ki vsebujejo LB (93) + 5 μ-g/ml tetraciklina in jih po dodatku DMSO do 7 odstotkov shranili na -20 °C. Dve kopiji knjižnice kolonij smo gojili na nitroceluloznih filtrih in DNA iz vsake kolonije smo fiksirali na filter s pomočjo Grunstein Hogness postopka (69).The colonies were individually inoculated into wells of microtiter plates containing LB (93) + 5 μg / ml tetracycline and stored at -20 ° C after the addition of DMSO. Two copies of the colony library were grown on nitrocellulose filters and DNA from each colony was fixed to the filter using the Grunstein Hogness procedure (69).
32P-markirano - TC(^)CA(q)TA(^)TCCCA sondo smo pripravili (iz sintetičnega oligomera) (W-E-Y-C-D) iz 14-mer skupin, kot je opisano zgoraj. Filtre, ki vsebujejo 4600 transformantov, smo prehibridizirali 2 uri na sobni temperaturi v 50 mm natrijevega fosfata pH 6,8,5xSSC (80), 150 jttg/m DNA sonificirane sperme lososa, 5x Denhardt-ove raztopine (85), 10 odstotkov formamida in nato smo jih hibridizirali z 50x 106 štetji v minuti markirane sonde v isti raztopini. Po nočni inkubaciji na sobni temperaturi, smo filtre na sobni temperaturi sprali 3-krat v 6x SSC, 0,1 odstotnem SDS v teku 30 minut, enkrat z 2x SDS in jih nato izpostavili na Kodak XR-5 filmu za X-žarke Dupont Lightening Plus ojačevalnim sitom v teku 16 ur. 32 P-labeled - TC (^) CA (q) TA (^) TCCCA probe was prepared (from synthetic oligomer) (WEYCD) from 14 mer groups as described above. Filters containing 4,600 transformants were hybridized for 2 hours at room temperature in 50 mm sodium phosphate pH 6,8,5xSSC (80), 150 jttg / m DNA of sonicated salmon sperm, 5x Denhardt solution (85), 10 percent formamide and then hybridized with 50x 10 6 counts per minute of the labeled probe in the same solution. After incubation at room temperature overnight, the filters at room temperature were washed 3 times in 6x SSC, 0.1% SDS for 30 minutes, once with 2x SDS and then exposed on a Kodak XR-5 film for Dupont Lightening X-rays Plus a reinforcement sieve for 16 hours.
Plazmidno DNA izoliramo s hitrim postopkom (71) iz vseh kolonij, ki kažejo pozitivno reakcijo hibridizacije. cDNA vključke iz teh klonov nato sekvenciramo po subkloniranju fragmentov v M13 vektor mp 7 (73) in s pomočjo Maxam Gilbert kemijskega postopka (74). Slika 3 prikazuje filter št. 25, ki prikazuje shemo hibridizacije pozitivnega klona aktivatorja plazminogena tkiva. Prikazano je, da cDNA vključek v klonu 25E10 DNA, ki kodira aktivator plazminogena tkiva, in sicer s primerjavo njegove aminokislinske sekvence s peptidno sekvenco (glej zgoraj), ki je dobljena iz prečiščenega aktivatorja plazminogena tkiva in s pomočjo njegovega proizvoda ekspresije, proizvedenega v E. coli, kot je opisano natančneje spodaj. cDNA del klona 25E10 (plazmid pPA25E10) je imel 2304 baznih parov po dolžini z najdaljšim odprtim okvirom za odčitavanje, ki kodira protein s 508 aminokislinami (mol. masa. 56,756) in ki vsebuje 772 bp 3’ netranslantirano regijo. Ta cDNA klon ni imel N-terminalne sekvence za kodiranje.Plasmid DNA was isolated by rapid procedure (71) from all colonies showing a positive hybridization reaction. The cDNA inserts from these clones are then sequenced after subcloning the fragments into the M13 vector mp 7 (73) and using the Maxam Gilbert chemical process (74). Figure 3 shows filter no. 25 showing a hybridization scheme of a plasminogen activator positive clone of a tissue. It is shown that the cDNA insert in clone 25E10 DNA encoding a plasminogen activator by comparing its amino acid sequence with a peptide sequence (see above) obtained from a purified plasminogen activator and using its expression product produced in E . coli as described below. The cDNA portion of clone 25E10 (plasmid pPA25E10) had 2304 base pairs in length with the longest open reading frame encoding a 508 amino acid protein (mol. 56.756) containing a 772 bp 3 'untranslated region. This cDNA clone had no N-terminal coding sequence.
E.l.G. Direktna ekspresija klona aktivatoria plazminogena človeškega tkiva vE.l.G. Direct expression of human tissue plasminogen activator clone in
E. coliE. coli
Z ozirom na sliko 6, smo digerirali 50 /xg pPA25E10 (zgoraj) s Pati in 376 bp fragment smo izolirali z elektroforezo na 6 odstotnem poliakrilamidnem gelu. Približno 3 μ% tega fragmenta smo izolirali iz gela z elektroeluacijo, jih digerirali s 30 enotami Dde I 1 uro pri 37°C, ekstrahirali s fenolom in kloroformom in izvedli obarjanje z etanolom. Dobljene Dde I lepljive konce smo podaljšali do topih koncev z dodatkom 5 enot DNA polimeraze I (Klenow fragment) in 0,1 mM dATP, dCTP, dGTP, dTTP v reakcijsko zmes in z inkubacijo na 4°C 8 ur. Po ekstrakciji s fenolom in kloroformom smo DNA digerirali s 15 enotami Narl 2 uri in reakcijsko zmes elektroforirali na 6 odstotnem poliakrilamidnem gelu. Regenerirali smo približno 0,5 μ-g želenega Narl fragmenta s 125 bp s topim koncem. Ta fragment kodira aminokisline št. 69 do 110 zrelega proteina aktivatorja plazminogena tkiva celotne dolžine.With reference to Figure 6, 50 / xg pPA25E10 (above) was digested with Pati and the 376 bp fragment was isolated by electrophoresis on a 6% polyacrylamide gel. About 3 μ% of this fragment was isolated from the gel by electroelution, digested with 30 units of Dde I for 1 hour at 37 ° C, extracted with phenol and chloroform and ethanol precipitated. The obtained Dde I adhesive ends were extended to the warm ends by the addition of 5 units of DNA polymerase I (Klenow fragment) and 0.1 mM dATP, dCTP, dGTP, dTTP in the reaction mixture and incubation at 4 ° C for 8 hours. After extraction with phenol and chloroform, DNA was digested with 15 Narl units for 2 hours and the reaction mixture was electrophoresed on a 6% polyacrylamide gel. We regenerated approximately 0.5 μ-g of the desired 125 bp Narl fragment with a blunt end. This fragment encodes amino acids no. 69 to 110 mature full-length plasminogen activator protein.
Za izolacijo 1645 bp Nar I - Bgl II fragmenta digeriramo 30 μξ pPA25E10 s 30 enotami Nar I in 35 enotami Bgl II 2 uri na 37°C in reakcijsko zmes podvržemo elektroforezi na 6 odstotnem poliakrilamidnem gelu. Regeneriramo približno 6 /xg želenega 1645 bp Nar Ι-Bgl II fragmenta.To isolate the 1645 bp Nar I - Bgl II fragment, 30 μξ pPA25E10 was digested with 30 Nar I units and 35 Bgl II units for 2 hours at 37 ° C and subjected to electrophoresis on a 6% polyacrylamide gel. We regenerate approximately 6 / xg of the desired 1645 bp Nar Ι-Bgl II fragment.
Plazmid pdeltaRlSRC je derivat plazmida pSRCexl6 (79), v katerem so Eco Rl mesta, ki so blizu trp promotorja in oddaljena od SRS gena, odstranjena s popravkom s DNA polimeraze I (28) in samo-komplementarni oligodeoksinukleotid AATTATGAATTCAT (sintetiziran s pomočjo fosfotriestrskega postopka (75)) je vstavljen v preostalo Eco RI mesto neposredno ob Xbal mesto. 20 /ig pdeltaRlSRC digeriramo do kompletiranja z Eco RI, ekstrahiramo s fenolom in kloroformom in izvedemo obarjanje z etanolom. Plazmid nato digeriramo s 100 enotami nukleaze Sl pri 16 °C 13 minut v 25 mM natrijevem acetatu (pH 6,4), 1 mM ZnCl2 in 0,3 M NaCl, tako da kreiramo top konec s sekvenco ATG. Po ekstrakciji s fenolom in kloroformom in obarjanjem z etanolom, DNA digeriramo s Bam HI, podvržemo elektroforezi na 6 odstotnem poliakrilamidnem gelu, in z elektroeluacijo regeneriramo velik vektorski fragment (4,300 bp).The plasmid pdeltaRlSRC is a derivative of plasmid pSRCexl6 (79), in which Eco R1 sites close to the trp promoter and away from the SRS gene are removed by DNA polymerase I repair (28) and self-complementary oligodeoxynucleotide AATTATGAATTCAT (synthesized using (75)) is inserted into the remaining Eco RI site directly adjacent to the Xbal site. The 20 µg pdeltaRlSRC was digested until complete with Eco RI, extracted with phenol and chloroform and ethanol precipitated. The plasmid was then digested with 100 units of nuclease Sl at 16 ° C for 13 minutes in 25 mM sodium acetate (pH 6.4), 1 mM ZnCl 2 and 0.3 M NaCl to create the top end with the ATG sequence. After extraction with phenol and chloroform and ethanol precipitation, DNA was digested with Bam HI, electrophoresed on a 6% polyacrylamide gel, and a large vector fragment (4,300 bp) was regenerated by electroelution.
Plazmid za ekspresijo sklopimo s skupno ligacijo 0,2 gg vektorja, 0,06 gg Narl fragmenta s 125 bp s topim koncem in 0,6 μξ Narl-Bglll fragmenta s 1645 bp z 10 enotami T4 DNA ligaze 7 ur na sobni temperaturi in ga uporabimo za transformiranje E. coli soja 294 (ATCC št. 31446) na rezistentnost proti ampicilinu. Plazmidno DNA napravimo iz 26 kolonij in jo digeriramo z Xbal in Eco RI. 12 teh plazmidov je vsebovalo željena 415 bp Xbal-Eco RI in 462 bp Eco Rl-fragmenta. Analiza DNA sekvence je potrdila, da je nekaj izmed teh plazmidov imelo ATG inicirajoči kodon pravilno postavljen na začetku aminokisline št. 69 (serin). Enega izmed teh plazmidov pdeltaRIPA0 smo testirali in proizvedel je željeni aktivator plazminogena tkiva (slika 7).The expression plasmid was coupled to a total ligation of 0.2 gg vector, 0.06 gg 125 bp Narl fragment with a blunt end, and 0.6 μξ Narl-Bglll fragment 1645 bp fragment with 10 units of T4 DNA ligase for 7 hours at room temperature and used to transform E. coli strain 294 (ATCC No. 31446) to ampicillin resistance. Plasmid DNA was made from 26 colonies and digested with Xbal and Eco RI. 12 of these plasmids contained the desired 415 bp Xbal-Eco RI and 462 bp Eco R1 fragments. DNA sequence analysis confirmed that some of these plasmids had the ATG initiation codon correctly positioned at the start of amino acid no. 69 (serine). One of these pdeltaRIPA 0 plasmids was tested and the desired plasminogen activator was produced (Fig. 7).
E.l.H. cDNA aktivatorja plazminogena tkiva polne dolžineE.l.H. Full-length plasminogen activator activator cDNA
a. ) Priprava knjižnice kolonij, ki vsebuje N-terminalne sekvence aktivatorja plazminogena tkivaa. ) Preparation of a colony library containing N-terminal sequences of plasminogen tissue activator
0,4 gg sintetičnega oligonukleotida 5’ TTCTGAGCACAGGGCG 3’ smo uporabili za primiranje 7,5 gg gelske frakcije mRNA 8 (zgoraj) za pripravo dvojnoverižne cDNA s standardnimi postopki (65, 66). cDNA frakcioniramo po velikosti na 6 odstotnem poliakrilamidnem gelu. Frakcijo večje velikosti od 300 baznih parov (36 ng) elektroeluiramo. 5 ng razširimo z deoksi (C) ostanki z uporabo terminalne deoksinukleotidil transferaze (67) in kalimo s 50 ng plazmida pBR322 (68), kije bil skrojen na podoben način z deoksi (G) ostanki na Pst I mestu (67). Kaljeno zmes nato transformiramo v E. coli K12 soju 294. Dobimo približno 1500 transformantov.0.4 gg of the synthetic oligonucleotide 5 'TTCTGAGCACAGGGCG 3' was used to primate 7.5 gg of the mRNA 8 gel fraction (above) to prepare double stranded cDNAs using standard procedures (65, 66). cDNA was fractionated by size on a 6% polyacrylamide gel. A fraction larger than 300 base pairs (36 ng) is electroelected. Expand 5 ng of deoxy (C) residues using terminal deoxynucleotidyl transferase (67) and germinate with 50 ng of plasmid pBR322 (68), which was similarly digested with deoxy (G) residues at the Pst I site (67). The tempered mixture was then transformed into E. coli K12 strain 294. About 1500 transformants were obtained.
b. ) Južna hibridizacija človeške genomne DNAb. ) Southern hybridization of human genomic DNA
Ker reakcijo cDNA primiranja izvedemo z uporabo sintetičnega fragmenta, ki je hibridiziral 13 baznih parov iz N-terminalnega klona pPA25E10, ni bilo na razpolago primernega restrikcijskega fragmenta v tej regiji s 29 baznimi pari (ki vključuje 16merno sekvenco) za testiranje cDNA klonov. Zato je nujno, da izoliramo genomni klon aktivatorja plazminogena človeškega tkiva z namenom, da identificiramo cDNA klone razširjene s primerjem, ki vsebuje N-terminalne sekvence, ki kodirajo aktivator plazminogena tkiva.Because the priming cDNA reaction was performed using a synthetic fragment that hybridized 13 base pairs from the N-terminal clone pPA25E10, no suitable restriction fragment was available in this region with 29 base pairs (which includes a 16-dimensional sequence) for cDNA clone testing. Therefore, it is imperative that we isolate the genomic clone of a plasminogen activator of human tissue in order to identify cDNA clones extended by a primer containing N-terminal sequences encoding a plasminogen activator of tissue.
Prva faza v tem postopku je vključevala ugotavljanje dejstva, da je prisoten samo en gen aktivatorja plazminogena homolognega tkiva v človeški genomni DNA. V tem postopku (77) smo 5 gg človeške limfocitne DNA z veliko molekulsko maso (pripravljene kot 80) digerirali do kompletiranja z različnimi restrikcijskimi endonukleazami, podvrgli elektroforezi na 1,0 odstotnih agaroznih gelih (81) in položili na nitrocelulozni filter (77). 32P-markiran DNA vzorec smo napravili (76) iz 5’ konca cDNA vključka pPA25E10 (230 bp Hpall-Rsal fragment) in hibridizirali (82) z nitroceluloznim filtrom. 35xl06 šteti na minuto sonde smo hibridizirali v teku 40 ur in nato izprali, kot je opisano (82). Dve shemi digeriranja z endonukleazo zagotavljajo samo en hibridizirajoč DNA fragment: Bgl II (5,7 Kbp) in Pvu II (4,2 Kbp). Dva hibridizirajoča DNA fragmenta smo opazili s Hinc II (5,1 Kbp in 4,3 Kbp). Zbrani vsi ti podatki sugerirajo na prisotnost samo enega gena za aktivator plazminogena tkiva v človeškem genomu in da ta gen vsebuje vsaj eno interventno sekvenco.The first phase in this process involved the identification of the presence of only one plasminogen activator gene of homologous tissue in human genomic DNA. In this procedure (77), 5 gg of high molecular weight human lymphocyte DNA (prepared as 80) was digested until complete with various restriction endonucleases, subjected to electrophoresis on 1.0 percent agarose gels (81) and deposited on a nitrocellulose filter (77). A 32 P-tagged DNA sample was made (76) from the 5 'end of the cDNA insert of pPA25E10 (230 bp Hpall-Rsal fragment) and hybridized (82) with a nitrocellulose filter. 35xl0 6 counts per minute of probe were hybridized for 40 hours and then washed as described (82). Two endonuclease digestion schemes provide only one hybridizing DNA fragment: Bgl II (5.7 Kbp) and Pvu II (4.2 Kbp). Two hybridizing DNA fragments were observed with Hinc II (5.1 Kbp and 4.3 Kbp). All these data collected suggest the presence of only one plasminogen activator tissue gene in the human genome and that this gene contains at least one intervention sequence.
c.) Testiranje knjižnice človeškega lambda faga na gene za aktivator plazminogena tkivac.) Human lambda phage library testing for plasminogen activator genes
Strategijo, ki smo jo uporabili za identifikacijo rekombinantov lambda faga, ki nosijo gene aktivatorja plazminogena tkiva, je sestavljala detekcija nukleotidne homologije z radioaktivno sondo, ki je napravljena z cDNA pPA25E10 aktivatorja plazminogena tkiva. En milijon rekombinantnega lambda faga položimo na ploščico na DP 50 Sup F z gostoto 10,000 pfu/15 cm ploščice s postopkom iz Benton and Davis (78). 32P-markirano DNA sondo smo pripravili s standardnimi postopki (83) iz 230 bp Hpall-Rsal fragmenta lociranega na 34 baznih parih iz 5’ konca plazmida pPA25E10. Vsak nitrocelulozni filter smo prehibridizirali na 42°C 2 uri v 50 mM natrijevega fosfata (pH 6,5), 5xSSC (77), 0,05 mg/ml DNA sonificirane sperme losusa, 5x Denhardt-ove raztopine (84), 50 odstotnem formamidu in nato hibridizirali s 50xl06 štetji na minuto markirane sonde v isti raztopini, ki vsebuje 10 odstotkov natrijevega dekstran sulfata (85). Po nočni inkubaciji na 42 °C filtre speremo 4 krat na 50°C v 0,2xSSC, 0,1 odstotnem SDS v teku 30 minut, enkrat v 2xSSC pri sobni temperaturi in nato izpostavimo Kodak XR-5 filmu za X-žarke z Dupont Cronex ojačevalnimi siti preko noči. Dobimo celokupno 19 klonov, ki so hibridizirani s sondo. DNA faga je narejena iz 6 rekombinantov kot je opisano predhodno (86). Lambda klon C smo izbrali za pripravo PvuII fragmenta za testiranje kolonij. 30 ^g DNA digeriramo s Pvu II1 uro na 37°C in podvržemo elektroforezi na 1,0 odstotnih agaroznih gelih. Fragment s 4,2 kilobaznimi pari, za katerega je bilo predhodno dokazano, da vsebuje sekvence aktivatorja plazminogena tkiva, elektroeluiramo in prečistimo. 32P markirano sondo pripravimo s standardnimi postopki (83) za hibridizacijo kolonij, kot je opisano nižje.The strategy used to identify lambda phage recombinants carrying plasminogen activator genes was the detection of nucleotide homology with a radioactive probe made with the plasminogen activator cDNA pPA25E10 cDNA. One million recombinant lambda phage was plated on a DP 50 Sup F plate with a density of 10,000 pfu / 15 cm plate by the procedure of Benton and Davis (78). The 32 P-labeled DNA probe was prepared by standard procedures (83) from a 230 bp Hpall-Rsal fragment located on 34 base pairs from the 5 'end of plasmid pPA25E10. Each nitrocellulose filter was pre-hybridized at 42 ° C for 2 h in 50 mM sodium phosphate (pH 6.5), 5xSSC (77), 0.05 mg / ml DNA of sonicated salmon sperm, 5x Denhardt solution (84), 50% formamide and then hybridized with 50x10 6 counts per minute of marked probe in the same solution containing 10 percent sodium dextran sulfate (85). After overnight incubation at 42 ° C, the filters are washed 4 times at 50 ° C in 0.2xSSC, 0.1% SDS for 30 minutes, once in 2xSSC at room temperature and then exposed to Kodak XR-5 film for X-rays with Dupont Cronex boosters overnight. A total of 19 clones are hybridized with the probe. The DNA phage is made of 6 recombinants as previously described (86). Lambda clone C was selected to prepare the PvuII fragment for colony testing. 30 g of DNA was digested with Pvu II1 for 37 hours and subjected to electrophoresis on 1.0 percent agarose gels. The 4.2-kilobase pair fragment, which was previously shown to contain plasminogen activator sequences, was electroelected and purified. The P-labeled probe is prepared by standard colonization hybridization procedures (83) as described below.
d.) Testiranje knjižnice kolonij na 5’ sekvence aktivatorja plazminogena tkivad.) Colony library testing for 5 'plasminogen tissue activator sequences
Kolonije smo prenesli s ploščic in jih gojili na nitroceluloznih filtrih in DNA iz vsake kolonije smo fiksirali na filter s pomočjo Grunstein-Hogness postopka (69). 32Pmarkirano sondo smo napravili s primiranjem (83) Pvu II fragmenta s 42 kilobaznimi pari iz kravjega timusa iz izoliranega lambda genomnega klona aktivatorja plazminogena tkiva. Filtre, ki vsebujejo 1500 transformantov, smo hibridizirali s 112xl06 cpm 32P-genomnega Pvu II fragmenta.Colonies were transferred from the plates and cultured on nitrocellulose filters, and DNA from each colony was fixed to the filter using the Grunstein-Hogness procedure (69). 32 The labeled probe was made by priming (83) a Pvu II fragment with 42 kilobase pairs of cow thymus from an isolated lambda genomic clone of a plasminogen activator. Filters containing 1500 transformants were hybridized with 112x10 6 cpm 32 P-genomic Pvu II fragments.
Hibridizacijo smo izvajali 16 ur ob uporabi pogojev, ki so opisani v Fritsch et al (82). Filtre smo dobro sprali in nato izpostavili Kodak XR-5 filmu za X-žarke z Dupont Lightnig Plus ojačevalnimi siti 16-48 ur. 18 kolonij je jasno hibridizirano s genomno sondo. Plazmidno DNA smo izolirali iz vsake izmed teh kolonij in jo vezali na nitrocelulozne filtre in hibridizirali s 32P-markiranim sintetičnim oligonukleotidom (16-mer) uporabljenim za originalno reakcijo primiranja. Izmed 18 klonov jih 7 hibridiziramo s kinaznim 16-merom. Po analizi sekvence, po subkloniranju fragmenta v ml3 vektor mp7 (73) se je pokazalo, da en klon (pPA17) vsebuje korektno 5’ N-terminalno regijo aktivatorja plazminogena tkiva, signalno vodilno sekvenco in 84 bp 5’ netranslantirano regijo. Iz dveh klonov pPA25E10 in pPA17 smo določili kompletno nukleotidno sekvenco s slike 5 in restrikcijsko shemo (slika 4) klona aktivatorja plazminogena tkiva polne dolžine.Hybridization was performed for 16 hours using the conditions described in Fritsch et al (82). The filters were well washed and then exposed to a Kodak XR-5 film for X-rays with Dupont Lightnig Plus amplification screens for 16-48 hours. 18 colonies were clearly hybridized with the genomic probe. Plasmid DNA was isolated from each of these colonies and bound to nitrocellulose filters and hybridized with 32 P-labeled synthetic oligonucleotide (16-mer) used for the original priming reaction. Of the 18 clones, 7 were hybridized with a kinase 16-mer. After sequence analysis, after subcloning the fragment into ml3 vector mp 7 (73), one clone (pPA17) was shown to contain the correct 5 'N-terminal region of the plasminogen activator, the signaling leader sequence and the 84 bp 5' untranslated region. From the two clones pPA25E10 and pPA17, the complete nucleotide sequence of Figure 5 and the restriction scheme (Figure 4) of the full-length plasminogen activator clone were determined.
Nativna molekula aktivatorja plazminogena tkiva ima potencial, da se stabilizira s 17 disulfidnimi mostovi na bazi homologije z drugimi serin proteazami. Obstajajo 4 potencialna mesta za N-glikoziliranje, tri so locirana v kringle regijah na asn117, asnlg4, asn21g in eno potencialno mesto je v regiji lahkega niza, na asn44g. Variacije v strukturi oligosaharidnih ligandov so lahko odgovorne za različne molekulske oblike (vrste molekulskih mas 65,000 in 63,000).The native plasminogen activator molecule has the potential to stabilize with 17 disulfide bridges based on homology with other serine proteases. There are 4 potential sites for N-glycosylation, three are located in the kringle regions at asn 117 , asn lg4 , asn 21g and one potential site is in the light string region, at asn 44g . Variations in the structure of oligosaccharide ligands may be responsible for different molecular forms (types of molecular weights 65,000 and 63,000).
E. 1.L Direktna ekspresija cDNA klona aktivatorja plazminogena tkiva polne dolžine v E. coliE. 1.L Direct expression of a full-length plasminogen activator clone cDNA in E. coli
Rekonstrukcija celokupne sekvence za kodiranje je bila možna z uporabo skupnega Hhal restrikcijskega endonukleaznega mesta, ki si ga delita oba parcialna klona pPA17 in pPA25E10. 55 bp Sau3AI-HhaI restrikcijski fragment, ki ustreza aminokislinam 5-23 smo izolirali iz plazmida pPA17. Sau3AI restrikcijsko mesto smo locirali na kodonu štiri predpostavljene zrele sekvence za kodiranje in uporabili za ločevanje regije za kodiranje signalnega peptida. Prav tako smo izolirali 263 bp Hhal-Narl fragment (ki kodira za aminokisline 24-110) iz plazmida pPA25E10. Skonstruirali smo sintetične deoksinukleotide, ki obnavljajo kodone za aminokisline 1-4, inkorporirajo ATG translacijski inicirajoči kodon in kreirajo EcoRI kohezivni terminus. Te tri fragmente nato skupaj ligiramo tako, da tvorimo 338 bp fragment, ki kodira aminokisline 1-110. Ta fragment in 1645 bp Narl-Bglll fragment iz pPA25E10 nato ligiramo med EcoRI in Bglll mesti plazmida pLeIFAtrplO3 (53), tako da dobimo plazmid za ekspresijo pt-PAtrpl2. Klonirani t-PA gen se prepiše pod kontrolo 300 bp fragmenta E. coli trp operona, ki vsebuje trp promotor operator in Shine-Dalgarno sekvenco trp vodilnega peptida, toda nima inicirajočega kodona ATG vodilnega peptida (52).Reconstruction of the entire coding sequence was possible using a common Hhal restriction endonuclease site shared by both the partial clones pPA17 and pPA25E10. A 55 bp Sau3AI-HhaI restriction fragment corresponding to amino acids 5-23 was isolated from plasmid pPA17. The Sau3AI restriction site was located on the codon of four putative mature coding sequences and used to separate the signal peptide encoding region. We also isolated a 263 bp Hhal-Narl fragment (encoding for amino acids 24-110) from plasmid pPA25E10. We have designed synthetic deoxynucleotides that renew codons for amino acids 1-4, incorporate the ATG translational initiation codon, and create the EcoRI cohesive terminus. These three fragments are then ligated together to form a 338 bp fragment encoding amino acids 1-110. This fragment and the 1645 bp Narl-Bglll fragment from pPA25E10 were then ligated between the EcoRI and Bglll sites of the plasmid pLeIFAtrplO3 (53) to obtain a plasmid for the expression of pt-PAtrpl2. The cloned t-PA gene is transcribed under the control of a 300 bp fragment of the E. coli trp operon containing the trp promoter operator and the Shine-Dalgar sequence of the trp leader peptide but lacks the ATG lead peptide initiation codon (52).
Gojili smo E. coli K12 soj W3110 (ATCC št. 27325), ki vsebuje pt-PAtrpl2 in pripravili smo ekstrakte za testiranje fibrinolitične aktivnosti. Eden od uporabljanih postopkov za merjenje aktivnosti aktivatorja plazminogena tkiva je fibrinski test na ploščici (87). Ta meri količino tvoijenega plazmina z merjenjem obsega plazminske digestije fibrina na agarozni ploščici, ki vsebuje plazminogen in fibrin. Plazmin proizvaja jasno cono cepitve v fibrinski ploščici in površino te cone lahko koleriramo s količino aktivatorja plazminogena tkiva v vzorcu. Ko ekstrakte pt-PAtrpl2 klona testiramo na aktivnost aktivatorja plazminogena tkiva z uporabo fibrinskega testa na ploščici, je cona cepitve očitna. Ta fibrinolitična aktivnost je inhibrirana z anti t-PA IgG ne pa tudi s preimunološkim IgG ali z anti-urokinazno IgG in iz ekstrakta, ki je pripravljen iz celic, ki vsebujejo kot kontrolo levkocitni interferonski plazmid pLeIFAtrpl03 se aktivnost ne vidi. Z uporabo standardne krivulje prečiščenega t-PA je mogoče oceniti, da dobimo približno 20 enot ekstrahirane aktivnosti na 109 celic (za prečiščeni t-PA, 90,000 Plough enot = 1 mg) (slika 10).E. coli K12 strain W3110 (ATCC No. 27325) containing pt-PAtrpl2 was grown and extracts were prepared for testing fibrinolytic activity. One of the methods used to measure the activity of plasminogen activator is tissue fibrin assay (87). It measures the amount of your plasmin by measuring the extent of plasmin digestion of fibrin on an agarose plate containing plasminogen and fibrin. Plasmin produces a clear cleavage zone in the fibrin plate and the surface of this zone can be cholerated by the amount of plasminogen activator tissue in the sample. When the pt-PAtrpl2 clone extracts are tested for plasminogen activator activity using a plate fibrin assay, the cleavage zone is apparent. This fibrinolytic activity is inhibited by anti t-PA IgG, but not by preimmune IgG or anti-urokinase IgG, and no activity is seen from cells containing control leukocyte interferon plasmid pLeIFAtrpl03. Using the standard purified t-PA curve, it can be estimated that about 20 units of extracted activity are obtained per 10 9 cells (for purified t-PA, 90,000 Plow units = 1 mg) (Figure 10).
E.l.J. Analiza sekvenceE.l.J. Sequence analysis
Analiza sekvence je osnovana na Edman degradaciji (83b). Vzorec smo uvedli v Beckmanovo čašo 890B ali 890C sekvenciatorja z vrtečo se čašo. Kot nosilec v čaši uporabimo Polybrene™ (NjNjN^NMetrametil-N-trimetilenheksametilen diamonijev diacetat) (63C). Sekvenciator je modificiran s hladno pastjo in nekaterimi spremembami v programu, tako da se zmanjšajo osnovni piki (piki ozadja). Reagenti so bili 0,1 molaren Quadrol pufer, fenilizotiocianat in heptafluoromaslena kislina kvalitete za Beckman-ovo sekvenco.Sequence analysis was based on Edman degradation (83b). The sample was introduced into a Beckman beaker 890B or 890C sequencer with a rotary beaker. Polybrene ™ (NjNjN ^ NMetramethyl-N-trimethylenehexamethylene diammonium diacetate) (63C) was used as the beaker. The sequencer is modified with a cold trap and some changes to the program so that the base dots (background dots) are reduced. The reagents were 0.1 molar Quadrol buffer, phenylisothiocyanate, and heptafluorobutyric acid of quality for the Beckman sequence.
Zbrane Edman-ove cikluse ročno prevedemo v 2-anilino-5-tiazolinonske derivate.The collected Edman cycles were manually converted into 2-anilino-5-thiazolinone derivatives.
1- klorobutan smo posušili pod dušikom. Nato dodamo 1,0 N HCl v vodi na1- Chlorobutane was dried under nitrogen. Then 1.0 N HCl in water is added
2- anilino-5-tiazolinon in segrevamo 10 minut na 70 °C, da ga prevedemo v 3-fenil-2tiohidantoin (PTH derivat). PTH-aminokislinski ostanek nato raztopimo v 50 odstotnem acetonitrilu v vodi in injiciramo v visokotlačni tekočinski kromatograf z reverzno fazo. Vsako PTH-aminokislino nato identificiramo s primerjavo retencijskih časov standardne zmesi PTH-aminokislin, ki jo uvedemo v fiolo za konverzijo in obdelamo na isti način, kot ciklus iz sekvenciatorja.2- anilino-5-thiazolinone and heated at 70 ° C for 10 minutes to convert it to 3-phenyl-2-thiohydantoin (PTH derivative). The PTH amino acid residue was then dissolved in 50% acetonitrile in water and injected into a reversed-phase high-performance liquid chromatograph. Each PTH amino acid is then identified by comparing the retention times of a standard mixture of PTH amino acids, which is introduced into a conversion vial and processed in the same manner as a sequencer cycle.
E.l.K. Testi za detekcijo ekspresije aktivatoria plazminogena tkivaE.l.K. Tests for the detection of plasminogen activator tissue activator expression
1. Direkten test tvorbe plazmina1. Direct test for plasmin formation
a. Teorijaa. The theory
Občutljivo analizo aktivatorja plazminogena tkiva lahko izvedemo z zasledovanjem konverzije plazminogena v plazmin, katalizirane z aktivatorjem plazminogena tkiva. Plazmin je encim, za katerega obstajajo kromogeni substratni testi. Ti testi temeljijo na proteolitski cepitvi tripeptidov od kromoforne skupine. Hitrost cepitve je v neposredni povezavi tako s specifičnostjo, kot s koncentracijo proteaze, ki jo testiramo. Osnova testa je določitev količine tvorjenega plazmina po inkubaciji raztopine, ki vsebuje aktivator plazminogena tkiva, z raztopino plazminogena. Večja ko je količina aktivatorja, večja je tudi količina tvorjenega plazmina. Plazmin merimo s spremljanjem njegove cepitve s kromogenega substrata S2251 (kupljen pri Kabi Group, Inc., Greenwich, CT).Sensitive analysis of plasminogen activator can be performed by tracing the conversion of plasminogen to plasmin catalyzed by the plasminogen activator. Plasmin is an enzyme for which chromogenic substrate assays exist. These tests are based on the proteolytic cleavage of tripeptides from the chromophore group. The rate of cleavage is directly related to both the specificity and the protease concentration being tested. The basis of the assay is the determination of the amount of plasmin generated after incubation of a plasminogen activator-containing solution with plasminogen solution. The greater the amount of activator, the greater the amount of plasmin generated. Plasmin was measured by monitoring its cleavage from chromogenic substrate S2251 (purchased from Kabi Group, Inc., Greenwich, CT).
b. Postopekb. Process
Alikvot vzorca zmešamo z 0,10 ml 0,7 mg/ml plazminogena (v 0,05M Tris.HCl, pH 7,4, ki vsebuje 0,012 M NaCl) in volumen naravnamo na 0,15 ml. Zmes inkubiramo 10 minut na 37°C, dodamo 0,35 ml S2251 (1,0 mM raztopina v zgornjem pufru) in reakcijo nadaljujemo 30 minut na 37 °C. Dodamo ledocetno kislino (25 μΥ), da se reakcija konča. Vzorce centrifugiramo in merimo absorbanco pri 405 nm. Kvantificirane količine aktivnosti dobimo s primerjavo s standardno raztopino urokinaze. Pogoje testa detekcijo aktivatorja plazminogena tkiva polne dolžine modificiramo z dodatkom fibrinogena (0,2 mg) v raztopino. Fibrinogen vodi do stimulacije opazovane aktivnosti aktivatorja plazminogena tkiva in zato nastaja nekoliko povečan nivo aktivnosti. Aktivnost beležimo v Plough enotah, pri čemer je 90,000 Plough enot enako aktivnosti, ki jo izraža 1 mg prečiščenega aktivatorja plazminogena tkiva.An aliquot of the sample was mixed with 0.10 ml 0.7 mg / ml plasminogen (in 0.05M Tris.HCl, pH 7.4 containing 0.012 M NaCl) and adjusted to 0.15 ml. The mixture was incubated for 10 minutes at 37 ° C, 0.35 ml of S2251 (1.0 mM solution in the above buffer) was added and the reaction continued for 30 minutes at 37 ° C. Glacial acetic acid (25 μΥ) was added to complete the reaction. Samples were centrifuged and absorbance measured at 405 nm. Quantified amounts of activity are obtained by comparison with standard urokinase solution. The test conditions were modified to detect full-length plasminogen activator tissue by adding fibrinogen (0.2 mg) to the solution. Fibrinogen leads to stimulation of the observed activity of the plasminogen activator tissue, and therefore a slightly increased level of activity is generated. Activity was recorded in Plow Units, with 90,000 Plow Units equivalent to activity expressed by 1 mg of purified plasminogen activator.
2. Indirektno testiranje tvorbe plazmina2. Indirect Plasma Formation Testing
a. Teorijaa. The theory
Razvit je bil občutljiv test aktivnosti aktivatorja plazminogena tkiva (87). Test temelji na določitvi tvorbe plazmina z merjenjem obsega plazminske digestije fibrina na agarski ploščici, ki vsebuje fibrin in plazminogen. Plazmin proizvaja jasno cono cepitve v fibrinski ploščici. Površino cone cepitve lahko koleriramo s količino aktivatorja plazminogena tkiva v vzorcu.A sensitive test for the activity of plasminogen activator of tissue has been developed (87). The assay is based on the determination of plasmin formation by measuring the extent of plasmin digestion of fibrin on an agar plate containing fibrin and plasminogen. Plasmin produces a clear cleavage zone in the fibrin plate. The surface of the cleavage zone can be cholerated by the amount of plasminogen activator tissue in the sample.
b. Postopekb. Process
Po postopku iz Granelli-Piperno in Reich (87), ploščice inkubiramo 3,5 ure na 37 °C in merimo cone cepitve. Kvantifikacijo dosežemo s primerjavo s standardno raztopino urokinaze.Following the procedure from Granelli-Piperno and Reich (87), the plates were incubated for 3.5 hours at 37 ° C and the cleavage zones were measured. Quantification is achieved by comparison with standard urokinase solution.
E.l.L. Detekcija aktivnosti aktivatorja plazminogena tkivaE.l.L. Plasminogen Tissue Activator Activity Detection
1. Bakterijska rast in priprava vzorca1. Bacterial growth and sample preparation
Kolonijo E. coli, ki vsebuje plazmid (pdeltaRIPA0) inokuliramo v epruveto za testiranje, ki vsebuje 5 ml LB podlage za rast, ki vsebuje 20 jug/ml ampicilina. Celice kultiviramo preko noči na 37 °C. Alikvot te kulture razredčimo 1:100 v 300 ml M9 podlage, ki vsebujejo 20p,g/ml ampicilina. Celice gojimo v stresalni posodi na 37 °C 4 ure, kar ima za posledico absorbanco pri 550 nm 0,419. Dodamo triptofanski analog indolakrilne kisline do koncentracije 30 jug/ml. Celice inkubiramo 90 minut, kar ima za posledico absorbanco pri 550 nm 0,628. Celice požanjemo s centrifugiranjem in ponovno suspendirano v 0,8 ml 0,001 M Tris, pH 8,0, ki vsebuje 0,01 M EDTA. Dobljeno suspenzijo hitro mešamo na sobni temperaturi 18 ur. Vzorec centrifugiramo in supernatant testiramo na aktivnost aktivatorja plazminogena tkiva.A plasmid-containing E. coli colony (pdeltaRIPA 0 ) was inoculated into a test tube containing 5 ml of LB growth medium containing 20 µg / ml ampicillin. Cells were cultured overnight at 37 ° C. An aliquot of this culture was diluted 1: 100 in 300 ml M9 substrates containing 20p, g / ml ampicillin. Cells were grown in a shaker at 37 ° C for 4 h, resulting in an absorbance at 550 nm of 0.419. The tryptophan analog of indolacrylic acid was added to a concentration of 30 µg / ml. The cells were incubated for 90 minutes, resulting in an absorbance at 550 nm of 0.628. Cells were harvested by centrifugation and resuspended in 0.8 ml of 0.001 M Tris, pH 8.0 containing 0.01 M EDTA. The resulting suspension was stirred rapidly at room temperature for 18 hours. The sample was centrifuged and the supernatant tested for plasminogen activator activity.
Za ekspresijo pt-PAtrpl2 glej natančen opis v legendi za sliko 10.For the expression of pt-PAtrpl2, see the exact description in the legend for Figure 10.
2. Detekcija aktivnosti2. Activity detection
Tabeli 1 in 2 prikazujeta rezultate aktivacije plazminogena s pomočjo ustreznih ekstraktov E. coli, v teku izvedbe testa. Generira se aktivnost, kije odvisna od prisotnosti plazminogena (tabela 1). Na to aktivnost ne vpliva preimunološki serum kuncev, znatno pa jo inhibira antiserum, ki je pripravljen proti prečiščenim celicam melanoma, ki proizvajajo aktivator plazminogena tkiva (88), tabeli 1 in 2. To kaže, da E. coli ekstrakti proizvajajo aktivnost za aktiviranje plazminogena, ki jo inhibirajo protitelesa proti aktivatorju plazminogena tkiva.Tables 1 and 2 show the results of plasminogen activation using the corresponding E. coli extracts during the course of the assay. Plasminogen-dependent activity was generated (Table 1). This activity is unaffected by the rabbit preimmune serum and is significantly inhibited by an antiserum prepared against purified melanoma cells producing plasminogen activator (88), Tables 1 and 2. This indicates that E. coli extracts produce plasminogen activating activity inhibited by antibodies against plasminogen activator.
Slika 7 prikazuje rezultat fibrinskega testa na ploščici na fibrinolitsko aktivnost. Standardno količino urokinaze smo dodali v centralno vrsto v koncentracijah, od leve proti desni, 0,24, 0,14, 0,10, 0,05 in 0,02 Ploug enot. Spodnja vrsta so vzorci naravnega aktivatorja plazminogena tkiva, z isto količino encima v vsaki vdolbini. Vdolbine vsebujejo od leve proti desni, aktivator plazminogena tkiva, aktivator antiplazminogena plus pre-imunološki serum in aktivator plazminogena tkiva plus protitelesa aktivatorja plazminogena tkiva. Vse vdolbine v zgornji vrsti vsebujejo 8 μΐ E. coli ekstrakta aktivatorja plazminogena tkiva. Prva vdolbina je samo ekstrakt, druga vdolbina ima dodan preimunološki serum, tretja vdolbina pa ima dodana protitelesa aktivatorja plazminogena tkiva. Jasno je, da pre-imunološki serum ne vpliva na naravni ali rekombinantni aktivator plazminogena tkiva in da protitelesa aktivatorja plazminogena tkiva inhibirajo aktivnost tako naravnega produkta, kot ekstrakta E. coli. Na osnovi urokinaznih standardov vsebujejo ekstrakti le nekaj manj kot 2,5 Plough enot na ml. To lahko ugodno primerjamo z vrednostjo, ki jo dobimo v tabeli 1, in sicer 1,3 Plough enot na ml. Tabeli 1 in 2 prikazujeta rezultate testov izvedenih, kot je opisano zgoraj v E.l.K.l.b.;Figure 7 shows the result of a fibrin test on a plate for fibrinolytic activity. A standard amount of urokinase was added to the central row in concentrations, from left to right, of 0.24, 0.14, 0.10, 0.05, and 0.02 Ploug units. The lower row are samples of a natural plasminogen activator tissue, with the same amount of enzyme in each well. The wells contain from left to right, plasminogen activator, antiplasminogen activator plus pre-immunological serum and plasminogen activator plus plasminogen activator antibody. All wells in the top row contain 8 μΐ of E. coli plasminogen activator activator extract. The first well is an extract only, the second well has preimmune serum added, and the third well has plasminogen activator activator antibodies added. It is clear that the pre-immunological serum does not affect the natural or recombinant plasminogen activator of the tissue and that plasminogen activator activator antibodies inhibit the activity of both the natural product and the E. coli extract. Based on the urokinase standards, the extracts contain only slightly less than 2.5 Plow units per ml. This can be compared favorably with the value obtained in Table 1, namely 1.3 Plow units per ml. Tables 1 and 2 show the results of tests performed as described above in E.l.K.l.b .;
TABELA 1: Aktivacija plazminogena s pomočjo E. coli ekstrakta kultur, ki vsebujejo pdelta RIPATABLE 1: Plasminogen activation by E. coli extract of RIPA-containing cultures
Odstotek Izračunane aktivnosti- Plough enote/ml (θ) (100) 1,3Percentage Calculated activities - Plow units / ml (θ) (100) 1.3
106106
Odstotek aktivnosti smo izračunali z odštevanjem kontrole (0,043) od vrednosti, ki smo jih dobili in deljenjem z dobljeno vrednostjo iz ekstraktaThe percentage of activity was calculated by subtracting the control (0.043) from the values obtained and dividing by the obtained value from the extract
Tabela 2: Aktivacija plazminogena s pomočjo E. coli ekstrakta kulturTable 2: Plasminogen activation by E. coli culture extract
Slika 10 predstavlja rezultate fibrinskega testa na ploščici izvedenega z ekstrakti iz 10 1 fermentacijskih kultur E. coli, ki vsebujejo plazmid za ekspresijo aktivatorja plazminogena tkiva. Fibrinolitična aktivnost ekstrakta, ki vsebuje aktivator plazminogena tkiva, je predstavljena na sliki 10 s pomočjo vdolbine A. To fibrinolitično aktivnost inhibira anti t-PAIgG (vdolbina C) toda ne preimunološki IgG (vdolbina B) ali urokinazni IgG (vdolbina D), in ni videti aktivnosti iz ekstrakta, ki je pripravljen iz celic, ki vsebujejo kot kontrolo levkocitni interferonski plazmid pLeIPAtrpl03 (vdolbina H).Figure 10 presents the results of a fibrin assay on a plate derived from extracts from 10 l of E. coli fermentation cultures containing a plasmid for expression of plasminogen activator. Fibrinolytic activity of the extract containing plasminogen tissue activator is presented in Fig. 10 by well A. This fibrinolytic activity is inhibited by anti t-PAIgG (well C) but not pre-immunological IgG (well B) or urokinase IgG (well D) see activities from an extract prepared from cells containing the leukocyte interferon plasmid pLeIPAtrpl03 (well H) as a control.
E.2 Proizvodnja tPA z uporabo DHFR proteina z nizko vezivno afiniteto za ΜΤΧE.2 Production of tPA using DHFR protein with low binding affinity for ΜΤΧ
E.2.A. Konstrukcija vektorjaE.2.A. Vector construction
Sekvenco, ki kodira aktivator plazminogena tkiva (t-PA) vstavimo v ekspresijski plazmid, ki vsebuje mutantni DHFR z nizko afiniteto za vezavo na ΜΤΧ, kije opisan v U.S. prijavi serijski št. 459,151, vloženi 19. januarja 1983, kije istočasno v postopku in ki ustreza evropski patentni prijavi št. 117.060, vstavljene tu kot reference, z naslednjim postopkom (glej sliko 11).The sequence encoding a plasminogen activator of tissues (t-PA) is inserted into an expression plasmid containing the low affinity mutant DHFR for binding to ΜΤΧ described in U.S. Pat. report serial no. No. 459,151, filed Jan. 19, 1983, which is pending at the same time and which corresponds to European patent application no. 117.060, incorporated herein by reference, by the following procedure (see Figure 11).
Tri plazmide iz prekrivajočih se t-PA plazmidov, pPA25E10 in pPA17 in pt-PAtrpl2 (zgoraj) pripravimo kot sledi: plazmid pPA17 digeriramo z Dde I, dopolnimo z uporabo Klenow DNA polimeraze 1, in podstrižemo s Pst I. Tako generiramo in izoliramo ustrezni 200 bp fragment, ki vsebuje 5’ terminalno t-PA sekvenco. Drugi t-PA fragment dobimo s cepitvijo pt-PAtrpl2 z Pst I in Nar I in izolacijo fragmenta s približno 310 bp. Tretji t-PA fragment dobimo z digeriranjem pPA25E10 z Narl in Bgl II in izolacijo fragmenta s približno 1645 bp, ki vsebuje, poleg velikega dela regije, ki kodira za t-PA, nekaj 3’ ne-translatiranih sekvenc.Three plasmids from overlapping t-PA plasmids, pPA25E10 and pPA17 and pt-PAtrpl2 (above) were prepared as follows: plasmid pPA17 was digested with Dde I, supplemented using Klenow DNA polymerase 1, and trimmed with Pst I. Thus, the corresponding plasmid was generated and isolated. 200 bp fragment containing a 5 'terminal t-PA sequence. The second t-PA fragment is obtained by cleaving pt-PAtrpl2 with Pst I and Nar I and isolating the fragment at about 310 bp. A third t-PA fragment is obtained by digesting pPA25E10 with Narl and Bgl II and isolating the fragment at about 1645 bp, which contains, in addition to a large portion of the t-PA coding region, some 3 'non-translated sequences.
Plazmid pE342, ki izraža HBV površinski antigen (ki se prav tako imenuje pHBs348-E) je opisan v Levinson et al, patentna prijava št. 326,980, ki je bila vloženaPlasmid pE342 expressing the HBV surface antigen (also called pHBs348-E) is described in Levinson et al, patent application no. 326,980 that was filed
3. decembra, 1981 in ki ustreza evropski patentni prijavi št. 73.656, kije tu vključena kot referenca. (Na kratko, izoliramo vir Simian virusa SV40 z digeriranjem SV40 DNA z Hind III in konverzijo Hind III koncev v EcoRI konce z dodajanjem konverterjev AGCTGAATTC). To DNA razrežemo s PvuII in dodamo RI vezivna sredstva. Po digeriranju z EcoRI izoliramo z elektroforezo na poliakrilamidnem gelu in elektroeluacijo fragment s 348 baznimi pari, ki objema izvor in kloniramo v pBR322. Skonstruiramo plazmid za ekspresijo pHBs348-E s kloniranjem fragmenta z 1986 baznimi pari, ki nastane iz EcoRI in Bgl II z digeriranjem HBV (Animal Virus Genetics, (Ch. 5) Acad. Press, Ν.Υ. (1980) (ki objema gen, ki kodira za HBsAg) v plazmidu pML (Lusky et al.. Nature, 293: 79 (1981) na EcoRI in BamHI mestih. (pML je derivat pBR322, ki ima manjkajoče eliminacijske sekvence, ki inhibirajo replikacijo plazmidov v celicah opic). Dobljeni plazmid (pRI-Bgl) nato lineariziramo z EcoRI in fragment s 348 baznimi pari, ki predstavlja regijo SV40 izvora uvedemo v EcoRI mesto pRI-Bgl. Fragment izvora lahko vstavimo v kakršnikoli orientaciji. Ker ta fragment kodira poleg izvora replikacije tako zgodnje, kot tudi kasnejše SV40 promotorje, se lahko HBV geni izražajo pod kontrolo kateregakoli promotorja, v odvisnosti od te orientacije (pHBS348-E predstavlja HBs izražen pod kontrolo zgodnjega promotorja). pE342 modificiramo s parcialnim digeriranjem z EcoRI, z zapolnitvijo na razcepljenjem mestu z uporabo Klenow DNA polimeraze in skupno ligacijo plazmidov, tako da odstranimo EcoRI mesto, ki je predhodno SV40 izvoru v pE342. Dobljeni plazmid, označen pE342deltaRl, digeriramo z EcoRI, dopolnimo z uporabo Klenow DNA polimeraze I in podstrižemo z BamHI. Po elektroforezi na akrilamidnem gelu, elektroeluiramo fragment s približno 3500 bp, ga ekstrahiramo s fenol-kloroformom in oborimo z etanolom kot zgoraj.December 3, 1981 and corresponding to European patent application no. 73,656, which is incorporated herein by reference. (Briefly, we isolate the SV40 virus source by digesting SV40 DNA with Hind III and converting Hind III ends into EcoRI ends by adding AGCTGAATTC converters). This DNA was cut with PvuII and RI binding agents were added. After digestion with EcoRI, a 348 base pair-encapsulated fragment was isolated by electrophoresis on a polyacrylamide gel and electroeluted and cloned into pBR322. We construct a plasmid for expression of pHBs348-E by cloning a 1986 base-pair fragment derived from EcoRI and Bgl II by digesting HBV (Animal Virus Genetics, (Ch. 5) Acad. Press, Ν.Υ. (1980) (embracing gene encoding for HBsAg) in the pML plasmid (Lusky et al. Nature, 293: 79 (1981) at EcoRI and BamHI sites. (pML is a pBR322 derivative that has missing elimination sequences that inhibit plasmid replication in monkey cells). The resulting plasmid (pRI-Bgl) is then linearized with EcoRI and the 348 base pair fragment representing the SV40 region of the origin is introduced into the EcoRI site of pRI-Bgl, the source fragment can be inserted in any orientation, since this fragment encodes in addition to the replication source as early as also later SV40 promoters, HBV genes can be expressed under the control of any promoter, depending on this orientation (pHBS348-E represents HBs expressed under the control of the early promoter) .PE342 is modified by partial digestion with EcoRI, by cleavage on mes here using Klenow DNA polymerase and total plasmid ligation by removing the EcoRI site that is pre-SV40 in origin in pE342. The resulting plasmid, labeled pE342deltaR1, was digested with EcoRI, supplemented using Klenow DNA polymerase I, and trimmed with BamHI. After electrophoresis on an acrylamide gel, the fragment was electroelected at about 3500 bp, extracted with phenol-chloroform and precipitated with ethanol as above.
Tako pripravljen p342E 3500 bp vektor in zgoraj opisane t-PA fragmente, ki obsegajo 2160 bp, ligiramo skupaj z uporabo standardnih tehnik. Izoliramo plazmid, ki vsebuje tri t-PA fragmente za kodiranje v pravilni orientaciji, ga okarakteriziramo in označen je kot pE342-t-PA. Ta plazmid digeriramo z Sac II in obdelamo z bak37 terijsko alkalno fosfatazo (BRL). Da zagotovimo DHFR sekvenco (skupaj s kontrolnimi sekvencami za njegovo ekspresijo), generiramo fragment s približno 1700 bp s pomočjo Sac II digeriranja pEHER. (pEHER je plazmid, ki izraža mutantni DHFR opisan v U.S. serijska št. 459,151 (zgoraj). Ta fragment ligiramo v pE342-t-PA plazmid zaradi kreiranja pETPAER400 plazmida, ki je analogen pEHER, razen da je regija za kodiranje HBsAg zamenjana s cDNA sekvencami iz t-PA.The thus prepared p342E 3500 bp vector and the above described 2160 bp t-PA fragments were ligated together using standard techniques. We isolate a plasmid containing three t-PA fragments for encoding in the correct orientation, characterize it, and it is designated as pE342-t-PA. This plasmid was digested with Sac II and treated with bak37-terial alkaline phosphatase (BRL). To provide the DHFR sequence (together with control sequences for its expression), a fragment of about 1700 bp was generated by Sac II digestion of pEHER. (pEHER is a plasmid expressing the mutant DHFR described in U.S. Serial No. 459,151 (above). This fragment is ligated into the pE342-t-PA plasmid to create a pETPAER400 plasmid analogous to pEHER, except that the HBsAg coding region is replaced by cDNA sequences from t-PA.
E.2.B. Ekspresija in amplifikaciia t-PA sekvence pETPAER400 (pETPER) transfektiramo tako v dhfr' CHO-DUX Bil celice, kot v DHFR+ CHO-K1 (ATCC CCL61) celice s postopkom iz Graham in Van der Eb (zgoraj). Transformirane dhfr’ celice izberemo z rastjo v podlagi, ki je deficitarna z glicinom, hipoksantinom in timidinom. Transformirane DHFR+ celice izberemo na osnovi rasti v > 100 nM ΜΤΧ. Kolonije, ki rastejo na ustrezno izbrani podlagi, izoliramo z uporabo prstanov za kloniranje in jih propagiramo na isti način, v isti podlagi do nekaj generacij.E.2.B. The expression and amplification of the t-PA sequence of pETPAER400 (pETPER) were transfected in both dhfr 'CHO-DUX Bil cells and DHFR + CHO-K1 (ATCC CCL61) cells by the procedure from Graham and Van der Eb (above). Transformed dhfr 'cells are selected by growth in a glycine, hypoxanthine and thymidine deficient substrate. Transformed DHFR + cells are selected based on growth in> 100 nM ΜΤΧ. Colonies growing on an appropriately selected basis are isolated using cloning rings and propagated in the same manner, on the same basis for several generations.
Za amplifikacijo celice iz kolonij razdelimo v podlage, ki vsebujejo 5xl04, 105, 2,5xl05, 5xl05 in ΙΟ6 nM ΜΤΧ in jih pustimo, da nekolikokrat preidejo. Celice nanesemo v zelo nizkih (102-103 celic/ploščico) gostoti celic v 10 cm skodelice in dobljene kolonije izoliramo.For amplification, cells from the colonies are divided into substrates containing 5x10 4 , 10 5 , 2.5x10 5 , 5x10 5 and ΙΟ 6 nM ΜΤΧ and allowed to pass several times. Cells were applied in very low (10 2 -10 3 cells / plate) cell density in 10 cm cups and the resulting colonies isolated.
E.2.C. Postopki testiranjaE.2.C. Testing procedures
Ekspresijo t-PA v transfektiranih amplificiranih kolonijah lahko primerno ocenimo s postopki, ki so podobni tistim, ki so prikazani v E.l.K.l.b (zgoraj).The expression of t-PA in transfected amplified colonies can be appropriately evaluated by procedures similar to those shown in E.l.K.l.b (above).
Koamplifikacijo DHFR in t-PA sekvenc testiramo z izolacijo DNA iz vlivnih slojev (mono) amplificiranih kolonij, kot sledi: konfluentne monosloje v 150 mm ploščicah speremo s 50 ml sterilnega PBS in razcepimo z dodatkom 5 ml 0,1 odstotnega SDS, 0,4 M CaCl2, 0,1 M EDTA, pH 8. Po 5-10 minutah zmes ločimo, ekstrahiramo s fenolom, ekstrahiramo s kloroformom in oborimo z etanolom. DNA resuspendiramo v 1 ml (po 150 mm ploščici) 10 mM Tris-HCl pH 8, 1 mM EDTA (TE), dodamo RNazo do 0,1 mg/ml in raztopino inkubiramo 30 minut na 37°C. Nato dodamo SDS do 0,1 odstotka in dodamo pronazo (Sigma) do 0,5 mg/ml. Po 3-16 urah inkubacije na 37°C raztopino ponovno ekstrahiramo s fenolom, ekstrahiramo s kloroformom in oborimo z etanolom. DNA granulo resuspendiramo v 0,5 ml vode in digeriramo z restrikcijskimi encimi. Približno 5-10 /xg digerirane DNA podvržemo elektroforezi v agaroznem gelu/1 odstotek agaroze v Tris-acetatnem pufru (40 mM Tris, 1 mM EDTA, dopolnjen do pH 8,2 z ocetno kislino); (Crouse, et al, J. Biol. Chem., 257: 7887 (1982)). Ko bromfenol modra barva do 2/3 migrira po gelu, gel ločimo in obarvamo z etidijevim bromidom. Po vizualizaciji DNA z ultravijolično svetlobo, DNA prenesemo iz gela na nitrocelulozne filtre po postopku iz Southern (J. Mol. Biol. 98: 503. (1975)). Filtre nato hibridiziramo s translatirano sondo, pripravljeno iz 1700 bp Sac II fragmenta pEHER (pripravljen in hibridiziran, kot je opisano zgoraj), ali iz Bgl II fragmenta pETPER s približno 1970 bp.The co-amplification of DHFR and t-PA sequences was tested by isolating DNA from the infused layers of (mono) amplified colonies as follows: The confluent monolayers in 150 mm plates were washed with 50 ml of sterile PBS and split with the addition of 5 ml of 0.1% SDS, 0.4 M CaCl 2 , 0.1 M EDTA, pH 8. After 5-10 minutes, the mixture was separated, extracted with phenol, extracted with chloroform and precipitated with ethanol. The DNA was resuspended in 1 ml (150 mm plate) of 10 mM Tris-HCl pH 8, 1 mM EDTA (TE), RNase was added to 0.1 mg / ml and the solution was incubated for 30 minutes at 37 ° C. SDS is then added up to 0.1 percent and find (Sigma) up to 0.5 mg / ml is added. After 3-16 hours of incubation at 37 ° C, the solution was re-extracted with phenol, extracted with chloroform and precipitated with ethanol. The DNA granule was resuspended in 0.5 ml of water and digested with restriction enzymes. About 5-10 / xg of digested DNA was subjected to agarose gel electrophoresis / 1 percent agarose in Tris-acetate buffer (40 mM Tris, 1 mM EDTA supplemented to pH 8.2 with acetic acid); (Crouse, et al, J. Biol. Chem. 257: 7887 (1982)). When the bromophenol blue color migrates through the gel up to 2/3, the gel is separated and stained with ethidium bromide. After visualization of the DNA by ultraviolet light, DNA is transferred from the gel to nitrocellulose filters according to the procedure from Southern (J. Mol. Biol. 98: 503. (1975)). The filters were then hybridized with a translated probe prepared from a 1700 bp Sac II fragment of pEHER (prepared and hybridized as described above) or from a Bgl II fragment of pETPER of about 1970 bp.
E.3. Proizvodnja t-PA skupaj s DHFR proteinom divjega tipaE.3. Production of t-PA together with wild-type DHFR protein
E.3.A. Konstrukcija vektorjaE.3.A. Vector construction
Na način, analogen tistemu, ki smo ga uporabili pri konstrukciji pETPER, skonstruiramo plazmid pETPFR, ki vsebuje DNA sekvenco, ki kodira za DHFR divjega tipa. Konstrukcija je potekla kot v primeru E.2.A., razen da smo namesto plazmida pEHER, kot raztopino sekvence gena za DHFR protein, uporabili plazmid pE342.HBV.E400. D22 je opisan v prijavi, ki je istočasno v postopku, Genentech Docket št. 100/92. V US ser. št. 459.152 dopolnjena 19. januarja 1983, ki ustreza evropski patentni prijavi št. 117.058, ki je tu vključena kot referenca. Plazmid pE342.HBV.E400.D22 je isti kot pEHER, razen za razliko v enem baznem paru med DHVR divjega tipa in mutantom. Tako dobljen plazmid pETPFR je v vskem pogledu analogen s pETPER, razen da je DNA sekvenca, ki kodira za DHFR divjega tipa, zamenjana s sekvenco za mutant.In a manner analogous to that used in the pETPER construct, we construct a plasmid pETPFR containing a DNA sequence encoding for wild-type DHFR. The construction proceeded as in the case of E.2.A., except that the plasmid pE342.HBV.E400 was used instead of the plasmid pEHER, as a solution of the gene sequence for the DHFR protein. D22 is described in a pending application, Genentech Docket no. 100/92. In the US ser. no. 459.152 amended on 19 January 1983 corresponding to European patent application no. 117,058, which is incorporated herein by reference. Plasmid pE342.HBV.E400.D22 is the same as pEHER except for the difference in one base pair between wild-type DHVR and mutant. The plasmid pETPFR thus obtained is analogously analogous to pETPER, except that the DNA sequence encoding the wild-type DHFR is replaced by the mutant sequence.
E.3.B. Ekspresija t-PA sekvence pETPFR smo uporabimo za transfekcijo CHO celic deficitarnih z DHFR (Urlaub in Chasin (zgoraj)) z uporabo postopka obarjanja s kalcijevim fosfatom iz Graham in Van der Eb. Enaindvajset kolonij, ki so rastle na selektivni podlagi (-HGT) ocenimo z detekcijo tvorbe plazmina, kot smo ocenili s pomočjo digeriranja fibrina na agarski plošči, ki vsebuje fibrin in plazminogen, opisano v Granelli-Piperno, et al. J. Exp. Med., 148: 223 (1978).E.3.B. Expression of the t-PA sequence of pETPFR was used for transfection of DHFR-deficient CHO cells (Urlaub and Chasin (above)) using a calcium phosphate staining procedure from Graham and Van der Eb. Twenty-one colonies grown on a selective basis (-HGT) were evaluated by detection of plasmin formation as assessed by fibrin digestion on an agar plate containing fibrin and plasminogen described in Granelli-Piperno, et al. J. Exp. Med., 148: 223 (1978).
Štiri najmočnejše pozitivne klone ocenimo kvantitativno na tvorbo plazmina na osnovi po celici, v skladu postopkom, ki je opisan v E.l.K.l.b.The four most potent positive clones were quantitatively evaluated for plasmin formation per cell, according to the procedure described in E.l.K.l.b.
Po takšnem kvantitativnem določevanju smo ugotovili, da štirje testirani kloni izražajo isto ali primerljivo t-PA izločanje v podlago, določeno kot enota/celica/dan. Subklone smo pripravili s transferjem inokulata iz dveh klonov v posebne ploščice, ki vsebujejo -HGT podlago. Dva dobljena subklona, 18B in 1 smo uporabili za nadaljnjo analizo.After such quantification, we found that the four clones tested expressed the same or comparable t-PA secretion into the substrate determined as unit / cell / day. Subclones were prepared by transferring the inoculum from two clones to special plates containing -HGT substrate. Two resulting subclones, 18B and 1, were used for further analysis.
E.3.C Amplifikaciia in nivoji proizvodnje t-PAE.3.C Amplification and production levels of t-PA
Gornje subklone prevlečemo z 2xl05 celicami na 100 mm plošče v 50 nM ΜΤΧ, tako da promoviramo amplifikacijo. Tiste celice, ki preživijo, ko jih testiramo, kot je opisano zgoraj, dajemo v vseh primerih okoli 10-krat večjo neamplificirano količino aktivnosti aktivatorja plazminogena tkiva. Dva od teh klonov smo izbrali za nadaljnje preučevanje in imenovana sta 1-15 in 18B-9.The upper subclones were coated with 2x10 5 cells per 100 mm plates in 50 nM ΜΤΧ to promote amplification. Those cells that survive when tested as described above are in each case administered about 10 times the non-amplified amount of plasminogen activator tissue activator activity. We selected two of these clones for further study and are named 1-15 and 18B-9.
Subklon 1-15 smo nadalje amplificirali s vsaditvijo 2xl05 celic v 100 mm ploščice, ki vsebujejo 500 nM ΜΤΧ. Testiranje tako amplificiranih celic je dalo nadaljnje povečanje (okoli 3-kratno) v proizvodnji t-PA; ko smo jih ocenili kvantitativno po postopku C.l.C, so bili nivoji v intervalu 7xl0'4 enot/celico/dan. Del teh amplificiranih celic smo nato prenesli in vzdrževali v prisotnosti 10,000 nM ΜΤΧ. Subklone 1-15 in 18-B-9 smo nadalje testirali potem, ko smo jih vzdrževali približno 1-2 meseca pod pogoji, ki so specificirani v tabeli T.Subclone 1-15 was further amplified by implanting 2x10 5 cells into 100 mm plates containing 500 nM ΜΤΧ. Testing of cells thus amplified gave a further increase (about 3-fold) in the production of t-PA; when evaluated quantitatively by the ClC procedure, the levels were 7xl0 ' 4 units / cell / day in the interval. A portion of these amplified cells were then transferred and maintained in the presence of 10,000 nM ΜΤΧ. Subclones 1-15 and 18-B-9 were further tested after being maintained for about 1-2 months under the conditions specified in Table T.
* t-PA v gojitveni podlagi smo ocenili kvantitativno v radioimunološkem testu kot sledi: prečiščeni t-PA in prečiščeni jodirani tracer t-PA, izveden iz celic melanoma, smo serijsko razredčili, tako da je vključeval koncentracije 12,5 do 400 ng/ml v pufru, ki vsebuje fosfatno napufrano raztopino soli, pH 7,3, 0,5 odstotka albumina volovskega seruma, 0,01 odstotka Tween 80 in 0,02 odstotka NaNy Na radioaktivno markirane tracer proteine dodamo ustrezne razredčine vzorcev podlage, ki jih je potrebno testirati. Antigene pustimo, da se inkubirajo preko noči na sobni temperaturi v prisotnosti 1:10,000 razredčitve IgG frakcije anti-t-PA kunčjega antiseruma.* t-PA in the culture medium was quantitatively evaluated in radioimmunoassay as follows: purified t-PA and purified iodinated tracer t-PA derived from melanoma cells were serially diluted to include concentrations of 12.5 to 400 ng / ml. in buffer containing phosphate-infused salt solution, pH 7.3, 0.5 percent albumen oxide serum, 0.01 percent Tween 80, and 0.02 percent NaN y Add to the radiolabeled tracer proteins appropriate dilutions of the substrate samples provided by need to be tested. The antigens were allowed to incubate overnight at room temperature in the presence of a 1: 10,000 dilution of the IgG fraction of the rabbit antiserum anti-t-PA.
Kompleks protitelo-antigen obarjamo z absorpcijo na IgG imunozrnih koze antikunca (BioRad) 2 uri na sobni temperaturi. Zrna zbistrimo z dodatkom slanega razredčila in nato centrifugiramo 10 minut pri 2000 x g na 4 °C. Supernatante zavržemo in registriramo radioaktivnost v oborini. Koncentracije določimo s primerjavo z referenčnim standardom.The antibody-antigen complex was precipitated by absorption on the IgG of anti-rabbit immunogen (BioRad) for 2 hours at room temperature. The grains were clarified by the addition of saline diluent and then centrifuged at 2000 x g at 4 ° C for 10 minutes. The supernatants are discarded and radioactivity is recorded in the precipitate. Concentrations are determined by comparison with a reference standard.
Celične linije so kot sledi: celična linija 1 je neamplificirani klon iz orginalnega seta štirih. 1-155θ0 je amplificirani subklon celične linije 1, kije amplificiran na začetku v 50 nM ΜΤΧ, tako da dobimo 1-15 in je nato prenešen za nadaljnjo amplifikacijo v 500 nM ΜΤΧ. 1-1510θ0θ je subklon 1-155θθ, ki je nadalje amplificiran v prisotnosti 10,000 nM ΜΤΧ. Celična linija 18B-9 je subklon enega od štirih detektiranih na začetku, ki so bili amplificirani na 50 nM ΜΤΧ.The cell lines are as follows: cell line 1 is a non-amplified clone from the original set of four. 1-15 5θ0 is an amplified subclone of cell line 1, which is amplified initially at 50 nM ΜΤΧ, so that 1-15 is obtained and then transferred to further amplification at 500 nM ΜΤΧ. 1-15 10θ0θ is a 1-15 5θθ subclone further amplified in the presence of 10,000 nM ΜΤΧ. The 18B-9 cell line is a subclone of one of four detected initially amplified to 50 nM ΜΤΧ.
Vse amplificirane celice so pokazale povečane nivoje proizvodnje t-PA nad tistimi, ki jih izraža neamplificirana celična kultura. Celo tudi neamplificirana kultura proizvaja količine t-PA večje od 0,5 pg/celico/dan; amplifikacija vodi do nivojev, ki se približujejo 50 pg/celico/dan.All the amplified cells showed increased levels of t-PA production above those expressed by the unamplified cell culture. Even non-amplified culture produces amounts of t-PA greater than 0.5 pg / cell / day; amplification leads to levels approaching 50 pg / cell / day.
F. Farmacevtski preparatiF. Pharmaceutical preparations
Spojine predloženega izuma lahko formuliramo po znanih postopkih za pripravo farmacevtsko uporabnih preparatov, pri čemer predmetni proizvod - aktivator plazminogena človeškega tkiva kombiniramo v zmes s farmacevtsko sprejemljivim nosilcem. Primerni nosilci in njihovo formuliranje, vključujoč tudi druge človeške proteine, npr. albumin človeškega seruma, so opisani, npr. v Remington’s Pharmaceutical Sciences, E.W. Martin, ki je tu naveden kot referenca. Takšni preparati bodo vsebovali učinkovito količino predmetnega proteina, skupaj s primerno količino nosilca, z namenom priprave farmacevtsko sprejemljivih preparatov, ki so primerni za učinkovito dajanje gostitelju.The compounds of the present invention can be formulated according to known methods for the preparation of pharmaceutically useful preparations, wherein the subject product, a human tissue plasminogen activator, is combined into a mixture with a pharmaceutically acceptable carrier. Suitable carriers and their formulation, including other human proteins, e.g. human serum albumin are described, e.g. in Remington's Pharmaceutical Sciences, E.W. Martin, cited here as a reference. Such preparations will contain an effective amount of the protein in question, together with an appropriate amount of carrier, for the preparation of pharmaceutically acceptable preparations suitable for effective administration to the host.
Na primer, predmetni aktivator plazminogena človeškega tkiva lahko dajemo parenteralno pacientom, ki imajo kardiovaskularne bolezni ali stanja. Doziranje in hitrost doziranja sta lahko paralelna tistim, ki se trenutno uporabljajo v kliničnih raziskavah drugih kardiovaskularnih, trombolitičnih sredstev, npr. okoli 440 IU/kg telesne teže, kot intravenozna primarna doza, ki jo spremlja kontinualna intravenozna infuzija z okoli 440 IU/kg/ura tekom 12 ur, pri pacientih, ki imajo pljučno embolijo.For example, the subject plasminogen activator of human tissue may be administered parenterally to patients who have cardiovascular disease or conditions. Dosage and dosage rates may be parallel to those currently used in clinical trials of other cardiovascular, thrombolytic agents, e.g. about 440 IU / kg body weight as an intravenous primary dose, followed by continuous intravenous infusion of about 440 IU / kg / hour for 12 hours in patients with pulmonary embolism.
Kot en primer ustrezne dozirne oblike za v bistvu homogen aktivator plazminogena človeškega tkiva v parenteralni obliki, ki je tu uporabna, je viola, ki vsebuje 25000IU aktivnosti aktivatorja plazminogena tkiva, 25 mg manitola in 45 mg NaCl, ki jo lahko rekonstituiramo s 5 ml sterilne vode za injekcije in zmešamo s primernim volumnom 0,9 odstotnega natrijevega klorida za injekcije ali s 5 odstotno raztopino dekstroze za intravenozno dajanja.As one example of a suitable dosage form for a substantially homogeneous parental plasminogen activator in parenteral form useful herein is a viola containing 25000 IU plasminogen activator activity, 25 mg mannitol and 45 mg NaCl, which can be reconstituted with 5 ml sterile water for injection and mixed with a suitable volume of 0.9% sodium chloride for injection or with a 5% dextrose solution for intravenous administration.
G. Natančen opis rekombinantnega človeškega t-PAG. Accurate description of recombinant human t-PA
Strukturo določene izvedbe človeškega t-PA, pripravljenega v tukajšnjih primerih, smo preučevali v določenih detajlih, tako v smislu pojasnjevanja sekvence gena za kodiranje, kot v smislu tehnik proteinske biokemije. Trenutno razumevanje strukture proteina je ponazorjeno na sliki 12.The structure of a particular embodiment of human t-PA prepared in the examples herein has been studied in certain detail, both in terms of explaining the coding gene sequence and in terms of protein biochemistry techniques. The current understanding of protein structure is illustrated in Figure 12.
Collen in sodelavci (88) so prav tako že prej demonstrirali, da se človeški dvojnoverižni t-PA tvori s proteolitskim cepljenjem enoverižnih molekul dva polipeptida, ki sta spojena z disulfidno vezjo. Tukajšnje delo omogoča zaključek, da je težka veriga (30882 molekulska masa) izvedena iz NH2 terminalnega dela, lahka veriga (28126 molekulska masa) pa obsega COOH, terminalno regijo. N-terminalno sekvenciranje dvoverižne molekule sugerira, da se dvojnoverižna oblika generira s cepitvijo enojne arginil-izolevcin vezi (slika 12; narisana puščica).Collen and colleagues (88) have also previously demonstrated that human double-stranded t-PA is formed by proteolytic cleavage of single-stranded molecules of two polypeptides that are coupled by a disulfide bond. The work done here concludes that the heavy chain (30882 molecular weight) is derived from the NH 2 terminal portion, and the light chain (28126 molecular weight) comprises COOH, the terminal region. N-terminal sequencing of the double-stranded molecule suggests that the double-stranded form is generated by cleavage of a single arginyl-isoleucine bond (Fig. 12; drawn arrow).
Primarna struktura dela regije težke verige človeškega t-PA (slika 12) odkriva visoko stopnjo homologije sekvence s kringle regijami plazminogena (89) in prototrombina (40, 41 kringle regija se nanaša na karakteristično trojno disulfidno strukturo, ki je bila na začetku odkrita v pro-fragmentu protrombina, katerega je prvi natančno opisal Magnuson et al (91, 92). Iz primarne sekvence t-PA sta vidni takoimenovani kringle regiji s po 82 aminokislinami, ki imajo visoko stopnjo homologije s 5 kringle regijami plazminogena. Preostalih 91 N-terminalnih aminokislin ima malo homologije s konvencionalno kringle regijo. Vendar pa lahko predvidevamo, da ima lahko ta regija strukturo, ki vsebuje večkratne disulfidne vezi, saj se tu nahaja 11 dodatnih cisteinskih ostankov.The primary structure of part of the human t-PA heavy chain region (Figure 12) reveals a high degree of sequence homology with the plasminogen kringle regions (89) and prototrombin (40, 41 kringle region refers to the characteristic triple disulfide structure initially discovered in the pro the prothrombin fragment, first described precisely by Magnuson et al (91, 92) The primary t-PA sequence shows the so-called 82 amino acid kringle regions, which have a high degree of homology to the 5 kringle plasminogen regions. amino acids have little homology to the conventional kringle region, however, it can be assumed that this region may have a structure containing multiple disulfide bonds, as 11 additional cysteine residues are located here.
Katalitsko mesto lahke verige človeškega t-PA, takoimenovana regija serin proteaze se, kakor v drugih serinskih encimih, najverjetneje tvori s pomočjo ostankov histidina322, asparaginske kisline371 in serina47g. Nadalje so aminokislinske sekvence, ki obkrožajo te ostanke, zelo homologne z ustreznimi deli drugih serin proteaz, kot so tripsin, protrombin in plazminogen.The human t-PA light chain catalytic site, the so-called serine protease region, is most likely formed, as in other serine enzymes, by residues of histidine 322 , aspartic acid 371, and serine 47g . Furthermore, the amino acid sequences surrounding these residues are very homologous with the corresponding portions of other serine proteases, such as trypsin, prothrombin, and plasminogen.
Ne da bi zanemarili dejstvo, da so navedene določene želene izvedbe, je jasno, da predloženi izum z njimi ni omejen, ampak je omejen le z zakonskim obsegom predloženih zahtevkov.Without neglecting the fact that certain desired embodiments are indicated, it is clear that the present invention is not limited thereto, but limited only by the legal scope of the claims submitted.
BibliografijaBibliography
1. United States Patent No. 3355361.1. United States Pat. 3355361.
2. United States Patent No. 3926727.2. United States Pat. 3926727.
3. United States Patent No. 4029767.3. United States Pat. 4029767.
4. United States Patent No. 4258030.4. United States Pat. 4258030.
5. United States Patent No. 4271150.5. United States Pat. 4271150.
6. European Patent Application Publn. No. 0037687.6. European Patent Application Publn. No. 0037687.
7. Rijken, D.C., Plasminogen Activator from Human Tissue, Krips Repro Meppel, 1980.7. Rijken, D.C., Plasminogen Activator from Human Tissue, Krips Repro Meppel, 1980.
8. United States Patent No. 3555000.8. United States Pat. 3555000.
9. United States Patent No. 3998947.9. 3998947.
10. United States Patent No. 4245051.10. 4245051.
11. European Patent Application Publn. No. 0023860.11. European Patent Application Publn. No. 0023860.
12. United States Patent No. 4083961.12. 4083961.
13. United States Patent No. 4177262.13. United States Pat. 4177262.
14. United States Patent No. 3082612.14. United States Pat. 3082612.
15. Wallen, P., Proč. Serono $ymp. 9, 91 (1977).15. Wallen, P., Away. Serono $ ymp. 9, 91 (1977).
16. Thorsen, S., et al., Thrombos. Oiathes. haemorrh. 28, 65 (1972)16. Thorsen, S., et al., Thrombos. Oiathes. haemorrh. 28, 65 (1972).
17. Col len, Thrombos. Haemostas. 43, 77 (1980).17. Col len, Thrombos. Haemostas. 43, 77 (1980).
18. Wiman et al., Nature 272, 549 (1978).18. Wiman et al., Nature 272, 549 (1978).
19. European Patent Application Publn. No. 0041766.19. European Patent Application Publn. No. 0041766.
20. Vleimar, W., et aL, The Lancet Vol. II, No. 8254, p. 1018 (1981)20. Vleimar, W., et aL, The Lancet Vol. II, No. 2 8254, p. 1018 (1981)
21. British Patent Application Publn. No. 2007676A.21. British Patent Application Publn. No. 2007676A.
22. Metzel, American Scientist 68, 664 (1980).22. Metzel, American Scientist 68, 664 (1980).
23. Microbiology, 2d Ed., Harper and Row Publications, Inc., <23. Microbiology, 2d Ed., Harper and Row Publications, Inc., <
Hagerstown, Maryland (1973), esp. pp. 1122 et seg.Hagerstown, Maryland (1973), esp. pp. 1122 et seg.
24. Scientific American 245, 106 (1981).24. Scientific American 245, 106 (1981).
25. British Patent Application Publn. No. 2055382A.25. British Patent Application Publn. No. 2055382A.
26. German Offenlegungsschrift 2644432.26. German Offenlegungsschrift 2644432.
27. Chang et al.., Nature 275, 617 (1978).27. Chang et al., Nature 275, 617 (1978).
28. Itakura et ak, Science 198, 1056 (1977).28. Itakura et al., Science 198, 1056 (1977).
29. Goeddel et al., Nucleic Acids Research 8, 4057 (1980).29. Goeddel et al., Nucleic Acids Research 8, 4057 (1980).
30. European Patent Application Publn. No. 0036776.30. European Patent Application Publn. No. 0036776.
31. Siebenlist et al.., Celi 20, 269 (1980).31. Siebenlist et al., Full 20, 269 (1980).
32. Stinchcomb et al.., Nature 282, 39 (1979).32. Stinchcomb et al., Nature 282, 39 (1979).
33. Kingsman et al., Gene 7. 141 (1979).33. Kingsman et al., Gene 7. 141 (1979).
34. Tschumper et_ ak, Gene 10, 157 (1980).34. Tschumper et al, Gene 10, 157 (1980).
35. Mortimer et al., Microbio!ogica) Reviews 44, 519 (198 ).35. Mortimer et al., Microbiogica) Reviews 44, 519 (198).
36. Miozzari et al_., Journal of Bacteriology 134, 48 (1978).36. Miozzari et al., Journal of Bacteriology 134, 48 (1978).
37. Jones, Genetics 85, 23 (1977).37. Jones, Genetics 85, 23 (1977).
38. Hitzeman, et al., J. Biol. Chem. 255, 12073 (1980).38. Hitzeman, et al., J. Biol. Chem. 255, 12073 (1980).
39. Hess et al., J. Adv. Enzyme Regul. 7, 149 (1968).39. Hess et al., J. Adv. Enzyme Regul. 7, 149 (1968).
KK
40. Holland et_ al_., Biochemistry 17, 4900 (1978).40. Holland et al., Biochemistry 17, 4900 (1978).
41. Bostian et al_., Proc. Natl. Acad. Sci. (USA) 77, 4504 (1980).41. Bostian et al., Proc. Natl. Acad. Sci. (USA) 77, 4504 (1980).
42. The Molecular Biology of Yeast (Aug 11-18, 1981), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.42. The Molecular Biology of Yeast (Aug 11-18, 1981), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
43. Chambon, Ann. Rev. Biochemistry, 44, 613 (1975).43. Chambon, Ann. Rev. Biochemistry, 44, 613 (1975).
44. Tissue Cul ture, Academic Press, Kruse and Patterson eds, (1973).44. Tissue Cul tures, Academic Press, Kruse and Patterson eds, (1973).
45. Gluzman, Celi 23, 175 (1981).45. Gluzman, Cel 23, 175 (1981).
46. Boli var et al., Gene 2, 95 (1977).46. Boli var et al., Gene 2, 95 (1977).
47. Lusky et £1_., Nature 293, 79 (1981).47. Lusky et al., Nature 293, 79 (1981).
48. Gluzman et al., Cold Spring Harbor Symp. Quant. Biol. 44, 293 (1980).48. Gluzman et al., Cold Spring Harbor Symp. Quant. Biol. 44, 293 (1980).
49. Fiers et al_., Nature 273, 113 (1978).49. Fiers et al., Nature 273, 113 (1978).
50. Reddy et al., Science 200, 494 (1978).50. Reddy et al., Science 200, 494 (1978).
51. Crea et_ ab, Nucleic Acids Research 8, 2331 (1980).51. Crea et_ ab, Nucleic Acids Research 8, 2331 (1980).
52. Goeddel et al., Nature 287, 411 (1980).52. Goeddel et al., Nature 287, 411 (1980).
53. Gray et ab, Nature 295, 503 (1982).53. Gray et ab, Nature 295, 503 (1982).
54. Oppermann et al., Virology 108, 47 (1981).54. Oppermann et al., Virology 108, 47 (1981).
55. Ward et ab, J. Virob 9, 61 (1972).55. Ward et ab, J. Virob 9, 61 (1972).
56. Aviv et ab, Proč. Natb Acad. Sci. (USA) 69, 1408 (1972)56. Aviv et ab, Proc. Natb Acad. Sci. (USA) 69, 1408 (1972)
57. Lehrach et ab, Biochetnistry 16» 4743 (1977).57. Lehrach et ab, Biochetnistry 16 »4743 (1977).
58. Lynch et ab, Virology 98, 251 (1979).58. Lynch et ab, Virology 98, 251 (1979).
59. Lodish, Am. Rev, of Biochem. 45, 40 (1976).59. Lodish, Am. Rev, of Biochem. 45, 40 (1976).
60. Pelhani et ab, Eur. J. Biochem. 43, 247 (1976).60. Pelhani et ab, Eur. J. Biochem. 43, 247 (1976).
61. BI obel, etat, J. Celi Bio1ogy 67, 852 (1975).61. BI obel, etat, J. Celi Bio1ogy 67, 852 (1975).
62. Shields et ab, J. Bi ob Chemistry 253, 3753 (1978).62. Shields et ab, J. Bi ob Chemistry 253, 3753 (1978).
63. Laemmli, Nature 227, 680 (1970).63. Laemmli, Nature 227, 680 (1970).
64. Bonner et ab, Eur. J. Biochem. 46, 83 (1974).64. Bonner et ab, Eur. J. Biochem. 46, 83 (1974).
65. Goeddel et al., Nature 281, 544 (1979).65. Goeddel et al., Nature 281, 544 (1979).
66. Uickens et ab, J. Biol. Chem. 253, 2483 (1978).66. Uickens et ab, J. Biol. Chem. 253, 2483 (1978).
67. Chang et ab, Nature 275, 617 (1978).67. Chang et ab, Nature 275, 617 (1978).
68. Bolivar et ab, Gene 2, 95 (1977).68. Bolivar et ab, Gene 2, 95 (1977).
0332L0332L
69. Grunstein et al., Proč. Natl. Acad. Sci. U.S.A. 72, 3961 (1975)69. Grunstein et al., Proc. Natl. Acad. Sci. U.S.A. 72, 3961 (1975).
70. Hanahan et al., Gene 10, 63 (1980).70. Hanahan et al., Gene 10, 63 (1980).
71. Birnboim et. al., Nucleic Acids Res. 7, 1513 (1979).71. Birnboim et. al., Nucleic Acids Res. 7, 1513 (1979).
72. Smith, Methods Enzymol. 65, 499 (1980).72. Smith, Methods Enzymol. 65, 499 (1980).
73. Messing et al., Nucleic Acids Res. 9, 309 (1981).73. Messing et al., Nucleic Acids Res. 9, 309 (1981).
74. Maxam et al., Methods in Enzymol. 65, 499 (1980).74. Maxam et al., Methods and Enzymol. 65, 499 (1980).
KK
75. Crea et al., Proč. Natl. Acad. Sci. 75, 5765 (1978).75. Crea et al., Off. Natl. Acad. Sci. 75, 5765 (1978).
76. Lawn et ak, Celi 15, 1157 (1978).76. Lawn et al, Cel 15, 1157 (1978).
77. Southern, 3. Mol. Biol. 98, 503 (1975).77. Southern, 3rd Mol. Biol. 98, 503 (1975).
78. Benton etak, Science 196, 180 (1977).78. Benton et al., Science 196, 180 (1977).
79. McGrath and Levinson, Nature 295, 423 (1982).79. McGrath and Levinson, Nature 295, 423 (1982).
80. BI in et al_., Nucleic Acid Res. 3^, 2303 (1976).80. BI in et al_., Nucleic Acid Res. 3 ^, 2303 (1976).
81. Lawn et al., Science 212, 1159 (1981).81. Lawn et al., Science 212, 1159 (1981).
82. Fritsch et ak, Celi 19, 959 (1980).82. Fritsch et al., Whole 19, 959 (1980).
83. Taylor et al., Biochem. Biophys. Acta 442, 324 (1976).83. Taylor et al., Biochem. Biophys. Acta 442, 324 (1976).
83b. Edman et. al., Eurooean 3. Biochem. 1, 80 (1967).83b. Edman et. al., Eurooean 3. Biochem. 1, 80 (1967).
84. Denhardt, Biochem. Biophys. Res. Comm. 23, 641 (1966).84. Denhardt, Biochem. Biophys. Really. Comm. 23, 641 (1966).
85. Wahl et al., Proč. Natl. Acad. Sci. (USAl 76, 3683 (1979).85. Wahl et al., Off. Natl. Acad. Sci. (USAl 76, 3683 (1979).
86. Davis et al., Advanced Bacterial Genetics, Cold Spring Harbor Laboratory, New York (1980).86. Davis et al., Advanced Bacterial Genetics, Cold Spring Harbor Laboratory, New York (1980).
87. Granelli-Piperno et_al_., 3. Exp. Med. 148, 223.87. Granelli-Piperno et_al_., 3rd Exp. Med. 148, 223.
88. Rijken et al., J. Biol. Chem. 256, 7035 (1981).88. Rijken et al., J. Biol. Chem. 256, 7035 (1981).
89. Sottrup-Jensen et al., Progress in Chemical Fibrinolysis and Thrombolysis, Vol. 3, Raven Press, Ν.Υ. p. 191 (1978)89. Sottrup-Jensen et al., Progress in Chemical Fibrinolysis and Thrombolysis, Vol. 3, Raven Press, Ν.Υ. p. 191 (1978)
90. Sothrup-Jensen et al., Proč. Natl. Acad. Sci. (USA) 72, 2577 (1975).90. Sothrup-Jensen et al., Off. Natl. Acad. Sci. (USA) 72, 2577 (1975).
91. Magnussen et al., Proteolysis and Physiologica1 Regulation, Ribbons et al., Eds., Academic Press, New York, p. 203 (1976).91. Magnussen et al., Proteolysis and Physiologica1 Regulation, Ribbons et al., Eds., Academic Press, New York, p. 203 (1976).
92. Magnussen et al., Proteases and Biological Control, Cold Spring Harbor Laboratory, Ν.Υ., p. 123 (1975).92. Magnussen et al., Proteases and Biological Control, Cold Spring Harbor Laboratory, Υ.Υ., p. 123 (1975).
93. Miller, Experiments in Molecular Genetics, p. 431-3, Cold Spring Harbor Lab., Cold Spring Harbor, New York (1972).93. Miller, Experiments in Molecular Genetics, p. 431-3, Cold Spring Harbor Lab., Cold Spring Harbor, New York (1972).
94. Reich, E., Proteases and Biological Control, (Ibid) p. 333-341.94. Reich, E., Proteases and Biological Control, (Ibid) p. 333-341.
95. Matsuo, 0., et al., Throm. Haemostasis 45 225 (1981).95. Matsuo, 0., et al., Throm. Haemostasis 45 225 (1981).
96. Koringer, C., et al., Throm. Haemostasis 46 561, 662 (1981).96. Koringer, C., et al., Throm. Haemostasis 46 561, 662 (1981).
97. Hoylaerts, Ή., et al., J. Biol. Chem. 257 2912 (1982).97. Hoylaerts, J., et al., J. Biol. Chem. 257 2912 (1982).
98. Koringer, C., et al., Thromb. Haemostasis 46 685 (1981).98. Koringer, C., et al., Thromb. Haemostasis 46 685 (1981).
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
YU99783A YU47397B (en) | 1982-07-14 | 1983-05-06 | PROCEDURE FOR OBTAINING HUMAN TISSUE PLASMINOGEN ACTIVATOR |
Publications (2)
Publication Number | Publication Date |
---|---|
SI8310997A true SI8310997A (en) | 1997-02-28 |
SI8310997B SI8310997B (en) | 1998-06-30 |
Family
ID=25552334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI8310997A SI8310997B (en) | 1983-05-06 | 1983-05-05 | Activator of a plasminogen of human tissue. |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI8310997B (en) |
-
1983
- 1983-05-05 SI SI8310997A patent/SI8310997B/en unknown
Also Published As
Publication number | Publication date |
---|---|
SI8310997B (en) | 1998-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0093619B2 (en) | Human tissue plasminogen activator, pharmaceutical compositions containing it, processes for making it, and DNA and transformed cell intermediates therefor | |
US4766075A (en) | Human tissue plasminogen activator | |
US5763253A (en) | Methods of preparing tissue plasiminogen activator derivative composition | |
EP0117059B1 (en) | Methods for producing human tpa and expression vectors therefor | |
US4853330A (en) | Human tissue plasminogen activator | |
AU626323B2 (en) | Tissue plasminogen activator having zymogenic or fibrin specific properties | |
FI88932B (en) | FRAMSTAELLNING AV FUNKTIONELLT MAENSKLIGT UROKINASPROTEIN | |
US5702938A (en) | Human tissue plasminogen activator | |
AU641449B2 (en) | Methods and materials for expression of human plasminogen variant | |
US5185259A (en) | Truncated human tissue plasminogen activator | |
EP0424405B1 (en) | Variants of plasminogen activators and processes for their production | |
SI8310997A (en) | Activator of a plasminogen of human tissue. | |
RU2046827C1 (en) | Process for preparing fabric-type plasminogene activator, strain of cultivated animal cells, fabric-type plasminogene activator cho producer | |
HRP950158A2 (en) | Human tissue plasminogen activator |