SI25771A - Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen - Google Patents
Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen Download PDFInfo
- Publication number
- SI25771A SI25771A SI201900003A SI201900003A SI25771A SI 25771 A SI25771 A SI 25771A SI 201900003 A SI201900003 A SI 201900003A SI 201900003 A SI201900003 A SI 201900003A SI 25771 A SI25771 A SI 25771A
- Authority
- SI
- Slovenia
- Prior art keywords
- gas
- heat exchanger
- gasification
- catalyst
- carburetor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/10—Continuous processes using external heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/30—Fuel charging devices
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/34—Grates; Mechanical ash-removing devices
- C10J3/36—Fixed grates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/34—Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/023—Reducing the tar content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/15—Details of feeding means
- C10J2200/158—Screws
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1246—Heating the gasifier by external or indirect heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1869—Heat exchange between at least two process streams with one stream being air, oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Industrial Gases (AREA)
Abstract
Predmetni izum razkriva napravo za uplinjanje trdnih materialov z vsebnostjo ogljika s poudarjeno koncentracijo katranov in njihovo katalitsko pretvorbo v ogljikov monoksid in vodik, ki vsebuje mešalnik (1) materiala za uplinjanje, ki vsebuje dozirne sisteme (2, 3, 4, 5), prvi transportni sistem (6), drugi transportni sistem (50), uplinjalnik (8), ki je obdan s prvim izmenjevalnikom toplote (28), katalitski reaktor, ki vsebuje mešalni del (16), dovodne sisteme (17, 18, 19), razdelilnik (20), katalizator(21), plamensko zaporo (22), vžigalno komoro (23), vžigalne elemente (24) in katalizatorsko sredico (25), ki je izvedena iz poroznega linearnega keramičnega nosilca in vsebuje množico vzporednih kanalov v obliki satja, drugi izmenjevalnik toplote (30), tretji izmenjevalnik toplote (33) in razvlaževalnik (36). Naprava omogoča uporabo nekvalitetnih ali kompleksnejših materialov z visokimi vsebnostmi vlage in/ali prahu s tem, da omogoča tvorjenje bistveno višjih vsebnost katranov v produktnem plinu, ki senato v katalitskem reaktorju uporabijo za avtotermni potek katalitske pretvorbe katranov brez povečevanja inertnih komponent v nastalem plinu (npr. N2 in CO2), hkrati pa višja koncentracija katranov linearno povečuje razmerje H2/CO v sinteznem plinu.The present invention discloses a device for gasification of carbon materials with a high concentration of tars and their catalytic conversion into carbon monoxide and hydrogen, containing a mixer (1) of gasification material containing dosing systems (2, 3, 4, 5), first conveyor system (6), second conveyor system (50), carburetor (8) surrounded by a first heat exchanger (28), a catalytic reactor comprising a mixing part (16), feed systems (17, 18, 19), distributor (20), catalyst (21), flame arrestor (22), ignition chamber (23), ignition elements (24) and catalyst core (25), which is made of a porous linear ceramic support and contains a plurality of parallel honeycomb channels , a second heat exchanger (30), a third heat exchanger (33) and a dehumidifier (36). The device allows the use of low-quality or more complex materials with high moisture and / or dust contents by allowing the formation of significantly higher tar contents in the product gas, which use the senate in the catalytic reactor for autothermal catalytic conversion of tars without increasing inert components in the resulting gas. N2 and CO2), while a higher tar concentration linearly increases the H2 / CO ratio in the synthesis gas.
Description
Naprava za uplinjanje trdnih materialov z vsebnostjo ogljika, s poudarjeno koncentracijo katranov in njihovo katalitsko pretvorbo v ogljikov monoksid in vodikDevice for gasification of solid materials with carbon content, with emphasized concentration of tars and their catalytic conversion into carbon monoxide and hydrogen
Področje izuma:Field of the invention:
Predmet izuma je naprava za uplinjanje materialov z vsebnostjo ogljika, za proizvodnjo čistega sinteznega plina.The subject of the invention is a device for gasification of carbon-containing materials for the production of pure synthesis gas.
Opis tehničnega problemaDescription of the technical problem
Tehnični problem, ki ga predmetni izum rešuje, je zagotoviti napravo za uplinjanje široke palete trdnih materialov z vsebnostjo ogljika, ki proizvaja produktni plin z visoko koncentracijo katranov in lahko uporablja materiale z veliko vsebnostjo lahkohlapnih ogljikovodikov (kot so na primer biomase vseh vrst, biološki odpadki, umetne mase, guma, mešani komunalni odpadki in podobno), kakor tudi z nizko vsebnostjo lahkohlapnih ogljikovodikov (kot je na primer premog ali oglje), pri čemer teh materialov za uplinjanje ni potrebno posebej pripravljati v smislu izločanja prahu in vlage oziroma jih homogenizirati in ki lahko vsebujejo tudi materiale s komponentami S in Cl.The technical problem solved by the present invention is to provide a gasification device for a wide range of solid materials with carbon content, which produces a product gas with a high concentration of tars and can use materials with a high content of volatile hydrocarbons (such as biomass of all kinds, biowaste , plastics, rubber, mixed municipal waste and the like), as well as low content of volatile hydrocarbons (such as coal or coal), these gasification materials need not be specially prepared in terms of dust and moisture removal or homogenized, and which may also contain materials with components S and Cl.
Naslednji tehnični problem, ki ga predmetni izum rešuje, je zagotoviti napravo za pretvorbo visokih koncentracij katranov v produktnem plinu, ki lahko vsebuje tudi trdne prašne delce in tudi katrane z visokimi molekulskimi masami, v CO in H2 oziroma v sintezni plin, s katalitsko reakcijo delne oksidacije, ki poteka ob povečani koncentraciji katranov v produktnem plinu, ki v reakciji služijo kot reaktant.Another technical problem solved by the present invention is to provide a device for converting high concentrations of tars in the product gas, which can also contain solid dust particles and also tars with high molecular weights, in CO and H 2 or in synthetic gas, by catalytic reaction. partial oxidation, which takes place at an increased concentration of tars in the product gas, which serve as a reactant in the reaction.
Stanje tehnikeState of the art
Naprave za uplinjanje materialov z vsebnostjo ogljika za namen proizvodnje sinteznega plina so dobro poznane, razvite in v redni uporabi ter jih je mogoče razdeliti v:Carbon gasification plants for the production of synthetic gas are well known, developed and in regular use and can be divided into:
- uplinjalnike s stabilno plastjo materiala (Fixed bed). Pri teh obstajata dve podskupini: a) sotočni uplinjalniki (downdraft), pri katerih se material za uplinjanje dozira z vrha ali s strani uplinjalnika, plin pa se odvaja sotočno s tokom materiala in b) protitočni uplinjalniki (updraft), kjer se material dozira od zgoraj, s strani ali od spodaj, plin pa se iz uplinjalnika odvaja zgoraj.- carburetors with a stable layer of material (Fixed bed). There are two subgroups of these: a) downdraft, in which the gasification material is dosed from the top or side of the carburetor, and the gas is discharged at the flow of the material, and b) updraft, where the material is dosed from above, from the side or from below, and the gas is discharged from the carburetor above.
~ uplinjalnike z lebdečo plastjo (Flow bed), kjer ob intenzivnem mešanju in prenosu toplote v plasti ni izrazite smeri dotoka zraka in goriva. Podskupine te tehnologije so: a) uplinjalniki z mehurčkasto plastjo, kjer zrak dovajamo s hitrostjo okrog 1 m/s, del uplinjevalnih reakcij pa poteka v celoti v prostem sloju nad plastjo iz inertnega materiala, ter b) uplinjalnik s krožečo plastjo, kjer so hitrosti gibanja zraka višje (>3 m/s), večina reakcij uplinjanja pa poteka znotraj lebdeče plasti, katere inertni material iz produktnega plina filtriramo in vračamo v osnovno plast.~ Flow bed gasifiers, where there is no pronounced direction of air and fuel flow during intensive mixing and heat transfer in the bed. Subgroups of this technology are: a) bubble layer gasifiers, where air is supplied at a speed of about 1 m / s, and part of the gasification reactions takes place entirely in a free layer above the layer of inert material, and b) circular gasifier, where the velocities air movements higher (> 3 m / s), and most gasification reactions take place inside the suspended layer, the inert material from the product gas is filtered and returned to the base layer.
Protitočni uplinjalniki s stabilno plastjo goriva po stanju tehnike so opisani v patentih US 835.847, US 4.971.599 in US 5.138.957. V omenjenih primerih gre za uplinjalnike kjer gorivo dovajamo skozi sredino rešetke od spodaj. Rešetka je fiksna plošča z odprtinami za vpihovanje zraka in odvajanje pepela. Proces uplinjanja poteka po celem stolpcu materiala, ki se tvori v uplinjalniku in sicer je v zgornji plasti cona sušenja, sledi cona pirolize, ter cona redukcije, spodaj, tik nad rešetko pa je cona oksidacije. Produktni plin, ki se tvori v kupu tlečega materiala se odvaja skozi odprtino na gornjem delu uplinjalnika. Takšni uplinjalniki omogočajo uporabo širokega spektra materialov za uplinjanje, ki jih ni potrebno posebej pripravljati in lahko vsebujejo prah oziroma je lahko v obliki žaganja in z visoko vsebnostjo vlage. Značilnost opisanega tipa uplinjalnikov je, da produktni plin vsebuje visoke koncentracije katranov, zato se večinoma uporabljajo kot predkurišča kotlov, kjer produktni plin zgoreva in se izkorišča zgolj toplotna energija, kot tudi možnost uporabe slabših goriv, ki so neprimerna za proces zgorevanja neposredno v kotlu. Uplinjalniki tega tipa so robustni in procesa ni mogoče natančno nadzorovati, zato se zelo redko uporabljajo za proizvodnjo sinteznega plina.State-of-the-art fuel-flow countercurrent gasifiers are described in U.S. Pat. No. 835,847, U.S. Pat. No. 4,971,599 and U.S. Pat. No. 5,138,957. In the mentioned cases, these are carburetors where the fuel is fed through the middle of the grate from below. The grille is a fixed plate with openings for air blowing and ash removal. The gasification process takes place along the entire column of material formed in the carburetor, namely the drying zone in the upper layer, followed by the pyrolysis zone and the reduction zone, and below, just above the grate, there is an oxidation zone. The product gas formed in the pile of flammable material is discharged through an opening in the upper part of the carburetor. Such carburetors allow the use of a wide range of gasification materials that do not require special preparation and may contain dust or may be in the form of sawdust and with a high moisture content. The characteristic of the described type of gasifiers is that the product gas contains high concentrations of tars, so they are mostly used as pre-combustion boilers, where the product gas burns and uses only thermal energy, as well as the possibility of using inferior fuels unsuitable for combustion directly in the boiler. Carburetors of this type are robust and the process cannot be precisely controlled, so they are very rarely used to produce synthesis gas.
Patent US 2008/0196308, predstavlja tehnološko rešitev uplinjalnika z dvojnim plaščem, ki deluje kot regenerativni grelnik posode za uplinjanje. Z njim proizvajajo visokoenergijski sintezni plin z nizko koncentracijo katranov, ki pa so še vedno previsoke za nadaljnjo uporabo plina. Zaradi segrevanja posode za uplinjanje poteka v procesu bolj piroliza, kar povzroča, da znatni del ogljika ostaja nevezan v obliki oglja v pepelu, kot neželen stranski produkt.U.S. Patent 2008/0196308 discloses a technological solution for a double-jacket carburetor that acts as a regenerative gasifier tank heater. It produces high-energy synthesis gas with a low concentration of tars, which are still too high for further gas use. Due to the heating of the gasification vessel, more pyrolysis takes place in the process, causing a significant part of the carbon to remain unbound in the form of charcoal in the ash as an unwanted by-product.
Pretvorba katranovTar conversion
V kolikor je namen uplinjanja proizvodnja čistega sinteznega plina iz trdnih materialov za uplinjanje, odstranjevanje katranov rešujemo s primarnimi ali sekundarnimi ukrepi. Primarni ukrepi so ukrepi znotraj uplinjalnika in sicer ustrezna konstrukcija oziroma tip uplinjalnika in/ali ustrezno pripravljeno gorivo. Vendar pa obstoječi tipi uplinjalnikov ne zadoščajo za proizvodnjo popolnoma čistega sinteznega plina. Zaradi tega s sekundarnimi ukrepi (za uplinjalnikom) z dodatnimi postopki poskrbimo za čiščenje produktnega plina. Sekundami ukrepi se lahko delijo na fizično odstranjevanje katranov (filtracija, pranje z vodo) in na pretvorbo (razbijanje, cracking, reforming) katranov (termalno ali katalitsko), ki predstavlja znatno prednost pred fizičnim izločanjem katranov. Katalitski postopki pretvorbe katranov oziroma dolgih ogljikovodikov v krajše spojine oziroma CO in H2 so dobro uveljavljen postopek v petrokemični industriji. Na področju uplinjanja trdnih materialov potekajo številne raziskave uporabe katalizatorjev. V osnovi se uporablja katalitska reakcija delne oksidacije in/ali parne pretvorbe katranov. Katalitske reakcije potekajo na določeni visoki temperaturi in za vzdrževanje delovne temperature porabljajo notranji ali zunanji vir toplote. Prednost katalitske pretvorbe katranov v primerjavi s termalno pretvorbo je hitrost reakcije in s tem manjša poraba zunanjih virov energije.If the purpose of gasification is the production of pure synthetic gas from solid materials for gasification, the removal of tars is solved by primary or secondary measures. The primary measures are measures within the carburetor, namely the appropriate construction or type of carburetor and / or properly prepared fuel. However, existing types of carburetors are not sufficient to produce perfectly pure synthesis gas. For this reason, secondary procedures (behind the carburetor) with additional procedures take care of the purification of the product gas. The seconds measures can be divided into physical tar removal (filtration, washing with water) and tar conversion (breaking, cracking, reforming) (thermal or catalytic), which represents a significant advantage over the physical removal of tars. Catalytic processes for the conversion of tars or long hydrocarbons into shorter compounds or CO and H2 are a well-established process in the petrochemical industry. Numerous studies of the use of catalysts are underway in the field of gasification of solid materials. Basically, a catalytic reaction of partial oxidation and / or vapor conversion of tars is used. Catalytic reactions take place at a certain high temperature and use an internal or external heat source to maintain the operating temperature. The advantage of catalytic conversion of tars compared to thermal conversion is the reaction rate and thus lower consumption of external energy sources.
Tehnični problem pri raziskovanih sistemih katalitske pretvorbe z delno oksidacijo je v uporabi produktnega plina z zelo nizkimi koncentracijami katranov. V kolikor produktni plin vsebuje malo katranov, se za vzdrževanje delovne temperature katalizatorja uporablja popolna oksidacija dela že formiranega sinteznega plina, s čimer se povečuje vsebnost inertnih komponent (npr. CO2 in N2), s tem pa znižuje njegova kalorična vrednost in učinkovitost celotnega sistema. Zaradi tega je energetska bilanca sistema bistveno boljša, če produktni plin vsebuje čim večjo koncentracijo katranov, ki so sami po sebi visoko kalorično gorivo. Uporaba plina z višjo koncentracijo katranov je opisana v patentu US 7.459.594. Gre za katalizator z delno oksidacijo, kjer se produktni plin in oksidant zmešata tik nad katalitsko plastjo, pri čemer oksidant dovajamo skozi sloj hladne plazme, ki mešanico tudi takoj vžge. Sistem dobro deluje pri nižjih pretokih, kjer je mogoče zagotoviti zadostno homogenizacijo zmesi. Pri večjih pretokih pa nastanejo anomalije, kar pomeni, da na nekaterih delih katalizatorja poteka intenzivna oksidacija in na nekaterih ne. To je predvsem posledica delovanja plazme in točkovnega dovajanja oksidanta, ki se z večanjem pretokov omejujeta na vedno ožji pas oziroma presek delovanja, tako da oksidant in produktni plin pred vstopom v katalizator ne omogočata zagotavljanja dovolj homogene zmesi. Zaradi tega pride na določenih delih katalizatorja do visokih temperatur, kjer se začnejo v obliki saj oziroma ogljenega prahu izločati velike količine fiksnega ogljika, del produktnega plina in/ali zraka pa prehaja skozi katalizator v nereagirani obliki, torej s prisotnimi katrani.The technical problem with the investigated catalytic conversion systems with partial oxidation is in the use of product gas with very low tar concentrations. If the product gas contains little tar, complete oxidation of part of the already formed synthesis gas is used to maintain the operating temperature of the catalyst, thus increasing the content of inert components (eg CO2 and N2), thereby reducing its calorific value and efficiency of the whole system. As a result, the energy balance of the system is significantly better if the product gas contains the highest possible concentration of tars, which are themselves a high-calorie fuel. The use of a gas with a higher tar concentration is described in U.S. Pat. No. 7,459,594. It is a catalyst with partial oxidation, where the product gas and the oxidant are mixed just above the catalyst layer, where the oxidant is fed through a layer of cold plasma, which also ignites the mixture immediately. The system works well at lower flows where sufficient homogenization of the mixture can be ensured. At higher flows, however, anomalies occur, which means that some parts of the catalyst undergo intense oxidation and some do not. This is mainly due to the action of plasma and point supply of oxidant, which are limited to an ever narrower band or cross-section of the increase in flow, so that the oxidant and product gas before entering the catalyst do not provide a sufficiently homogeneous mixture. As a result, high temperatures occur in certain parts of the catalyst, where large amounts of fixed carbon begin to be emitted in the form of soot or carbon dust, and part of the product gas and / or air passes through the catalyst in unreacted form, ie with tar present.
Homogenizacija zmesi za parcialno oksidacijoHomogenization of a mixture for partial oxidation
Pri katalitski pretvorbi katranov s procesom delne oksidacije se produktnemu plinu pred vstopom v katalizator primeša ustrezna količina oksidanta (kisik ali zrak). Običajno je v tej mešanici izjemno malo kisika, od 1 do 3 odstotkov. Ob tem je izjemno pomembno, da je mešanica čim bolj homogena, preden se sprožijo reakcije delne oksidacije v katalizatorju. Homogenost zmesi preprečuje pojav zgoraj opisanih vročih mest da ne pride do zgoraj opisanih problemov. Rešitev je v ločitvi mešalnega dela od območja reakcije z ustrezno plamensko zaporo, kakor jo opisuje patent US 2007/0212276, kjer je katalizator sestavljen iz komore, kamor dovajamo produktni plin in oksidant, mešala z integrirano plamensko zaporo v obliki kovinske penaste gobe in stacionarnih mešal, ter posode s katalizatorjem. Opisana rešitev se uporablja za pretvorbo čistih dolgih ogljikovodikov v krajše produkte, kot tudi za proizvodnjo H2 in CO (sintezni plin), na primer iz metana, ni pa ustrezna za predelavo produktnega plina iz uplinjevalne naprave, ki vsebuje večjo ali manjšo koncentracijo katranov in je obremenjen s prahom, saj bi se v tem patentu opisana plamenska zapora oziroma mešalo hitro blokiralo z nanosi katrana in prahu, hkrati pa taka naprava predstavlja tudi veliko tlačno oviro in mesto z intenzivno disipacijo toplote, kar je nezaželeno.In the catalytic conversion of tars by a partial oxidation process, an appropriate amount of oxidant (oxygen or air) is added to the product gas before entering the catalyst. There is usually extremely little oxygen in this mixture, 1 to 3 percent. It is extremely important that the mixture is as homogeneous as possible before the partial oxidation reactions in the catalyst are triggered. The homogeneity of the mixture prevents the occurrence of the hot spots described above so that the problems described above do not occur. The solution is to separate the mixing part from the reaction zone with a suitable flame arrestor as described in US Pat. No. 2007/0212276, where the catalyst consists of a chamber to which the product gas and oxidant are supplied with an integrated flame arrestor in the form of a metal foam sponge and stationary stirrers. , and catalyst vessels. The described solution is used for the conversion of pure long hydrocarbons into shorter products, as well as for the production of H2 and CO (synthetic gas), for example from methane, but is not suitable for processing product gas from a gasification plant containing higher or lower tar concentration. loaded with dust, as the flame barrier or stirrer described in this patent would be quickly blocked by the application of tar and dust, and at the same time such a device also represents a large pressure barrier and a place with intense heat dissipation, which is undesirable.
Integracija komponent napraveDevice component integration
Običajno se sistemi proizvodnje čistega sinteznega plina postavijo kot niz samostojnih naprav, ki sledijo toku procesa. Integracija komponent v celoto je predstavljena na primer v patentu US 8.936.886, v katerem je opisan sistem proizvodnje čistega sinteznega plina z uporabo protitočnega uplinjalnika, ki mu na izhodni cevi takoj sledi naprava za termično pretvorbo katranov v produktnem plinu in s tem proizvodnjo čistega sinteznega plina. Delovna temperatura v drugem reaktorju je dosežena z rekuperacijo, zlasti pa z dodajanjem oksidanta v (neočiščen) produktni plin, ki v samem toku plina sproži polno oksidacijo dela produktnega plina. Zaradi potrebnih dolgih zadrževalnih časov je za proces termične pretvorbe katranov potrebno dovajati razmeroma veliko oksidanta, s čimer pa se bistveno zmanjša kurilna vrednost tako očiščenega sinteznega plina, zato je omenjeni sistem bolj uporaben za proizvodnjo toplote.Typically, clean synthesis gas production systems are positioned as a set of stand-alone devices that follow the flow of the process. The integration of the components into the whole is presented, for example, in U.S. Pat. No. 8,936,886, which describes a system for producing pure synthesis gas using a countercurrent gasifier, immediately followed by a device for thermally converting tars to product gas and thus producing pure synthesis gas. gas. The operating temperature in the second reactor is achieved by recuperation, and in particular by the addition of an oxidant to the (crude) product gas, which triggers the complete oxidation of part of the product gas in the gas stream itself. Due to the required long retention times, a relatively large amount of oxidant is required for the process of thermal conversion of tars, which significantly reduces the calorific value of the purified synthesis gas, so this system is more useful for heat production.
Primer integracije uplinjalnika in katalizatorja predstavlja tudi patent CN 2008/10.021.485, kjer je katalizatorski del nameščen neposredno nad uplinjalnik in je ločen le z lijakasto zožitvijo posode. Uporabljen je katalizator odporen na S (dolomit, dodan CaO). Takoj za fazo uplinjanja je faza katalitske pretvorbe, ki ji sledi čiščenje plinov. V opisanem sistemu se proizvaja produktni plin s čim manjšo vsebnostjo katranov, kar omejuje paleto uporabljenega materiala za uplinjanje. Prav tako katalizator ne more delovati s procesom delne oksidacije, saj je optimalno dovajanje oksidanta in priprava homogene mešanice praktično neizvedljiva.An example of the integration of a carburetor and a catalyst is also the patent CN 2008 / 10.021.485, where the catalyst part is located directly above the carburetor and is separated only by a funnel-shaped narrowing of the vessel. An S-resistant catalyst (dolomite added CaO) was used. Immediately after the gasification phase is the catalytic conversion phase followed by gas purification. The described system produces a product gas with the lowest possible tar content, which limits the range of gasification material used. Also, the catalyst cannot operate with a partial oxidation process, as the optimal supply of oxidant and preparation of a homogeneous mixture is practically impossible.
Razlaga uporabljenih izrazovExplanation of terms used
V nadaljnjem opisu izuma sta uporabljena izraza »produktni plin« in »sintezni plin«. Za namen opisa predmetnega izuma je »produktni plin« plin, ki prihaja iz uplinjalnika v katalitski reaktor, kjer je predelan v »sintezni plin«.In the following description of the invention, the terms "product gas" and "synthesis gas" are used. For the purpose of describing the present invention, a "product gas" is a gas coming from a gasifier to a catalytic reactor, where it is processed into a "synthesis gas".
Bistvena razlika med produktnim plinom in sinteznim plinom je v tem, da produktni plin vsebuje katrane in prašne delce, medtem, ko sintezni plin sestoji v bistvu iz CO in H2, je brez katranov in prašnih delcev ga ni potrebno dodatno čistiti.The essential difference between a product gas and a synthesis gas is that the product gas contains tars and dust particles, while the synthesis gas consists essentially of CO and H2, without tar and dust particles it does not need to be further cleaned.
Nadalje izraz »čist sintezni plin brez vode oziroma vlage« pomeni plinsko mešanico, ki je brez katranov in jo sestavljajo CO, H2, ter dodatno CO2, CH4 in minimalen delež vlage.Furthermore, the term "pure synthetic gas without water or moisture" means a tar-free gas mixture consisting of CO, H2, and additionally CO2, CH4 and a minimum moisture content.
Kratek opis slikShort description of the pictures
Predmetni izum je v nadaljevanju opisan s pomočjo priloženih slik, ki prikazujejo:The present invention is further described by means of the accompanying drawings, which show:
Slika 1: shematski prikaz linije za uplinjanje po predmetnem izumu;Figure 1: Schematic representation of a gasification line according to the present invention;
Slika 2: prvi del linije po predmetnem izumu (doziranje materiala za uplinjanje in protitočni uplinjalnik);Figure 2: first part of a line according to the present invention (dosing of gasification material and countercurrent gasifier);
Slika 3: drugi del linije po predmetnem izumu (katalitski reaktor in tehnološka priprava sinteznega plina);Figure 3: second part of the line according to the present invention (catalytic reactor and technological preparation of synthetic gas);
Slika 4: shematski prikaz integracije katalitskega reaktorja in sotočnega uplinjalnika;Figure 4: Schematic representation of the integration of a catalytic reactor and a flow carburetor;
Slika 5: shematski prikaz integracije katalitskega reaktorja z enojnim katalizatorjem izven protitočnega uplinjalnika po predmetnem izumu;Figure 5: Schematic representation of the integration of a catalytic reactor with a single catalyst outside the countercurrent gasifier according to the present invention;
Slika 6: shematski prikaz integracije katalitskega reaktorja z več katalizatorji izven protitočnega uplinjalnika po predmetnem izumu;Figure 6: Schematic representation of the integration of a catalytic reactor with several catalysts outside the countercurrent gasifier according to the present invention;
Slika 7: shematski prikaz integracije katalitskega reaktorja z več katalizatorji v pokrovu protitočnega uplinjalnika po predmetnem izumu;Figure 7: Schematic representation of the integration of a multi-catalyst catalytic reactor in a countercurrent carburetor cover according to the present invention;
Kratek opis izumaBrief description of the invention
Predmetni izum zastavljeni tehnični problem rešuje z uvedbo naprave, ki omogoča uplinjanje trdnih materialov z vsebnostjo ogljika in pretvorbo katranov v CO in H2 oziroma sintezni plin.The present invention solves the technical problem by introducing a device that enables gasification of solid materials with carbon content and conversion of tars into CO and H2 or synthetic gas.
Naprava za uplinjanje trdnih materialov z vsebnostjo ogljika po predmetnem izumu združuje dva tipa reaktorjev, ki jih je mogoče zgraditi in povečevati v poljubni velikosti, in sicer:The device for gasification of solid materials with carbon content according to the present invention combines two types of reactors that can be built and increased in any size, namely:
uplinjalnik materialov z vsebnostjo ogljika, kot je premog, lesna in biološka biomasa, komunalni in posebni odpadki, mulji iz čistilnih naprav ali bioplinam, materiali z vsebnostjo S in/ali Cl, kot na primer rjavi premog ali guma, ki proizvaja produktni plin z visoko koncentracijo katranov oziroma ogljikovodikov.carburetor of carbon-containing materials such as coal, wood and biological biomass, municipal and special waste, sewage sludge or biogas, materials with S and / or Cl content, such as brown coal or rubber producing high gas product gas concentration of tars or hydrocarbons.
katalitski reaktor, ki omogoča pretvorbo nastalih katranov/ogljikovodikov v produktnem plinu v CO in H2 in na izstopu zagotavlja sintezni plin z bistveno višjo vsebnostjo vodika in brez prisotnosti katranov tako, da sintezni plin ustreza kvalitativnim standardom za nadaljnjo uporabo, na primer v motorjih na notranje izgorevanje ali kot surovina za sintezo ogljikovodikov.a catalytic reactor that converts the resulting tars / hydrocarbons in the product gas to CO and H2 and provides a synthesis gas with a significantly higher hydrogen content and no tar at the outlet, so that the synthesis gas meets the quality standards for further use, for example in internal combustion engines. combustion or as a feedstock for the synthesis of hydrocarbons.
Naprava po predmetnem izumu je shematsko prikazana na sliki 1 in detajlno na sliki 2 ter sliki 3 in sestoji iz naslednjih bistvenih delov:The device according to the present invention is schematically shown in Figure 1 and in detail in Figure 2 and Figure 3 and consists of the following essential parts:
mešalnik,mixer,
- prvi transportni sistem, drugi transportni sistem,- first transport system, second transport system,
- uplinjevalni reaktor, katalitski reaktor, in sistem za tehnološko obdelavo sinteznega plina.- gasification reactor, catalytic reactor, and synthetic gas treatment system.
Napravo po predmetnem izumu sestavljajo:The device according to the present invention consists of:
- mešalnik 1 materiala za uplinjanje, ki vsebuje dozirne sisteme 2, 3, 4, 5, napravo za ugotavljanje prisotnosti spojin S in Cl v materialu za uplinjanje, napravo za tehtanje in napravo za mletje;- a mixer 1 of gasification material, comprising dosing systems 2, 3, 4, 5, a device for detecting the presence of compounds S and Cl in the gasification material, a weighing device and a grinding device;
prvi transportni sistem 6,first transport system 6,
- drugi transportni sistem 50, uplinjalnik 8, ki je obdan s prvim izmenjevalnikom toplote 28 in vsebuje zgornji del 14, odvodno cev 15, rešetko 9, vrtljivo lopato 52, tretji transportni sistem 53, celično zaporo 11, vžigalni sistem 56, dovodna sistema 12, 13, merilnik temperature 57 in merilnik nivoja surovine 58,- a second conveyor system 50, a carburetor 8 surrounded by a first heat exchanger 28 and comprising an upper part 14, a discharge pipe 15, a grate 9, a rotating shovel 52, a third conveyor system 53, a cell barrier 11, an ignition system 56, a supply system 12 , 13, temperature meter 57 and raw material level meter 58,
- katalitski reaktor, ki sestoji iz mešalnega dela 16, z dovodi 17, 18, 19, razdelilnika 20, katalizatorja 21, plamenske zapore 22, vžigalne komore 23, vžigalnih elementov 24 in katalizatorske sredice 25 obdane z grelci 26, drugega izmenjevalnika toplote 30, tretjega izmenjevalnika toplote 33, in- a catalytic reactor consisting of a mixing part 16, with inlets 17, 18, 19, a distributor 20, a catalyst 21, a flame arrestor 22, an ignition chamber 23, ignition elements 24 and a catalyst core 25 surrounded by heaters 26, a second heat exchanger 30, the third heat exchanger 33, and
- razvlaževalnika 36, kjer drugi izmenjevalnik toplote 30, tretji izmenjevalnik toplote 33 in razvlaževalnik 36, tvorijo sistem za tehnološko obdelavo sinteznega plina.- a dehumidifier 36, wherein the second heat exchanger 30, the third heat exchanger 33 and the dehumidifier 36 form a synthesis gas treatment system.
Navedeni elementi naprave so medsebojno povezani tako, da naprava omogoča izvedbo postopka za uplinjanje trdnih materialov z vsebnostjo ogljika.These elements of the device are interconnected in such a way that the device allows the process for gasification of solid materials with carbon content.
Mešalnik 1 materiala za uplinjanje vsebuje dozirne sisteme, in sicer dozirni sistem 2 za doziranje materiala za uplinjanje, dozirni sistem 3 za doziranje neobveznih dodatkov materialu za uplinjanje (kot so na primer lesno žaganje, mulji iz čistilnih naprav ali težka frakcija komunalnih odpadkov), dozirni sistem 4 za doziranje adsorbenta za vezavo S in C1 in dozirni sistem 5 za doziranje vode, ki ga sestavlja dozirni ventil s šobo. Vsak dozirni sistem 4, 5 ima svoj zalogovnik 40 z dozirnim ventilom 41.The gasification material mixer 1 contains dosing systems, namely a gasification material dosing system 2, a dosing system 3 for dosing optional additives to the gasification material (such as wood sawdust, sewage sludge or heavy municipal waste fraction), a dosing system an adsorbent dosing system 4 for binding S and C1 and a water dosing system 5 consisting of a dosing valve with a nozzle. Each dosing system 4, 5 has its own hopper 40 with a dosing valve 41.
Nadalje mešalnik 1 materiala za uplinjanje vsebuje napravo za ugotavljanje prisotnosti spojin S in C1 v materialu za uplinjanje, napravo za tehtanje doziranih materialov in napravo za neobvezno mletje materiala za uplinjanje (niso prikazane).Furthermore, the gasifier material mixer 1 comprises a device for detecting the presence of compounds S and C1 in the gasification material, a device for weighing the dosage materials and a device for optionally grinding the gasification material (not shown).
Omenjeni mešalnik 1 materiala za uplinjanje ima v spodnjem delu izstopno odprtino, ki je zaprta z loputo 43, skozi katero se pripravljena surovina za uplinjanje stresa na vstopni del 44 prvega transportnega sistema 6, ki je v opisani izvedbi dvižni polž, ki surovino dvigne nad celično zaporo 7. Celično zaporo 7 sestavljata zgornji ventil 45 in spodnji ventil 46, od katerih je pri prehodu surovine za uplinjanje skozi celično zaporo eden vedno zaprt. Delovanje ventilov 45, 46 uravnavata zgornje 47 in spodnje 48 nivojsko stikalo. Celična zapora 7 preprečuje širitev povratnega ognja na zalogo surovine za uplinjanje oziroma se z njo preprečuje uhajanje produktnega plina iz naprave.Said gasifier mixer 1 has an outlet opening in the lower part, which is closed by a flap 43, through which the prepared gasification raw material is fed to the inlet part 44 of the first transport system 6, which in the described embodiment is a lifting auger that lifts the raw material above the cell. barrier 7. The cell barrier 7 consists of an upper valve 45 and a lower valve 46, one of which is always closed when the gasification feedstock passes through the cell barrier. The operation of valves 45, 46 is regulated by an upper 47 and a lower 48 level switch. The cell barrier 7 prevents the spread of return fire to the supply of gasification raw material or prevents the leakage of product gas from the device.
Surovina za uplinjanje skozi omenjeno celično zaporo in skozi prostor 49 pod celično zaporo, pada na drugi transportni sistem 50, ki je v prednostni izvedbi dozirni polž. Omenjeni prostor 49 pod celično zaporo je izveden konično tako, da se navzdol širi in zato ne more priti do zatikanja surovine za uplinjanje.The raw material for gasification through said cell barrier and through the space 49 below the cell barrier falls on a second transport system 50, which is in a preferred embodiment a dosing auger. Said space 49 below the cell barrier is conical in such a way that it expands downwards and therefore no gasification of the raw material for gasification can occur.
Omenjeni dozirni polž 50 dozira surovino za uplinjanje v uplinjalnik 8 in je nagnjen tako, daje njegova najvišja točka v uplinjalniku 8, s čemer je preprečen pojav povratnega ognja iz uplinjalnika 8.Said dosing screw 50 dispenses the raw material for gasification into the carburetor 8 and is inclined so that its highest point is in the carburetor 8, thus preventing the occurrence of return fire from the carburetor 8.
Dozirni polž 50 surovino za uplinjanje dozira na rešetko 9 uplinjalnika 8, in sicer skozi sredino rešetke 9 tako, da se material na sredini uplinjalnika 8 pomika navzgor, ob stenah uplinjalnika 8 pa nazaj navzdol proti rešetki 9.The dosing auger 50 dispenses the gasification feedstock onto the grate 9 of the carburetor 8, through the center of the grate 9 so that the material in the middle of the carburetor 8 moves upwards and along the walls of the carburetor 8 backwards downwards towards the grate 9.
Omenjeni uplinjalnik 8 ima v prostoru 10 pod rešetko 9, vrtljivo lopato 52, ki med uplinjanjem nastali pepel, ki pade skozi rešetko 9, potisne na tretji transportni sistem 53, ki je v prednosti izvedbi polž, ki preko ustrezne celične zapore 11 pepel odvede iz naprave v ustrezen zbiralnik 54.Said carburetor 8 has a rotating shovel 52 in the space 10 under the grate 9, which pushes the ash generated during gasification, which falls through the grate 9, to a third conveying system 53, which is preferably an auger which removes the ash from the appropriate cell barrier 11. devices to the appropriate collector 54.
Omenjeni uplinjalnik 8 nadalje vsebuje vžigalni sistem 56, kot je na primer sistem za vpihovanje vročega zraka, ki je nameščen nad rešetko 9.Said carburetor 8 further comprises an ignition system 56, such as a hot air blower system mounted above the grille 9.
Uplinjalnik 8 nadalje vsebuje sistem 12 za dovajanje prvega oksidanta, ki se nahaja pod rešetko in je opremljen z dozirno šobo 55 in sistem za dovajanje vode ali vodne pare 13, ki se nahaja pod rešetko in je opremljen z dozirno šobo 55.The carburetor 8 further comprises a system 12 for supplying the first oxidant located below the grate and equipped with a dosing nozzle 55 and a water or steam supply system 13 located below the grate and equipped with a dosing nozzle 55.
Uplinjalnik 8 nadalje vsebuje, merilnik temperature 57, ki se nahaja pod rešetko, s katerim uravnavamo dovedeno količino vode ali vodne pare v uplinjalnik 8 in merilnik nivoja surovine 58 v uplinjalniku 8 s katerim uravnavamo količino surovine za uplinjanje na rešetki 9 uplinjalnika 8.The carburetor 8 further comprises a temperature meter 57 located below the grate to regulate the amount of water or water vapor supplied to the carburetor 8 and a feedstock level meter 58 in the carburetor 8 to control the amount of gasification feedstock on the carburettor grate 8.
Uplinjalnik 8 je izveden kot tlačna posoda tako, da proces uplinjanja poteka v nadtlačnem režimu. S tem so zagotovljene boljše možnosti upravljanja procesnih pogojev. Prehodi surovine za uplinjanje v in iz uplinjalnika 8 so opremljeni s celičnimi zaporami 7 in 11, ki omogočajo prehod omenjene surovine pod tlačnim režimom.The carburetor 8 is designed as a pressure vessel so that the gasification process takes place in the overpressure mode. This provides better opportunities for managing process conditions. The passages of the gasification feedstock to and from the carburetor 8 are equipped with cell barriers 7 and 11, which allow the passage of said feedstock under the pressure regime.
Plašč uplinjalnika 8 je votel in služi kot prvi toplotni izmenjevalnik toplote 28, kot bo opisano v nadaljevanju.The carburetor jacket 8 is hollow and serves as the first heat exchanger 28, as will be described below.
Opisana izvedba uplinjalnika 8 omogoča uporabo širokega nabora materiala z vsebnostjo ogljika za uplinjanje, kot so na primer premogi vseh vrst, lesna biomasa ali biomasa rastlinskega izvora, komunalni ali industrijski odpadki, mulji iz čistilnih naprav ali bioplinarn ali katerikoli drugi gorljivi materiali. Materiali za uplinjanje morajo imeti ustrezno velikost delcev, zato so običajno v obliki žaganja, peletov ali čipsa, ob tem pa je zaželena heterogenost sestave materiala. Uplinjati ne moremo samega prahu, lahko pa ga določen delež dodamo v material za uplinjanje. Omejitev je tudi pri tekočih ali visoko vnetljivih snoveh, ki jih je potrebno ustrezno zmešati s suhim nosilcem, na primer lesnim žaganjem ali drugo ustrezno absorpcijsko snovjo. Materialov za uplinjanje ni potrebno posebej sušiti, po potrebi pa jim dodamo vodo.The described embodiment of the carburetor 8 allows the use of a wide range of carbon-containing material for gasification, such as coal of all kinds, wood biomass or biomass of plant origin, municipal or industrial waste, sewage sludge or biogas plants or any other combustible materials. Gasification materials must have an appropriate particle size, so they are usually in the form of sawdust, pellets or chips, with heterogeneity of material composition being desirable. We cannot gasify the powder itself, but we can add a certain proportion of it to the gasification material. There is also a limitation on liquid or highly flammable substances that need to be properly mixed with a dry carrier, such as wood sawdust or other suitable absorbent substance. Gasification materials do not need to be dried separately, and water is added if necessary.
V procesu uplinjanja, ki poteka v uplinjalniku nastaja produktni plin, ki se zbira v zgornjem delu 14 uplinjalnika 8 in se odvaja skozi izstopno cev 15 na pokrovu uplinjalnika 8 v mešalni del katalizatorja 16.In the gasification process that takes place in the carburetor, a product gas is formed, which collects in the upper part 14 of the carburetor 8 and is discharged through the outlet pipe 15 on the carburetor cover 8 into the mixing part of the catalyst 16.
Omenjeni mešalni 16 del katalitskega reaktorja je opremljen s sistemom 17 za dovod drugega oksidanta, sistemom 18 za dovod vode oziroma vodne pare in sistemom 19 za dovod vžigalnega plina. Celotni mešalni del katalitskega reaktorja 16 je zasnovan na način, da zagotavlja homogeno podstehiometrijsko zmes produktnega plina in oksidanta. Homogena postehiometrijska zmes produktnega plina in oksidanta zagotavlja stehiometrijsko razmerje 0.3-0.5 (prednostno 0.4) glede na delež katranov, izraženih kot CioHg, porabljenih med parcialno oksidacijo za doseganje homogenega temperaturnega polja v prostoru pred katalizatorsko sredico 25.Said mixing 16 part of the catalytic reactor is equipped with a system 17 for the supply of the second oxidant, a system 18 for the supply of water or water vapor and a system 19 for the supply of ignition gas. The entire mixing part of the catalytic reactor 16 is designed to provide a homogeneous substoichiometric mixture of product gas and oxidant. A homogeneous posteichiometric mixture of product gas and oxidant provides a stoichiometric ratio of 0.3-0.5 (preferably 0.4) based on the proportion of tars, expressed as CioHg, consumed during partial oxidation to achieve a homogeneous temperature field in the space in front of the catalyst core 25.
Zmes produktnega plina in oksidanta preko razdelilnika 20, skozi plamensko zaporo 22 in skozi vžigalno komoro 23 vodimo v katalizatorsko sredico 25, katalizatorja 21, kjer se vzpostavi homogena parcialna oksidacija katranov v produktnem plinu, katrani se pretvorijo v CO in H2 oziroma nastane čist sintezni plin, kar zagotavlja zadosten dvig temperature produktnega plina, ki nato lahko podpira endotermni proces katalitskega parnega reforminga preostalih katranov.The mixture of product gas and oxidant through the manifold 20, through the flame barrier 22 and through the ignition chamber 23 is led to the catalyst core 25, catalyst 21, where a homogeneous partial oxidation of tars in the product gas is established, tars are converted into CO and H2 or pure synthesis gas , which ensures a sufficient rise in the temperature of the product gas, which can then support the endothermic process of catalytic steam reforming of the remaining tars.
Katalizatorska sredica 25 je izdelana iz linearnega keramičnega nosilca, ki je odporen na temperaturne šoke in je dovolj porozen, da nanj lahko nanesemo katalitski sloj, kot je na primer sloj ustrezne kovine. Katalizatorska sredica 25 vsebuje množico vzporednih kanalov v obliki satja, ki potekajo v smeri toka produktnega plina, kjer je prerez omenjenih kanalov dovolj velik, da je omogočen prehod trdnih anorganskih delcev, oziroma pepela, ki jih produktni plin lahko vsebuje.The catalyst core 25 is made of a linear ceramic support that is resistant to temperature shocks and is sufficiently porous to be subjected to a catalytic layer, such as a layer of a suitable metal. The catalyst core 25 comprises a plurality of parallel honeycomb channels running in the direction of the product gas flow, where the cross section of said channels is large enough to allow the passage of solid inorganic particles or ash that the product gas may contain.
Katalizatorska sredica 25 je lahko izvedena tudi v obliki granulata, kar pa ni primemo za pline, ki vsebujejo trdne anorganske delce.The catalyst core 25 can also be made in the form of granules, which is not the case for gases containing solid inorganic particles.
Katalizatorska sredica 25 naprave po predmetnem izumu ima v vseh delih enakomerno temperaturo, kar je doseženo s homogeno mešanico kisika, produktnega plina in vodne pare v mešalnem delu 16 katalitskega reaktorja, ki je od katalizatorske sredice 25 ločen s plamensko zaporo 22, ki je izvedena v obliki satja, kot je zgoraj opisano za katalizatorsko sredico 25.The catalyst core 25 of the device according to the present invention has a uniform temperature in all parts, which is achieved by a homogeneous mixture of oxygen, product gas and water vapor in the mixing part 16 of the catalytic reactor, separated from the catalyst core 25 by a flame barrier 22. in the form of a honeycomb as described above for the catalyst core 25.
Zadrževanje plamena v plamenski zapori 22 dosežemo izključno s povečano hitrostjo zmesi produktnega plina in oksidanta, za kar je zelo pomembna ustrezna homogenost omenjene zmesi, s tem pa se v celoti ohranja temperatura produktnega plina.Flame retention in the flame arrestor 22 is achieved exclusively by increasing the velocity of the product gas-oxidant mixture, for which the proper homogeneity of said mixture is very important, thereby fully maintaining the temperature of the product gas.
Veliki koncentraciji katranov in/ali prahu v produktnem plinu je prilagojen tudi mešalni del katalitskega reaktorja 16, ki je izveden brez pasivnih mešal samo z ustreznim oblikovanjem dovoda (razdelilnika 20) mešanice v katalizator 21 in zagotavlja ustrezno homogenost zmesi.The mixing part of the catalytic reactor 16 is also adapted to the high concentration of tars and / or dust in the product gas, which is carried out without passive stirrers only by appropriate design of the mixture (distributor 20) in the catalyst 21 and ensures adequate homogeneity of the mixture.
Dolžina mešalnega dela katalitskega reaktorja 16 brez pasivnih mešal se z delitvijo katalizatorja 21 na več manjših enot bistveno skrajša, razdelilnik 20 pa že s svojo obliko zagotovi homogeno mešanico, kar se odraža tudi v manjših toplotnih izgubah.The length of the mixing part of the catalytic reactor 16 without passive mixers is significantly shortened by dividing the catalyst 21 into several smaller units, and the distributor 20 already provides a homogeneous mixture with its shape, which is also reflected in lower heat losses.
Omenjena izstopna cev 15 je obdana z grelci 59, ki so opremljeni s temperaturnimi tipali. Pred začetkom procesa z omenjenimi grelci 59 segrejemo izstopno cev 15, mešalni del katalizatorja 16 in razdelilnik 20 na delovno temperaturo, ki znaša med 300° C in 400° C.Said outlet pipe 15 is surrounded by heaters 59 which are equipped with temperature sensors. Before starting the process with said heaters 59, the outlet pipe 15, the mixing part of the catalyst 16 and the distributor 20 are heated to an operating temperature of between 300 ° C and 400 ° C.
Omenjena katalizatorska sredica 25 katalizatorja 21 je obdana z grelci 26, s katerimi pred začetkom procesa, katalizatorsko sredico 25, segrejemo na delovno temperaturo katalitske reakcije, ki znaša približno 700° C.Said catalyst core 25 of the catalyst 21 is surrounded by heaters 26, with which, before the start of the process, the catalyst core 25 is heated to an operating temperature of the catalytic reaction of about 700 ° C.
Omenjena katalizatorska sredica 25 ima v sredini merilnik temperature 60, s katerim nadzorujemo temperaturo katalizatorske sredice 25.Said catalyst core 25 has a temperature meter 60 in the middle, with which the temperature of the catalyst core 25 is monitored.
Za segrevanje katalizatorske sredice 25 lahko namesto grelcev 60 uporabimo zmes vžigalnega plina in drugega oksidanta, kiju preko omenjenih sistemov za dovod 17, 19 dovedemo v izstopno cev 15. Omenjena zmes se vžge po prehodu skozi plamensko zaporo 22 na vžigalnih elementih 24 in tik nad katalizatorsko sredico 25.To heat the catalyst core 25, a mixture of ignition gas and another oxidant can be used instead of heaters 60, which are fed through said supply systems 17, 19 to the outlet pipe 15. Said mixture ignites after passing through the flame barrier 22 on the ignition elements 24 and just above the catalyst. core 25.
Omenjeni vžigalni plin uporabimo tudi za čiščenje morebitnih saj iz katalizatorske sredice 25.Said ignition gas is also used to clean any soot from the catalyst core 25.
Ko je katalizatorska sredica 25 segreta na začetno delovno temperaturo, začnemo v katalizator 21 dovajati mešanico produktnega plina in oksidanta, ki se s pomočjo vžigalnih elementov 24 v vžigalni komori 23 vžgejo tik nad katalizatorsko sredico 25, kjer poteka proces katalitske pretvorbe. V atmosferi z nizkim deležem kisika, ki je odvisna od koncentracije katranov v produktnem plinu in običajno znaša od 1 do 2 volumska odstotka (lahko pa tudi več ali manj) potekata dve reakciji, ki sta pomembni za sam proces:When the catalyst core 25 is heated to the initial operating temperature, a mixture of product gas and oxidant is introduced into the catalyst 21, which is ignited by the ignition elements 24 in the ignition chamber 23 just above the catalyst core 25, where the catalytic conversion process takes place. In an atmosphere with a low oxygen content, which depends on the concentration of tars in the product gas and usually amounts to 1 to 2 percent by volume (or more or less), two reactions take place that are important for the process itself:
1. delna oksidacija (eksotermni proces),1. partial oxidation (exothermic process),
2. parni reforming (endotermni proces),2. steam reforming (endothermic process),
Prva reakcija zagotavlja dovolj visoko delovno temperaturo in je vodilna reakcija, druga reakcija pa zagotavlja pogoje za nastanek kvalitetnejšega sinteznega plina z višjo koncentracijo CO in H2 ter višjim H2/CO razmerjem. Vsebnost katranov v produktnem plinu mora biti najmanj tolikšna, da so pokrite energetske potrebe sistema za vzdrževanje delovne temperature katalizatorja.The first reaction ensures a sufficiently high operating temperature and is the leading reaction, while the second reaction provides the conditions for the formation of a higher quality synthesis gas with a higher concentration of CO and H 2 and a higher H 2 / CO ratio. The tar content in the product gas must be at least sufficient to cover the energy needs of the catalyst operating temperature maintenance system.
Z višjo koncentracijo katranov je odpravlja tudi bistvena pomanjkljivost uporabe produktnih plinov z malo katrani, kjer se kisik ob pomanjkanju katranov med fazo zagotavljanja toplote za proces katalitskega parnega reforminga začne vezati na že formiran H2 in CO v reakciji polne oksidacije do CO2 in H2O, kar povzroča slabšanje kalorične vrednosti plina, razvijajo se višje temperature, ki so lahko tudi neenakomerno razporejene in nastane nevezan ogljik v obliki saj, ki blokirajo delovanje katalizatorja (katalizator zamašijo). Proces je torej ob primerni koncentraciji katranov voden tako, da je avtotermen. Katalizator 21 je zaradi zmanjšanja toplotnih izgub ustrezno izoliran 61.The higher concentration of tars also eliminates the significant disadvantage of using low-tar product gases, where oxygen in the absence of tars during the heat supply phase for the catalytic vapor reforming process begins to bind to already formed H2 and CO in the full oxidation reaction to CO2 and H2O. deterioration of the calorific value of the gas, higher temperatures develop, which may also be unevenly distributed, and unbound carbon in the form of soot is formed, which blocks the action of the catalyst (clogs the catalyst). The process is therefore controlled at an appropriate concentration of tars so that it is autothermic. Catalyst 21 is adequately insulated 61 to reduce heat loss.
Sintezni plin iz katalizatorja 21 vodimo skozi povezovalno cev 62 v kolektor 27 in naprej v prvi izmenjevalnik toplote 28, ki obdaja uplinjalnik 8, kjer omenjeni sintezni plin del toplote odda stolpcu goriva 51 v uplinjalniku 8.The synthesis gas from the catalyst 21 is passed through a connecting pipe 62 to the collector 27 and on to the first heat exchanger 28 surrounding the carburetor 8, where said synthesis gas transfers part of the heat to the fuel column 51 in the carburetor 8.
Naprava po predmetnem izumu nadalje vsebuje drugi izmenjevalnik toplote 30, kamor iz prvega izmenjevalnika toplote 28 vodimo sintezni plin.The device according to the present invention further comprises a second heat exchanger 30, to which synthesis gas is fed from the first heat exchanger 28.
Omenjeni drugi izmenjevalnik toplote 30 je povezan s prvim izmenjevalnikom toplote 28, s tretjim izmenjevalnikom toplote in ima odprtino 63 za vstop svežega oksidanta 31 in odprtino in 64 za odvod segretega oksidanta, ki je povezana z dovodom 17 drugega oksidanta na mešalnem delu 16 katalitskega reaktorja.Said second heat exchanger 30 is connected to the first heat exchanger 28, to the third heat exchanger and has an opening 63 for the entry of fresh oxidant 31 and an opening and 64 for the discharge of heated oxidant connected to the supply 17 of the second oxidant at the mixing part 16 of the catalytic reactor.
V drugem izmenjevalniku toplote 30, sintezni plin del toplote odda oksidantu 31, kot je na primer zrak, ki ga v procesu uporabljamo kot drugi oksidant 17 za katalitsko reakcijo. Oksidant 31 vstopa v drugi izmenjevalnik toplote 30 v nasprotni smeri od toka sinteznega plina, v opisanem primeru zgoraj, skozi vstopno odprtino 63 in ga zapušča spodaj, skozi izstopno odprtino 64, nakar ga skozi dovod drugega oksidanta 17 doziramo v mešalni del katalizatorja 16.In the second heat exchanger 30, the synthesis gas transfers part of the heat to an oxidant 31, such as air, which is used in the process as a second oxidant 17 for the catalytic reaction. The oxidant 31 enters the second heat exchanger 30 in the opposite direction from the synthesis gas flow, in the case described above, through the inlet 63 and leaves it below, through the outlet 64, after which it is metered into the mixing part of the catalyst 16 through the supply of the second oxidant 17.
Sintezni plin ohlajen do meje kondenzacije vode, iz drugega izmenjevalnika toplote 30 preko cevi 32 vodimo v tretji izmenjevalnik toplote 33, kjer se ohladi pod mejo kondenzacije vode.The synthesis gas cooled to the water condensation limit is led from the second heat exchanger 30 through the pipe 32 to the third heat exchanger 33, where it is cooled below the water condensation limit.
Omenjeni tretji izmenjevalnik toplote 33 je povezan z drugim izmenjevalnikom toplote 30, z ravlaževalnikom 36 in ima odprtino 64 za vstop medija 34 za odvajanje toplote in odprtino in 66 za izstop medija za odvajanje toplote.Said third heat exchanger 33 is connected to a second heat exchanger 30, to a steam cooler 36, and has an opening 64 for the inlet of the heat dissipation medium 34 and an opening and 66 for the outlet of the heat dissipation medium.
Omenjeni medij 34 za odvajanje toplote v tretjem izmenjevalniku toplote 33 je tekočina, kot na primer voda, ki v opisanem primeru v tretji izmenjevalnik toplote 33 vstopa spodaj skozi vstopno odprtino 65 in izstopa zgoraj skozi izstopno odprtino 66, med tem ko sintezni plin potuje v nasprotni smeri.Said heat dissipation medium 34 in the third heat exchanger 33 is a liquid, such as water, which in the described case enters the third heat exchanger 33 below through the inlet 65 and exits above through the outlet 66 while the synthesis gas travels to the opposite directions.
Sintezni plin ohlajen pod mejo kondenzacije vode nato preko cevi 35 vodimo v razvlaževalnik 36. Zgornji del uplinjalnika, izhodna cev produktnega plina, mešalni del katalizatorja, katalizator, izstopna cev katalizatorja, ter drugi in tretji izmenjevalnik toplote so toplotno izolirani.The synthesis gas cooled below the water condensation limit is then fed through a pipe 35 to a dehumidifier 36. The upper part of the carburetor, the product gas outlet pipe, the catalyst mixing part, the catalyst, the catalyst outlet pipe and the second and third heat exchangers are thermally insulated.
Omenjeni razvlaževalnik 36 je povezan s tretjim izmenjevalnikom toplote 33, vsebuje kondenzacijsko pregrado 37, za odstranjevanje vlage iz sinteznega plina in ima v spodnjem delu rezervoar 67 za zbiranje kondenzirane vode, ki je opremljen z ventilom 68 za odvod kondenzirane vode 38 in merilnik 69 nivoja vode v rezervoarju 67 za kondenzirano vodo, ki krmili omenjeni ventil 68.Said dehumidifier 36 is connected to a third heat exchanger 33, comprises a condensation barrier 37 for removing moisture from the synthesis gas, and has a condensed water collection tank 67 at the bottom, equipped with a condensed water drain valve 68 and a water level meter 69. in the condensed water tank 67 which controls said valve 68.
Nadalje ima omenjeni razvlaževalnik 36 na vrhu odprtino 39 za izstop sinteznega plina. Zbrano kondenzirano vodo prefiltriramo in uporabimo v procesu, ki poteka v opisani napravi za dodajanje vode v mešalnik 1, v uplinjalnik 13, v mešalni del katalizatorja 18 in za hlajenje 34.Furthermore, said dehumidifier 36 has an opening 39 for the synthesis gas outlet at the top. The collected condensed water is filtered and used in the process which takes place in the described device for adding water to the mixer 1, to the carburetor 13, to the mixing part of the catalyst 18 and for cooling 34.
Sintezni plin, brez katranov in z nizko vsebnostjo vlage iz naprave izstopa skozi odprtino na vrhu razvlaževalnika 39. Dobljeni sintezni plin nato uporabimo kot surovino, v kemijskih sinteznih procesih (na primer v reaktorjih Fischer - Tropsch, metanacijo ali sintezo metanola), kot tehnične pline ali pa kot energent za proizvodnjo energije.Synthetic gas, tar-free and low-moisture, exits the device through an opening at the top of the dehumidifier 39. The resulting synthesis gas is then used as a feedstock, in chemical synthesis processes (eg Fischer-Tropsch reactors, methanation or methanol synthesis), as technical gases or as an energy source for energy production.
Celotna konstrukcija naprave po predmetnem izumu je izvedena v nadtlačnem režimu, možna pa je tudi izvedba opisane naprave v podtlačnem režimu. Vse komponente naprave so opremljene z varnostnimi izpusti.The entire construction of the device according to the present invention is carried out in the overpressure mode, and it is also possible to carry out the described device in the underpressure mode. All components of the device are equipped with safety outlets.
Slike od 4 do 7 shematsko prikazujejo izvedbe naprave po predmetnem izumu glede na različne vrste oziroma velikosti uplinjalnikov 8 in katalizatorjev 21.Figures 4 to 7 schematically show embodiments of the device according to the present invention with respect to different types or sizes of carburetors 8 and catalysts 21.
Slika 4 prikazuje namestitev katalizatorja 21 v konfiguraciji B, z več vzporedno povezanimi katalizatorskimi enotami na sotočnem uplinjalniku 70 za uplinjanje lesne biomase. Material za uplinjanje vstopa skozi zgornji del uplinjalnika 70. Prvi oksidant vpihujemo skozi dovod 12 v spodnji del uplinjalnika 70 iz katerega na spodnjem delu 71 izstopa del pepela in produktni plin, ki se odvaja skozi odvod 15 v ciklon 72, ki je v sistem dodan, ker je produktni plin obremenjen s prahom oziroma nereagiranim ogljikom v obliki saj. Iz omenjenega ciklona 72, na dnu 73 izstopa preostali del pepela. Produktni plin vodimo v mešalni del 16 katalitskega reaktorja, v katerega preko dovoda 17 dovajamo drugi oksidant. V razdelilniku 20 se zmes razdeli na posamezne katalizatorje 21, kjer se katrani pretvorijo v CO in 1¾. Sintezni plin se zbere v kolektorju 27 in ohladi v izmenjevalniku toplote 33, ter izstopi skoz izstopno odprtino 39.Figure 4 shows the installation of the catalyst 21 in configuration B, with several catalyst units connected in parallel on a flow biogasm gasifier 70. The gasification material enters through the upper part of the carburetor 70. The first oxidant is blown through the inlet 12 into the lower part of the carburetor 70 from which part of the ash and product gas exits at the lower part 71 and is discharged through the outlet 15 into the cyclone 72 added to the system. because the product gas is loaded with dust or unreacted carbon in the form of soot. From said cyclone 72, at the bottom 73, the remaining part of the ash protrudes. The product gas is introduced into the mixing part 16 of the catalytic reactor, into which the second oxidant is fed through the inlet 17. In the manifold 20, the mixture is separated into individual catalysts 21, where the tars are converted to CO and 1¾. The synthesis gas is collected in the collector 27 and cooled in the heat exchanger 33, and exits through the outlet 39.
Sliki 5 in 6 prikazujeta integracijo protitočnega uplinjalnika 8 po predmetnem izumu in katalizatorja 21 v konfiguraciji A (slika 5) in v konfiguraciji B (slika 6). V obeh primerih material za uplinjanje 2 vstopa skozi celično zaporo 7 v uplinjalnik 8. V spodnji del uplinjalnika 8, skozi dovod 12 doziramo prvi oksidant in skozi dovod 13 vodo ali vodno paro, ter skozi odvodno odprtino 71 odstranjujemo pepel. Produktni plin, bogat s katrani se v mešalnem delu katalitskega reaktorja 16 zmeša z drugim oksidantom. Slika 5 prikazuje namestitev katalizatorja 21 v izvedbi z eno katalizatorsko enoto, slika 6 pa z več vzporedno povezanimi katalizatorskimi enotami, kjer se mešanica plina in oksidanta razdeli na več enot v razdelilniku 20 in po pretvorbi v posameznih enotah, ko nastane sintezni plin, združi v kolektorju 27. Vroč sintezni plin vodimo v prvi izmenjevalnik toplote 28, ki obdaja uplinjalnik 8, kamor odda del toplote. Iz prvega izmenjevalnika toplote 28 sintezni plin nato vodimo 29 na napravo za hlajenje sinteznega plina.Figures 5 and 6 show the integration of the countercurrent carburetor 8 according to the present invention and the catalyst 21 in the configuration A (Figure 5) and in the configuration B (Figure 6). In both cases, the gasification material 2 enters the carburetor 8 through the cell barrier 7. The first oxidant is dosed into the lower part of the carburetor 8, through the inlet 12 and water or water vapor through the inlet 13, and the ash is removed through the discharge opening 71. The tar-rich product gas is mixed with another oxidant in the mixing part of the catalytic reactor 16. Figure 5 shows the installation of the catalyst 21 in an embodiment with one catalyst unit, and Figure 6 with several parallel catalyst units, where the gas-oxidant mixture is divided into several units in the manifold 20 and after conversion in individual units, when the synthesis gas is formed, combined into collector 27. The hot synthesis gas is led to the first heat exchanger 28, which surrounds the carburetor 8, where it emits part of the heat. From the first heat exchanger 28, the synthesis gas is then led 29 to a synthesis gas cooling device.
Slika 7 prikazuje popolno integracijo protitočnega uplinjalnika 8, po predmetnem izumu in katalizatorja 21, v konfiguraciji B, torej z več vzporedno povezanimi katalizatorskimi enotami, kjer je katalizator nameščen tik nad uplinjalnikom 8. Tudi tu material za uplinjanje 2 vstopa skozi celično zaporo 7 v uplinjalnik 8. V spodnji del uplinjalnika skozi dovod 12 doziramo prvi oksidant in skozi dovod 13 vodo oziroma vodno paro, ter skozi odvodno odprtino 71 odstranjujemo pepel. Produktni plin na sredini uplinjalnika vstopa neposredno v mešalni del katalizatorja 16, kamor skozi dovod 17 dovajamo drugi oksidant. Mešanica se nato na razdelilniku 20, ki je povsem na vrhu naprave, razdeli na posamezne katalizatorske enote 21. Nastali sintezni plin vodimo v prvi izmenjevalnik toplote 28, ki obdaja uplinjalnik 8, kamor odda del toplote in ga vodimo 29 naprej na napravo za hlajenja plina.Figure 7 shows the full integration of the countercurrent carburetor 8 according to the present invention and the catalyst 21 in the configuration B, ie with several parallel catalyst units, where the catalyst is located just above the carburetor 8. Here again, the gasification material 2 enters the carburetor through the cell barrier 7. 8. Dosing the first oxidant into the lower part of the carburetor through the inlet 12 and water or water vapor through the inlet 13, and removing the ash through the outlet opening 71. The product gas in the middle of the carburetor enters directly into the mixing part of the catalyst 16, where another oxidant is fed through the inlet 17. The mixture is then divided into individual catalyst units 21 at the manifold 20, which is completely at the top of the device. The resulting synthesis gas is fed to the first heat exchanger 28, which surrounds the carburetor 8, where it emits part of the heat and is forwarded 29 to the gas cooling device. .
Prednosti naprave po predmetnem izumu so naslednje:The advantages of the device according to the present invention are the following:
naprava zaradi višje dopustne koncentracije katranov v produktnem plinu omogoča uplinjanje nekvalitetnih ali kompleksnejših materialov z visoko vsebnostjo vlage in/ali prahu, kar bistveno razširja uporabnost omenjene naprave;due to the higher permissible concentration of tars in the product gas, the device enables gasification of low-quality or more complex materials with a high content of moisture and / or dust, which significantly expands the applicability of said device;
naprava omogoča počasno uplinjanje materialov pri nižjih temperaturah ob prisotnosti vlage in ustrezno nasipanje materiala, kar ustvari filtrsko (adsorpcijsko) cono in omogoča kemijsko reakcijo adsorbenta s spojinami S in/ali Cl in s tem odstranitev spojin S in/ali Cl pri uplinjanju materialov, ki vsebujejo ta dva elementa; naprava zaradi katalitske pretvorbe produktnega plina z večjo vsebnostjo katranov, omogoča uporabo protitočnega uplinjalnika, kije najenostavnejši tip uplinjalnika;the device enables slow gasification of materials at lower temperatures in the presence of moisture and adequate backfilling of the material, which creates a filter (adsorption) zone and enables chemical reaction of the adsorbent with S and / or Cl compounds and thus removal of S and / or Cl compounds during gasification of materials. contain these two elements; due to the catalytic conversion of the product gas with a higher tar content, the device allows the use of a countercurrent carburetor, which is the simplest type of carburetor;
naprava omogoča izvedbo procesa delne oksidacije katranov za interno ogrevanje katalitskega reaktorja brez povečevanja vsebnosti inertnih komponent v plinu (npr. CO2), ki mu sledi katalitski proces parnega reforminga, ki linearno z višjo vsebnostjo katranov povečuje tudi razmerje H2/CO v sinteznem plinu. S tem je proces pretvorbe katranov avtotermen;the device enables the process of partial oxidation of tars for internal heating of a catalytic reactor without increasing the content of inert components in the gas (eg CO2), followed by a catalytic process of steam reforming, which linearly increases the H2 / CO ratio in the synthesis gas. Thus, the tar conversion process is autothermic;
naprava omogoča katalitsko pretvorbo v katalizatorju s širokimi kanali, zato lahko predelamo tudi s prahom obremenjen plin iz protitočnega uplinjalnika;the device enables catalytic conversion in a catalyst with wide channels, so it is also possible to process dust-laden gas from a countercurrent carburetor;
naprava ne povzroča nastajanja oglja ali saj, ki bi se izločala v pepel ali v produktni/sintezni plin, ker se ogljik, s procesom delne oksidacije pred katalitsko pretvorbo, pretvori v plinasto stanje;the device does not cause the formation of carbon or soot, which would be excreted in the ash or in the product / synthesis gas, because the carbon, by the process of partial oxidation before catalytic conversion, is converted into a gaseous state;
naprava omogoča izvedbo postopka, ki povzroča manjše emisije v primerjavi s sežiganjem, ostanka po uplinjanju pa sta anorganski pepel in kondenzna voda, ki se jo uporabi kot tehnološko vodo v samem procesu;the device allows a process to be carried out that causes lower emissions compared to incineration, and the residues after gasification are inorganic ash and condensate water, which is used as process water in the process itself;
- naprava omogoča izvedbo postopka, katerega proizvod je čist sintezni plin, brez katranov, spojin S in Cl in prašnih delcev in z majhnimi koncentracijami vlage, CH4 in CO2, v primeru, ko je kot prvi oksidant uporabljen zrak, pa tudi N2, kjer je omenjeni sintezni plin pripravljen za nadaljnjo uporabo.- the device allows a process whose product is pure synthesis gas, free of tars, compounds S and Cl and dust particles and with low concentrations of moisture, CH4 and CO2, in the case when air is used as the first oxidant, as well as N2, where said synthetic gas ready for further use.
Naprava po predmetnem izumu je opisana in na priloženih slikah prikazana s pomočjo konkretnih izvedbenih primerov, ki pa samega izuma v nobenem primeru ne omejujejo. Možne so tudi razne izvedenke opisane naprave, ki pa bodo v stroki izkušenim takoj jasne.The device according to the present invention is described and shown in the accompanying figures by means of concrete embodiments, which in no way limit the invention itself. Various versions of the described device are also possible, but they will be immediately clear to those skilled in the art.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201900003A SI25771A (en) | 2019-01-07 | 2019-01-07 | Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen |
PCT/SI2020/000001 WO2020145903A1 (en) | 2019-01-07 | 2020-01-06 | Device for gasification of solid carbonaceous materials with a pronounced concentration of tars and their catalytic conversion into carbon monoxide and hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201900003A SI25771A (en) | 2019-01-07 | 2019-01-07 | Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
SI25771A true SI25771A (en) | 2020-07-31 |
Family
ID=69187881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201900003A SI25771A (en) | 2019-01-07 | 2019-01-07 | Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI25771A (en) |
WO (1) | WO2020145903A1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US835847A (en) | 1904-04-05 | 1906-11-13 | Louis Boutillier | Gas-producer. |
US4971599A (en) | 1985-06-11 | 1990-11-20 | Cordell Henry L | Apparatus for gasifying solid organic materials |
US5138957A (en) | 1991-05-15 | 1992-08-18 | Biotherm Energy Systems, Inc. | Hot gas generation system for producing combustible gases for a burner from particulate solid organic biomass material |
FR2872149B1 (en) | 2004-06-28 | 2007-10-19 | Physiques Sarl Et Chimiques | PLASMA-CATALYTIC CONVERSION OF CARBON MATERIALS |
KR100569120B1 (en) * | 2004-08-05 | 2006-04-10 | 한국에너지기술연구원 | Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof |
US7547422B2 (en) | 2006-03-13 | 2009-06-16 | Praxair Technology, Inc. | Catalytic reactor |
WO2008103831A1 (en) | 2007-02-21 | 2008-08-28 | Energy & Environmental Research Center Foundation | Thermally stable cocurrent gasification system and associated methods |
DE102007047931B4 (en) * | 2007-12-19 | 2012-05-03 | Radwan Matrmawi | Apparatus for the thermal degassing of organic waste for the production of gas, oil and activated coke |
US8137655B2 (en) * | 2008-04-29 | 2012-03-20 | Enerkem Inc. | Production and conditioning of synthesis gas obtained from biomass |
EP2303993A4 (en) | 2008-06-25 | 2013-01-23 | Nexterra Systems Corp | Generating clean syngas from biomass |
DE202012101271U1 (en) * | 2012-04-07 | 2012-05-02 | L.U.A. Labor für Umweltanalytik GmbH & Co. KG | Device for the catalytic thermal processing of organic waste |
-
2019
- 2019-01-07 SI SI201900003A patent/SI25771A/en active IP Right Grant
-
2020
- 2020-01-06 WO PCT/SI2020/000001 patent/WO2020145903A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020145903A1 (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100896112B1 (en) | Apparatus for gasifying solid fuel | |
KR100641760B1 (en) | Method and apparatus for generating combustible synthesis gas | |
CN1255515C (en) | Polyhedral gasifier and relative method | |
EP2598616B1 (en) | A method of gasifying carbonaceous material and a gasification system | |
CA2376483C (en) | Facility for the gasification of carbon-containing feed materials | |
JP5756231B2 (en) | Biomass gasifier | |
US20090277090A1 (en) | Gas distribution arrangement for a rotary reactor | |
SI20749A (en) | A method for gasifying organic substances and substances mixtures | |
WO2007081296A1 (en) | Downdraft/updraft gasifier for syngas production from solid waste | |
SE1051371A1 (en) | Two stage carburetors using high temperature preheated steam | |
RU2333929C1 (en) | Method and device for hard fuel gasification | |
RU2544669C1 (en) | Method for processing combustible carbon- and/or hydrocarbon-containing products, and reactor for implementing it | |
US9862899B2 (en) | Gas distribution arrangement for rotary reactor | |
CA2749822A1 (en) | Reactor for generating a product gas by allothermic gasification of carbonaceous raw materials | |
ES2397447B1 (en) | DUAL GASIFICATION-PIRÓISIS REACTOR DEVICE. | |
JPS5829998B2 (en) | Method for pyrolysis gasification of combustible materials in a single fluidized bed | |
SI25770A (en) | Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen | |
RU2412400C1 (en) | Hot-water solid-fuel "blago" boiler | |
CH693034A5 (en) | A method for the treatment of solid materials and device for carrying out the process. | |
SI25771A (en) | Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen | |
US20240026237A1 (en) | Process for Gasifying an Organic Material and Plant for Carrying Out Said Process | |
RU144623U1 (en) | REACTOR FOR THE PROCESSING OF COMBUSTIBLE CARBON AND / OR HYDROCARBON-CONTAINING PRODUCTS | |
KR102653928B1 (en) | Gasifier integrated with tar reformer | |
JPS6045935B2 (en) | Fluidized bed pyrolysis gasification method and device that circulates powder using an inner cylinder with a partition plate | |
EP2666845A1 (en) | Gas producing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20200806 |
|
SP73 | Change of data on owner |
Owner name: ZIGA ZMAZEK; SI Effective date: 20200821 |
|
SP73 | Change of data on owner |
Owner name: SYNTECH D.O.O.; SI Effective date: 20230926 |