SI25770A - Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen - Google Patents

Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen Download PDF

Info

Publication number
SI25770A
SI25770A SI201900002A SI201900002A SI25770A SI 25770 A SI25770 A SI 25770A SI 201900002 A SI201900002 A SI 201900002A SI 201900002 A SI201900002 A SI 201900002A SI 25770 A SI25770 A SI 25770A
Authority
SI
Slovenia
Prior art keywords
gasification
gas
synthesis gas
tars
water
Prior art date
Application number
SI201900002A
Other languages
Slovenian (sl)
Inventor
Teos Perne
Tine Seljak
Marko Šetinc
Original Assignee
Teos Perne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teos Perne filed Critical Teos Perne
Priority to SI201900002A priority Critical patent/SI25770A/en
Priority to PCT/SI2020/000002 priority patent/WO2020145904A1/en
Publication of SI25770A publication Critical patent/SI25770A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/36Fixed grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/005Reducing the tar content by partial oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/006Reducing the tar content by steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Industrial Gases (AREA)

Abstract

Predmetni izum razkriva postopek uplinjanja trdnih materialov z vsebnostjo ogljika s poudarjeno koncentracijo katranov in njihovo katalitsko pretvorbo v ogljikov monoksid in vodik, ki obsega pripravo surovine za uplinjanje, ki vsebuje doziranje materiala za uplinjanje, neobveznih dodatkov, adsorbenta in vode, uplinjanje omenjene surovine, neobvezno eno ali večfazno predčiščenje produktnega plina, pretvorbo katranov v sintezni plin in vodenje sinteznega plina skozi serijo toplotnih izmenjevalnikov inrazvlaževalnik. Postopek omogoča višjo dopustno koncentracijo katranov v produktnem plinu, kar omogoča avtotermen potek katalitske pretvorbe in hkrati uplinjanje nekvalitetnih ali kompleksnejših materialov z visokimi vsebnostmi vlage in/ali prahu, s tem pa je uporabnost postopka uplinjanja bistveno razširjena. Rezultat postopka je sintezni plin, brez katranov, spojin S in Cl in prašnih delcev in z majhnimi koncentracijami vlage, CH4 in CO2, v primeru, ko je kot prvi oksidant uporabljen zrak, pa tudi N2.Omenjeni sintezni plin je primeren za uporabo kot surovina ali energent. Ostanka po uplinjanju sta anorganski pepel in kondenzna voda, ki se jo uporabi kot tehnološko vodo v samem procesu.The present invention discloses a process for gasifying solid carbon-containing materials with a high concentration of tars and their catalytic conversion to carbon monoxide and hydrogen, comprising preparing a gasification feedstock comprising dosing a gasification material, optional additives, adsorbent and water, gasifying said feedstock, single or multi-phase purification of the product gas, conversion of tars into synthesis gas and conduction of the synthesis gas through a series of heat exchangers and a dehumidifier. The process enables a higher permissible concentration of tars in the product gas, which enables autothermal catalytic conversion and at the same time gasification of low-quality or more complex materials with high moisture and / or dust contents, thus significantly expanding the applicability of the gasification process. The result of the process is a synthesis gas, free of tars, compounds S and Cl and dust particles and with low concentrations of moisture, CH4 and CO2, when air is used as the first oxidant, as well as N2. Said synthetic gas is suitable for use as raw material but energy. Residues after gasification are inorganic ash and condensate water, which is used as process water in the process itself.

Description

Postopek uplinjanja trdnih materialov z vsebnostjo ogljikafs poudarjeno koncentracijo katranov in njihovo katalitsko pretvorbo v ogljikov monoksid in vodikProcess for gasification of solid materials with carbon content f with pronounced concentration of tars and their catalytic conversion into carbon monoxide and hydrogen

Področje izuma:Field of the invention:

Predmet izuma je postopek uplinjanja materialov z vsebnostjo ogljika, za proizvodnjo sinteznega plina brez vsebnosti katrana.The subject of the invention is a process for gasification of carbon-containing materials for the production of tar-free synthesis gas.

Opis tehničnega problema:Description of the technical problem:

Vsebnost katrana v proizvedenem plinu je še danes poglavitna težava vseh uplinjevalnih sistemov, namenjenih za proizvodnjo gorljivega sinteznega plina. Poznamo nekaj ukrepov za zmanjševanje katranov, kijih lahko delimo na:The tar content in the produced gas is still today the main problem of all gasification systems intended for the production of combustible synthesis gas. We know some measures to reduce tar, which can be divided into:

- primarne ukrepe (ukrepi znotraj uplinjalnika), ki se zanašajo na ustrezne krmilne strategije oziroma vzdrževanje pogojev procesa uplinjanja in tokovno dinamiko v uplinjalniku, da je nastanek katranov najmanjši. Zaradi tega tehnološke rešitve omejujejo delovanje v smislu fleksibilnosti sistema, možnosti različnih gabaritov naprave, poleg tega so naprave izjemno omejene pri izboru in pripravi materialov za uplinjanje hkrati pa lahko kot stranski produkt proizvajajo veliko količino oglja in delujejo v zelo omejenih pogojih obratovanja. Čeprav lahko primarni ukrepi bistveno zmanjšajo vsebnost katranov velja, daje brez uporabe sekundarnih ukrepov njihova popolna odstranitev praktično nemogoča.- primary measures (measures inside the carburetor), which rely on appropriate control strategies or maintenance of the conditions of the gasification process and current dynamics in the carburetor, so that the formation of tars is minimal. As a result, technological solutions limit operation in terms of system flexibility, the possibility of different dimensions of the device, in addition, the devices are extremely limited in the selection and preparation of materials for gasification, and as a by-product can produce large amounts of coal and operate in very limited operating conditions. Although primary measures can significantly reduce the tar content, it is considered impossible to completely remove them without the use of secondary measures.

- sekundarne ukrepe (ukrepi za uplinjalnikom), ki se zanašajo na naknadno obdelavo produktnega plina z različnimi metodami (termična obdelava, katalitična obdelava, pranje). Tudi taki ukrepi imajo določene pomanjkljivosti: niso dovolj učinkoviti, so predragi, negativno vplivajo na kurilno vrednost plina ali pa problem katranov prestavijo na obdelavo odpadne vode. V primeru katalitičnih sekundarnih ukrepov se energijo za endotermne procese v večini primerov pridobiva z zunanjim virom toplote (dovajanje vročih plinov ali z električnimi grelniki).- secondary measures (measures after the carburetor), which rely on the post-treatment of the product gas by different methods (heat treatment, catalytic treatment, washing). Such measures also have certain shortcomings: they are not efficient enough, they are too expensive, they negatively affect the calorific value of the gas, or they transfer the problem of tars to wastewater treatment. In the case of catalytic secondary measures, energy for endothermic processes is in most cases obtained from an external heat source (hot gas supply or electric heaters).

Vsi obstoječi procesi uplinjanja so v okviru termodinamičnih zmožnosti trenutno prilagojeni in optimirani za proizvodnjo produktnega plina s čim nižjo vsebnostjo katranov, saj ti povzročajo tehnične težave v sistemih uplinjanja in nadaljnjih aplikacijah. Vsebnost katrana v produktnem (sinteznem) plinu se giblje od 0,1% (sotočni uplinjalniki) do 20% (protitočni uplinjalniki) ali več (v procesih čiste pirolize). Energijska vrednost produktnega (sinteznega) plina se giblje od 5 MJ/Nm do 15 MJ/Nm3 in velja za nizko ali srednje kalorični plin v primerjavi z zemeljskim plinom (35 MJ/Nm3). Če je kot oksidant uporabljen zrak, vsebuje produktni (sintezni) plin približno polovico N2. Relativna količina CO, CO2, H2O, H2 in ogljikovodikov je odvisna od stehiometrije procesa uplinjanja. Razmerje zrak/material za uplinjanje v postopku uplinjanja je v splošnem v razponu od 0,2 - 0,35, če pa je kot oksidant uporabljena para, je razmerje para/material okoli 1. Dejanska količina CO, CO2, H2O, H2, katrana oziroma ogljikovodikov je odvisna od delne oksidacije hlapnih ogljikovodikov, ki jo prikazuje naslednja enačba:All existing gasification processes are currently adapted and optimized within the thermodynamic capabilities for the production of product gas with the lowest possible tar content, as these cause technical problems in gasification systems and further applications. The tar content in the product (synthesis) gas ranges from 0.1% (flow gasifiers) to 20% (counterflow gasifiers) or more (in pure pyrolysis processes). The energy value of the product (synthesis) gas ranges from 5 MJ / Nm to 15 MJ / Nm 3 and is considered a low or medium calorific gas compared to natural gas (35 MJ / Nm 3 ). If air is used as the oxidant, the product (synthesis) gas contains about half of N2. The relative amount of CO, CO2, H2O, H2 and hydrocarbons depends on the stoichiometry of the gasification process. The air / material ratio for gasification in the gasification process is generally in the range of 0.2 - 0.35, but if steam is used as the oxidant, the steam / material ratio is about 1. Actual amount of CO, CO2, H2O, H2, tar or hydrocarbons depends on the partial oxidation of volatile hydrocarbons shown by the following equation:

CnHm + (n/2 + m/4) O2 nCO + (m/2) H2O.C n H m + (n / 2 + m / 4) O 2 n CO + (m / 2) H 2 O.

Običajno se v postopkih uplinjanja, s ciljem čim manjše vsebnosti katranov v produktnem (sinteznem) plinu uporablja čim bolj homogene in suhe materiale, ki so ustrezno obdelani in prečiščeni, zlasti pa se izogiba uporabi materialov, ki vsebujejo snovi z elementi S in Cl. Problem prisotnosti S in tudi C1 v gorivu je dobro poznan, saj oba povzročata korozijo na opremi in nevarno onesnažujeta okolje. Prisotnost S in Cl v gorivih se običajno rešuje izven postopka termične pretvorbe, za njim s pranjem produktnega oziroma dimnega plina (skupaj z ostalimi sekundarni ukrepi za odstranjevanje katranov) ali pred njim z odstranjevanjem snovi z vsebnostjo S in Cl že iz vstopnih materialov za termično pretvorbo. Poznani pa so tudi načini odstranjevanja S in Cl med samim termičnim procesom gorenja, zlasti pri energetski izrabi goriv ali pri proizvodnji cementa. V teh primerih se že dolgo uporablja metoda dodajanja različnih dodatkov in adsorpcijskih snovi, ki vsebujejo Ca z namenom izboljšave goriva oziroma čim boljšim izločanjem S in Cl v pepel že v procesu gorenja.Normally, in gasification processes, in order to minimize the tar content in the product (synthesis) gas, the most homogeneous and dry materials are used, which are properly treated and purified, and in particular the use of materials containing substances with elements S and Cl is avoided. The problem of the presence of S as well as C1 in the fuel is well known, as both cause corrosion on the equipment and dangerously pollute the environment. The presence of S and Cl in fuels is usually solved outside the thermal conversion process, followed by washing of the product or flue gas (together with other secondary tar removal measures) or before it by removing substances with S and Cl content from the input materials for thermal conversion . Methods of removing S and Cl during the thermal combustion process itself are also known, especially in the energy use of fuels or in the production of cement. In these cases, the method of adding various additives and adsorption substances containing Ca for a long time has been used in order to improve the fuel or the best possible excretion of S and Cl into the ash already in the combustion process.

Stanje tehnikeState of the art

Proces uplinjanja in pretvorbe katranov opisuje patent US 8,936,886 B2, po katerem se gorivo dozira v protitočni uplinjalnik v katerem so procesni pogoji optimirani za proizvodnjo produktnega plina s čim manjšo koncentracijo katranov. Katrane, ki kljub temu nastanejo se nato v naslednji fazi pretvori s procesom termične pretvorbe. Optimiranje proizvodnje produktnega (sinteznega) plina s čim manj katrani omejuje možnost uporabe heterogenih in vlažnih surovin, uporaba termalne pretvorbe pa bistveno zmanjšuje energetsko vrednost sinteznega plina.The process of gasification and conversion of tars is described in US Pat. No. 8,936,886 B2, according to which the fuel is dosed into a countercurrent gasifier in which the process conditions are optimized for the production of product gas with the lowest possible concentration of tars. The tars that are nevertheless formed are then converted in the next phase by a thermal conversion process. Optimizing the production of product (synthesis) gas with as little tar as possible limits the possibility of using heterogeneous and moist raw materials, and the use of thermal conversion significantly reduces the energy value of synthetic gas.

Postopki odstranjevanja elementov S in C1 z dodajanjem absorbenta v gorivo so opisani že v patentih US 174.348, EP 1765962, US 6.599.123 in US 5.571.490. Vsi navedeni primeri govorijo o uporabi dodatkov v procesu gorenja, ki je hitra kemična reakcija, z velikimi temperaturnimi gradienti, ko se gorivo zelo hitro posuši, uplini in popolnoma oksidira. V opisanih razmerah hitrih reakcij oziroma zelo visokih temperatur druge kemične reakcije nimajo dovolj časa, da bi potekale optimalno, saj so zadrževalni časi izjemno kratki, zlasti v primerjavi z uplinjanjem, kjer se reakcije sušenja in uplinjanja odvijajo v časovnem razponu nekaj sekund. Zaradi tega so pri uplinjanju učinki vezave S in C1 z, na primer Ca ali Mg, v trdne spojine bistveno bolj učinkoviti, tako da je mogoče praktično ves S in C1 odstraniti že v fazi uplinjanja, s pepelom.Methods for removing elements S and C1 by adding an absorbent to a fuel are already described in U.S. Pat. Nos. 174,348, EP 1765962, U.S. Pat. No. 6,599,123 and U.S. Pat. All the above examples speak of the use of additives in the combustion process, which is a rapid chemical reaction, with large temperature gradients, when the fuel dries, gasifies and oxidizes very quickly. In the described conditions of rapid reactions or very high temperatures, other chemical reactions do not have enough time to proceed optimally, as retention times are extremely short, especially compared to gasification, where drying and gasification reactions take place over a few seconds. As a result, the gasification effects of binding S and C1 with, for example, Ca or Mg, to solid compounds are significantly more effective, so that practically all of S and C1 can be removed already in the gasification phase, with ash.

Možna celostna rešitev procesa uplinjanja, kjer se uporablja katalizator za pretvorbo katranov, hkrati pa poteka proces odstranjevanja elementov S in C1 z dodajanjem adsorbenta, je predstavljena v patentu EP 0512305, ki govori o uporabi RDF surovine (predelani komunalni odpadki) za uplinjanje. Uporablja se uplinjalnik v lebdeči plasti. Tudi postopka katalitske pretvorbe in odstranjevanja S in C1 potekata v lebdeči plasti, kjer se v tok plina dodaja prah mešanice apnenca, dolomita in alkalnega adsorbenta, ki ves čas krožijo po sistemu. Vendar je produktni plin obremenjen s pepelom in gaje po katalitskih reakcijah potrebno čistiti s separatorji delcev, vodnimi tuši in filtri. Gorivo mora biti ustrezno pripravljeno oziroma zdrobljeno v majhne delce, procesni pogoji pa so zahtevni.A possible integrated solution of the gasification process, where a catalyst is used to convert the tar and at the same time remove the S and C1 elements by adding an adsorbent, is presented in patent EP 0512305, which discusses the use of RDF raw material (processed municipal waste) for gasification. A floating carburetor is used. The catalytic conversion and removal processes S and C1 also take place in a floating layer, where a powder of a mixture of limestone, dolomite and alkaline adsorbent is added to the gas stream, circulating through the system at all times. However, the product gas is loaded with ash and after catalytic reactions it must be cleaned with particle separators, water showers and filters. The fuel must be properly prepared or crushed into small particles, and the process conditions are demanding.

Razlaga uporabljenih izrazovExplanation of terms used

V nadaljnjem opisu izuma sta uporabljena izraza »produktni plin« in »sintezni plin«. Za namen opisa predmetnega izuma je »produktni plin« plin, ki prihaja iz uplinjalnika v katalitski reaktor, kjer je predelan v »sintezni plin«.In the following description of the invention, the terms "product gas" and "synthesis gas" are used. For the purpose of describing the present invention, a "product gas" is a gas coming from a gasifier to a catalytic reactor, where it is processed into a "synthesis gas".

Bistvena razlika med produktnim plinom in sinteznim plinom je v tem, da produktni plin vsebuje katrane in prašne delce, medtem, ko sintezni plin sestoji pretežno iz produktov delne oksidacije (CO in H2) in inertnih komponent, ki so odvisne od uporabljenega oksidanta, predvsem pa je brez katranov in prašnih delcev in ga ni potrebno dodatno čistiti pred nadaljnjo uporabo za sintezo surovin ali kot gorivo.The essential difference between product gas and synthesis gas is that product gas contains tars and dust particles, while synthesis gas consists mainly of partial oxidation products (CO and H2) and inert components that depend on the oxidant used, and above all it is free of tars and dust particles and does not need to be further cleaned before further use for the synthesis of raw materials or as a fuel.

Ndalje izraz »čist sintezni plin brez vode oziroma vlage« pomeni plinsko mešanico, ki je brez vlage in jo sestavljajo CO, H2, ter dodatno CO2, CH4 in minimalen delež vlage.Hereinafter, the term "pure synthetic gas without water or moisture" means a gas mixture which is free of moisture and consists of CO, H2, and additionally CO2, CH4 and a minimum moisture content.

Kratek opis priloženih slik:Short description of the attached pictures:

Predmetni izum je v nadaljevanju opisan s pomočjo priloženih slik, ki prikazujejo:The present invention is further described by means of the accompanying drawings, which show:

Slika 1: shematski prikaz procesa uplinjanja, po predmetnem izumu;Figure 1: schematic representation of the gasification process according to the present invention;

Slika 2: shematski prikaz procesa izločanja komponent S in Cl;Figure 2: schematic representation of the elimination process of components S and Cl;

Slika 3: shematski prikaz integracije procesa uplinjanja, katalitske pretvorbe in izločanja komponent S in Cl.Figure 3: Schematic representation of the integration of the gasification process, catalytic conversion and precipitation of the S and Cl components.

Opis izumaDescription of the invention

Predmetni izum rešuje problem prisotnosti katrana, ki nastaja pri uplinjanju materialov z vsebnostjo ogljika tako, da se pogoji uplinjanja prilagodijo poudarjanju tvorjenja katranov oziroma ogljikovodikov v produktnem plinu, kjer nato te povečane koncentracije katranov (oziroma ogljikovodikov) predstavljajo optimalen vstopni reaktant za delovanje katalitske pretvorbe produktnega v sintezni plin, ki se odvija v katalitskem reaktorju. Opisani proces se lahko izvaja s katerimkoli tipom uplinjalnika pod pogojem, da je zagotovljeno tvorjenje minimalne koncentracije katranov v produktnem plinu, ki znaša vsaj od 4 g/Nm3 do 6 g/Nm3, prednostno vsaj 5 g/Nm3, kot tudi ustrezna izstopna temperatura produktnega plina, dosežena s samimi procesnimi pogoji ali z energijo dovedeno od zunaj, ki zagotavlja, da ogljikovodiki pred vstopom v katalitski reaktor ne kondenzirajo. Še zlasti so za uplinjanje na opisani način primerni protitočni uplinjalniki vseh vrst. Za pretvorbo katranov oziroma ogljikovodikov v katalitskem reaktorju lahko uporabimo katerikoli katalizator, ki je namenjen pretvorbi ogljikovodikov v vodik in ogljikov monoksid. S tem se poenostavlja procesne pogoje uplinjanja, ki so bistveno lažje obvladljivi, ter razširja spekter uporabljenih surovin za uplinjanje na surovine, pri katerih sta heterogenost sestave in vlaga zaželena. Za delovanje katalitskega reaktorja pomeni prisotnost večjih koncentracij ogljikovodikov optimalnejše procesne pogoje, kar zagotavlja bistveno izboljšanje pogojev pretvorbe vseh ogljikovodikov v vodik in ogljikov monoksid in s tem čist sintezni plin.The present invention solves the problem of the presence of tar formed during the gasification of carbon-containing materials by adapting the gasification conditions to emphasize the formation of tars or hydrocarbons in the product gas, where these increased concentrations of tars (or hydrocarbons) represent the optimal input reactant for catalytic conversion. into the synthesis gas taking place in the catalytic reactor. The process described can be carried out with any type of gasifier, provided that the formation of a minimum concentration of tars in the product gas of at least 4 g / Nm 3 to 6 g / Nm 3 , preferably at least 5 g / Nm 3 , as well as a suitable the product gas outlet temperature achieved by the process conditions themselves or by energy supplied from the outside, which ensures that the hydrocarbons do not condense before entering the catalytic reactor. In particular, countercurrent carburetors of all kinds are suitable for gasification in the manner described. For the conversion of tars or hydrocarbons in a catalytic reactor, any catalyst intended for the conversion of hydrocarbons into hydrogen and carbon monoxide can be used. This simplifies the gasification process conditions, which are much easier to manage, and extends the range of gasification feedstocks used to feedstocks where heterogeneity of composition and moisture are desirable. For the operation of a catalytic reactor, the presence of higher concentrations of hydrocarbons means more optimal process conditions, which ensures a significant improvement in the conditions for the conversion of all hydrocarbons into hydrogen and carbon monoxide and thus pure synthesis gas.

Bistvena značilnost postopka po predmetnem izumu in s tem tudi bistvena razlika od vseh tovrstnih postopkov po stanju tehnike je v tem, daje zaželena v heterogenost materiala za uplinjanje, kot tudi prisotnost vlage v materiala za uplinjanje, kot tudi v tem, da v procesu uplinjanja namenoma proizvajamo večje koncentracije katranov, ki so ključni za avtotermen potek katalitske pretvorbe katranov brez povečevanja inertnih komponent v nastalem plinu (npr. N2 in CO2). To dosežemo z doziranjem oziroma prisotnostjo vode ali vodne pare, ki igra ključno vlogo v procesu:The essential feature of the process according to the present invention and thus also the essential difference from all such processes according to the state of the art is that it is desirable in the heterogeneity of the gasification material, as well as the presence of moisture in the gasification material. we produce higher concentrations of tars, which are crucial for the autothermic course of catalytic conversion of tars without increasing the inert components in the resulting gas (eg N2 and CO2). This is achieved by dosing or the presence of water or water vapor, which plays a key role in the process:

voda, kije prisotna v materialu za uplinjanje z izparevanjem niža temperaturo uplinjanja v uplinjalniku v zgornjih plasteh, oziroma omogoča procese pri katerih se tvori več katranov, ter hkrati podpira proces vezave S in/ali C1 z adsorbentom;water, which is present in the gasification material by evaporation, lowers the gasification temperature in the carburetor in the upper layers, or enables processes in which more tars are formed, and at the same time supports the process of binding S and / or C1 with the adsorbent;

voda ali vodna para, ki jo doziramo pod rešetko uplinjalnika niža temperaturo v spodnjih plasteh in dovaja dodaten kisik in vodik v proces;water or water vapor dosed under the carburettor grate lowers the temperature in the lower layers and supplies additional oxygen and hydrogen to the process;

vodna para, ki v procesu sušenja in pirolize izpari in je sestavni del produktnega plina, v katalitski pretvorbi s parnim reformirjem bogati sintezni plin z dodatnim vodikom.water vapor, which evaporates in the process of drying and pyrolysis and is an integral part of the product gas, in the catalytic conversion with steam reformer enriches the synthesis gas with additional hydrogen.

Za generiranje toplotne energije v postopku uplinjanja poteka predvsem delna oksidacija materialov z vsebnostjo ogljika v CO ter v najmanjši možni meri oksidacija materialov v ogljikov dioksid, CO2. Pod cono oksidacije, poleg oksidanta dovajamo tudi vodo ali vodno paro, s katero reguliramo temperaturo uplinjanja, predvsem pa vodna para predstavlja dodaten vir vodika v primerih uplinjanja materialov z vsebnostjo ogljika iz manj volatilnih spojin, kot so na primer premogi, da tudi s takšnimi materiali lahko tvorimo dovolj visoke koncentracije ogljikovodikov v produktnem plinu. Produktnemu plinu nato dodamo manjšo količino oksidanta in ga odvedemo v katalitski reaktor, kjer s pomočjo katalizatorja poteka katalitska reakcija delne oksidacije in tudi parnega reforminga, s katero se katrani razformirajo v CO in H2. Postopek v uplinjalniku in v katalitskem reaktorju je voden tako, daje avtotermen.In order to generate thermal energy in the gasification process, partial oxidation of materials with a carbon content in CO and, to a minimum, oxidation of materials to carbon dioxide, CO2, take place. Under the oxidation zone, in addition to the oxidant, we also supply water or water vapor, which regulates the gasification temperature, and especially water vapor is an additional source of hydrogen in cases of gasification of carbon-containing materials from less volatile compounds, such as coal. sufficiently high concentrations of hydrocarbons in the product gas can be formed. A small amount of oxidant is then added to the product gas and taken to a catalytic reactor, where a catalytic reaction of partial oxidation and also steam reforming takes place with the help of a catalyst, with which the tars are decomposed into CO and H 2 . The process in the carburetor and in the catalytic reactor is conducted in such a way that it is autotherm.

Predmetni izum rešuje tudi izločanje komponent S in C1 že znotraj procesa uplinjanja. Uporabljena mora biti surovina z ustrezno vsebnostjo vlage, proces pa mora biti voden tako, da poteka ob nižjih temperaturah in z daljšimi zadrževalnimi časi v fazah sušenja in pirolize, kar ob dodanem adsorbentu omogoča izjemno učinkovito vezavo elementov S in C1 z adsorpcijskim materialom (ki vsebuje na primer Ca ali Mg), ter njihovo izločanje v pepel. S tem seje spekter materialov primernih za uplinjanje razširil tudi na področje komunalnih in drugih odpadkov oziroma materialov, ki so primerni za uplinjanje in lahko vsebujejo snovi z vsebnostjo S in Cl.The present invention also solves the elimination of components S and C1 already within the gasification process. The raw material with the appropriate moisture content must be used, and the process must be managed in such a way that it takes place at lower temperatures and with longer retention times in the drying and pyrolysis phases, which allows extremely efficient binding of elements S and C1 with adsorption material (containing for example Ca or Mg), and their excretion into the ash. With this, the range of materials suitable for gasification was extended to the field of municipal and other waste or materials that are suitable for gasification and may contain substances with S and Cl content.

Razširitev spektra uporabnih materialov za uplinjanje dosežemo z dodajanjem adsorpcijskega materiala, ki v pogojih uplinjanja vlažnega materiala, žveplo in klor veže že v uplinjalniku, in sicer v takšne spojine, ki se že v uplinjalniku izločijo v trdni obliki v pepel, s čimer je preprečeno tvorjenje plinastih spojin z elementi S in C1 in njihov prehod v katalitski reaktor. Nastali pepel odvajamo z dna uplinjalnika.Expansion of the range of useful materials for gasification is achieved by adding adsorption material, which in the conditions of gasification of wet material, sulfur and chlorine already binds in the carburetor, namely in such compounds, which are already separated in the carburetor in solid form into ash. gaseous compounds with elements S and C1 and their transition to the catalytic reactor. The resulting ash is drained from the bottom of the carburetor.

V primeru uporabe adsorpcijskega materiala z vsebnostjo Ca kot stranski produkti nastajajo stabilne soli in sadra, ki so vami za odlaganje.In the case of the use of adsorption material with Ca content as by-products, stable salts and gypsum are formed, which are suitable for disposal.

Osnovni kemijski reakciji absorpcije S in C1 v omenjenem procesu sta:The basic chemical reactions of absorption of S and C1 in the mentioned process are:

Ca(OH)2(s) + H2S(g ) = CaS(s) + 2 H2O(g) (2);Ca (OH) 2 (s) + H 2 S (g) = CaS (s) + 2 H 2 O (g) (2);

Ca(OH)2(s) + HCl(g ) = CaCl2(s) + 2 H2O(g) (2), kjer Ca(OH)2 lahko nadomesti tudi CaO ali CaCO3.Ca (OH) 2 (s) + HCl (g) = CaCl 2 (s) + 2 H 2 O (g) (2), where Ca (OH) 2 can also replace CaO or CaCO 3 .

Podroben opis izumaDetailed description of the invention

Proces uplinjanja je prikazan na sliki 1 in poteka tako, da iz ustreznih zalogovnikov v mešalec 1, doziramo material za uplinjanje 5 z vsebnostjo ogljika, po potrebi neobvezne dodatke (kot so na primer lesno žaganje, mulji iz čistilnih naprav ali težka frakcija komunalnih odpadkov) in adsorbent 6 za vezavo S in Cl, ter po potrebi vodo. Vsebnost C1 in/ali S v materialu za uplinjanje 5 ugotovimo s pomočjo predhodne analize in naknadne ocene razpona vsebnosti Cl in/ali S.The gasification process is shown in Figure 1 and is carried out by dosing carbon dioxide material 5 from the appropriate storage tanks into the mixer 1, optional additives (such as wood sawdust, sewage sludge or heavy municipal waste fraction) if necessary. and adsorbent 6 for binding S and Cl, and optionally water. The content of C1 and / or S in the gasification material 5 is determined by means of a preliminary analysis and subsequent assessment of the range of the contents of Cl and / or S.

Na podlagi ugotovljene vsebnosti Cl in/ali S, materialu za uplinjanje 5 primešamo ustrezno količino adsorbenta 6. Za doseganje učinkovite vezave S in Cl med uplinjanjem omenjeni adsorbent 6 doziramo v stehiometrijskem presežku tako, da je količina adsorbenta 6 doziranega v material za uplinjanje 5 od 1,5-krat do 5-krat, prednostno 2,5-krat večja od njegove stehiometrijske količine. Omenjeni presežek adsorbenta 6 v material za uplinjanje 5 omogoča nemoten potek procesa tudi v primeru, ko je vsebnost Cl in/ali S v materialu za uplinjanje 5 večja od vsebnosti Cl in/ali S ugotovljene z omenjeno predhodno analizo in naknadno oceno. V procesu neporabljeni adsorbent 6 se obnaša inertno in na proces uplinjanja ne vpliva. Doziranje vode v mešalec je neobvezno in je primerno le v primeru zelo suhega materiala za uplinjanje, ker je z bolj vlažnim materialom laže doseči ustrezno gostoto surovine, olajšano pa je tudi doziranje.Based on the determined content of Cl and / or S, the gasification material 5 is mixed with an appropriate amount of adsorbent 6. To achieve effective binding of S and Cl during gasification, said adsorbent 6 is dosed in stoichiometric excess so that the amount of adsorbent 6 dosed into gasification material 5 is 1.5 to 5 times, preferably 2.5 times its stoichiometric amount. Said excess of adsorbent 6 in the gasification material 5 enables a smooth process even if the Cl and / or S content in the gasification material 5 is higher than the Cl and / or S content determined by said preliminary analysis and subsequent evaluation. The unused adsorbent 6 behaves inertly in the process and does not affect the gasification process. The dosing of water into the mixer is optional and is only suitable in the case of very dry gasification material, because with a more moist material it is easier to achieve the appropriate density of the raw material, and dosing is also facilitated.

Tako pripravljeno surovino za uplinjanje iz mešalca 1 transportiramo v uplinjalnik 2, kjer nastane produktni plin, ki ga dovajamo v katalitski reaktor 3, kjer se prisotni katrani oziroma ogljikovodiki pretvorijo v vodik in ogljikov monoksid in dobimo vroč sintezni plin. Vroč sintezni plin nato lahko že uporabimo ali pa ga vodimo še skozi toplotni izmenjevalnik z razvlaževalnikom 4, kjer se sintezni plin ohladi in se izloči kondenzna voda 13.The gasification raw material thus prepared is transported from the mixer 1 to the gasifier 2, where a product gas is formed, which is fed to the catalytic reactor 3, where the present tars or hydrocarbons are converted into hydrogen and carbon monoxide and hot synthesis gas is obtained. The hot synthesis gas can then be used or passed through a heat exchanger with a dehumidifier 4, where the synthesis gas is cooled and condensate water 13 is removed.

Vhodi materiali v proces so material z vsebnostjo ogljika 5, adsorbent 6, katerega količino določimo na podlagi ugotovljene vsebnosti C1 in/ali S, prvi oksidant 7 in voda oziroma vodna para 8, ki ju dovajamo v uplinjalnik 2, ter drugi oksidant 9, ki ga dovajamo v katalitski reaktor 3.The materials entering the process are a material with a carbon content of 5, an adsorbent 6, the amount of which is determined on the basis of the determined content of C1 and / or S, a first oxidant 7 and water or water vapor 8 fed to the carburetor 2, and a second oxidant 9 it is fed to the catalytic reactor 3.

Materiali, ki jih dobimo iz procesa so pepel 10, ki se izloča iz uplinjalnika 2, vroč sintezni plin 11, če iz procesa izstopa pred hlajenjem, oziroma kondenzna voda 13 in ohlajen sintezni plin 14, ki izstopata iz hladilnega sistema z razvlaževalnikom 4, kot tudi presežna toplota 12.The materials obtained from the process are ash 10, which is separated from the carburetor 2, hot synthesis gas 11, if it leaves the process before cooling, or condensate water 13 and cooled synthesis gas 14, which exit the cooling system with dehumidifier 4, as also excess heat 12.

Proces izločanja komponent S in C1 je prikazan na sliki 2.The elimination process of components S and C1 is shown in Figure 2.

Pripravljeno surovino za uplinjanje doziramo oziroma nasipamo v uplinjalnik 2 tako, da se hladen material za uplinjanje 15 pomika od zgoraj navzdol, plin 16, ki se tvori z uplinjanjem materiala za uplinjanje 15, pa se pomika od spodaj navzgor, torej protitočno. S tem nastane zgornja hladna filtrska plast materiala 17, v kateri se material zaradi izhlapevanje vode suši in ohlaja in se v omenjeni hladni filtrski plasti materiala 17 tvorijo spojine Ca s S in CL Pod plastjo 17 je vroča plast 18, v kateri poteka piroliza, redukcija in oksidacija.The prepared gasification raw material is metered or poured into the carburetor 2 so that the cold gasification material 15 moves from top to bottom, and the gas 16 formed by gasification of the gasification material 15 moves from bottom to top, ie countercurrently. This creates an upper cold filter layer of material 17, in which the material dries and cools due to the evaporation of water and compounds of Ca with S and CL are formed in said cold filter layer of material 17. Under layer 17 is a hot layer 18 in which pyrolysis, reduction and oxidation.

Integracija procesov uplinjanja, katalitske pretvorbe in izločanja komponent S in C1 je prikazana na sliki 3 in obsega naslednje faze:The integration of the processes of gasification, catalytic conversion and separation of components S and C1 is shown in Figure 3 and includes the following phases:

A. Pripravo surovine za uplinjanje, ki obsega naslednje korake:A. Preparation of the raw material for gasification, comprising the following steps:

i. doziranje materiala za uplinjanje 5 z vsebnostjo ogljika v mešalec;i. dosing the gasification material 5 with carbon content into the mixer;

ii. v primeru prevelike granulacije, mletje in mešanje materiala iz koraka (i);ii. in case of excessive granulation, grinding and mixing of the material from step (i);

iii. ugotavljanje vsebnosti C1 in/ali S v materialu za uplinjanje 5, na podlagi predhodne analize in naknadne ocene razpona vsebnosti C1 in/ali S;iii. determining the C1 and / or S content of the gasification material 5, based on a preliminary analysis and subsequent assessment of the C1 and / or S content range;

iv. na podlagi ugotovljene vsebnosti C1 in/ali S v materialu za uplinjanje 5, doziranje adsorbenta 6 v material za uplinjanje 5, v stehiometrijskem presežku tako, da je količina adsorbenta 6 doziranega v material za uplinjanje 5 od 1,5-krat do 3-krat, prednostno 2-krat večja od njegove stehiometrijske količine. Omenjeni adsorbent 6 v procesu uplinjanja iz produktnega plina odstrani spojine C1 in/ali S;iv. based on the determined content of C1 and / or S in the gasification material 5, dosing the adsorbent 6 into the gasification material 5, in a stoichiometric excess such that the amount of adsorbent 6 dosed into the gasification material 5 is from 1.5 to 3 times , preferably 2 times its stoichiometric amount. Said adsorbent 6 removes compounds C1 and / or S from the product gas in the gasification process;

v. mešanje materiala za uplinjanje 5 in adsorbenta 6;v. mixing the gasification material 5 and the adsorbent 6;

vi. neobvezno peletiranje dobljene mešanice; in vii. transport 19 dobljene mešanice ali peletirane mešanice, ki predstavlja predpripravljeno surovino za uplinjanje, v uplinjalnik 2;you. optional pelleting of the resulting mixture; in vii. transport 19 of the obtained mixture or pelleted mixture, which is a pre-prepared raw material for gasification, to the carburetor 2;

B. Uplinjanje goriva, ki obsega naslednje korake:B. Fuel gasification comprising the following steps:

i. doziranje prvega oksidanta 7, kot je zrak ali kisik in vode ali pare 8 v spodnji del uplinjalnika 2, pod rešetko 20;i. dosing a first oxidant 7, such as air or oxygen and water or steam 8, into the lower part of the carburetor 2, below the grate 20;

ii. uplinjanje goriva in doseganje najvišje temperature v vroči plasti 18, kjer poteka proces oksidacije, redukcije in pirolize, kjer se omenjena najvišja temperatura giblje med 600° C in 1.100° C, v odvisnosti od sestave in lastnosti surovine za uplinjanje, še posebej vlage, kjer je omenjena temperatura v primeru višje vsebnosti vlage nižja, v primeru nižje vsebnosti vlage pa je višja;ii. gasification of the fuel and reaching the maximum temperature in the hot layer 18, where the oxidation, reduction and pyrolysis process takes place, where said maximum temperature ranges between 600 ° C and 1,100 ° C, depending on the composition and properties of the gasification feedstock, especially moisture, where said temperature is lower in the case of a higher moisture content and higher in the case of a lower moisture content;

iii. odstranjevanje spojin S in/ali C1 in višjih lahko kondenzirajočih katranov, v hladni filtrski plasti materiala 17, ki ima visoko adsorpcijsko kapaciteto;iii. removing compounds S and / or C1 and higher easily condensing tars, in a cold filter layer of material 17 having a high adsorption capacity;

iv. zbiranje produktnega plina, ki vsebuje katrane, v prostoru 21 nad omenjeno plastjo 17, kjer je temperatura produktnega plina vsaj 120 °C, v primeru, da produktni plin vsebuje težke katrane, pa je temperatura produktnega plina vsaj 300 °C;iv. collecting the tar-containing product gas in the space 21 above said layer 17, where the product gas temperature is at least 120 ° C, and in case the product gas contains heavy tars, the product gas temperature is at least 300 ° C;

v. odstranjevanje in transport 32 pepela 10 iz uplinjalnika 2.v. removal and transport 32 of ash 10 from the carburetor 2.

Pepel po potrebi lahko stabiliziramo in ga odlagamo kot inertni material ali uporabljamo kot surovino, na primer za izdelavo gradbenih materialov.If necessary, the ash can be stabilized and disposed of as an inert material or used as a raw material, for example for the manufacture of building materials.

C. V primeru, da iz produktnega plina ob uplinjanju materialov, ki vsebujejo spojine s S in Cl, omenjene spojine niso povsem odstranjene že v fazi uplinjanja, sledi eno ali večfazno predčiščenje 22 produktnega plina, kjer iz produktnega plina odstranimo spojine S in/ali Cl, ki običajno obsega naslednje korake:C. In the event that these compounds are not completely removed from the product gas during the gasification of materials containing compounds with S and Cl already in the gasification phase, one or more phase purification of the product gas 22 follows, where compounds S and / or Cl, which usually comprises the following steps:

i. hidrodesulfurizacija, ki s hidrogenacijo organskih snovi, ki vsebujejo S in/ali Cl, omogoča odstranitev žvepla in/ali klora tako, da s pomočjo hidrogenacije S in/ali Cl zamenjamo z vodikom in tako nastane H2S in HC1;i. hydrodesulfurization, which by hydrogenation of organic substances containing S and / or Cl, allows the removal of sulfur and / or chlorine by replacing hydrogen and S and / or Cl with hydrogen to form H2S and HCl;

ii. adsorpcija HO, ki poteka s pomočjo zeolitov ali drugih polnil;ii. adsorption of HO by zeolites or other fillers;

iii. adsorpcija H2S, ki poteka na ZnO ali na podobni alternativni snovi;iii. adsorption of H2S on ZnO or a similar alternative substance;

D. Pretvorba katranov v sintezni plin, ki obsega naslednje korake:D. Conversion of tars into synthesis gas comprising the following steps:

i. dovajanje 23 produktnega plina, očiščenega spojin S in/ali Cl, v mešalni del 25 katalitskega reaktorja 3, kjer mu dodamo ustrezno količino predhodno segretega drugega oksidanta 9, kot je na primer zrak ali kisik, vžigalnega plina 24, kot je na primer vodik, ter vodo ali vodno paro;i. feeding 23 the product gas purified of compounds S and / or Cl into the stirring part 25 of the catalytic reactor 3, where an appropriate amount of preheated second oxidant 9, such as air or oxygen, of the ignition gas 24, such as hydrogen, is added. and water or steam;

ii. mešanje produktnega plina, segretega drugega oksidanta 9 in prisotnega vžigalnega plina, v mešalnem delu 25 katalitskega reaktorja 3;ii. mixing the product gas, the heated second oxidant 9 and the ignition gas present, in the stirring portion 25 of the catalytic reactor 3;

iii. vžig mešanice iz predhodnega koraka, v vžigalni komori 26 katalitskega reaktorja 3, kije od mešalnega dela 25 ločena s plamensko zaporo 27 in vsebuje vžigalne elemente 28;iii. ignition of the mixture from the previous step, in the ignition chamber 26 of the catalytic reactor 3, which is separated from the mixing part 25 by a flame barrier 27 and contains the ignition elements 28;

iv. pretvorbo katranov v sintezni plin z delno oksidacijo in parnim reformingom mešanice iz predhodnega koraka v katalizatorju 29, katalitskega reaktorja 3.iv. conversion of tars into synthesis gas by partial oxidation and steam reforming of the mixture from the previous step in catalyst 29, catalytic reactor 3.

Delovno temperaturo katalizatorja 29 vzdržujemo s podstehiometrijskim zgorevanjem produktnega plina v gornjih plasteh katalizatorja 29, kjer prednostno poteka delna oksidacija katranov v produktnem plinu (eksotermni proces), brez generiranja produktov popolne oksidacije.The operating temperature of the catalyst 29 is maintained by substoichiometric combustion of the product gas in the upper layers of the catalyst 29, where partial oxidation of the tars in the product gas (exothermic process) is preferably carried out, without generating complete oxidation products.

Homogena postehiometrijska zmes produktnega plina in oksidanta zagotavlja stehiometrijsko razmerje 0.3-0.5 (prednostno 0.4) glede na delež katranov, izraženih kot CioHg, porabljenih med delno oksidacijo za doseganje homogenega temperaturnega polja v prostoru pred katalizatorjem 29.A homogeneous posteichiometric mixture of product gas and oxidant provides a stoichiometric ratio of 0.3-0.5 (preferably 0.4) based on the proportion of tars, expressed as CioHg, consumed during partial oxidation to achieve a homogeneous temperature field in the space in front of the catalyst 29.

V primeru prenizkih koncentracij katranov se za generiranje toplote lahko uporabi tudi popolna oksidacija dela produktnega plina. Pridobljena toplota segreje katalizator 29, kjer pa poteka tudi proces parne pretvorbe s katerim se izboljšuje kalorična vrednost sinteznega plina na izhodu iz katalitskega reaktorja.In the case of too low tar concentrations, complete oxidation of part of the product gas can also be used to generate heat. The obtained heat heats the catalyst 29, where a steam conversion process takes place, which improves the calorific value of the synthesis gas at the outlet of the catalytic reactor.

Opisani postopek se lahko izvaja s kateremkoli tipom uplinjalnika, če je zagotovljeno tvorjenje čim večje koncentracije katrana v produktnem plinu, minimalno vsaj med 4 in 6 g/Nm , prednostno vsaj 5 g/Nm , ter ustrezna temperatura produktnega plina, kije nad mejo kondenzacije katranov, kjer je omenjena temperatura odvisna od vrste katranov, ki so v produktnem plinu in znaša vsaj 100 °C, v primeru prisotnosti težje hlapnih katranov pa omenjena temperatura produktnega plina znaša vsaj 300 °C.The process described can be carried out with any type of gasifier, provided that the highest possible concentration of tar in the product gas is ensured, at least between 4 and 6 g / Nm, preferably at least 5 g / Nm, and an appropriate product gas temperature above the condensation limit of tars. , wherein said temperature depends on the type of tars present in the product gas and is at least 100 ° C, and in the case of the presence of more volatile tars said temperature of the product gas is at least 300 ° C.

E. Vodenje 30 sinteznega plina iz katalitskega reaktorja 3 v prvi toplotni izmenjevalnik 31, ki je plašč uplinjalnika 2, kjer plin iz katalitskega reaktorja 3 del toplote odda uplinjalniku 2 in ga segreva. To zmanjšuje potrebo po dovajanju oksidanta v proces uplinjanja, ki ga nadomešča kisik iz dovedene vode, s pa tem se tudi viša energijska vrednost produktnega plina.E. Conducting 30 the synthesis gas from the catalytic reactor 3 to the first heat exchanger 31, which is the carburetor jacket 2, where the gas from the catalytic reactor 3 transfers part of the heat to the carburetor 2 and heats it. This reduces the need to add an oxidant to the gasification process, which is replaced by oxygen from the supplied water, and thus also increases the energy value of the product gas.

F. Vodenje 33 sinteznega plina iz prvega toplotnega izmenjevalnika 31 do drugega toplotnega izmenjevalnika 34. V drugem izmenjevalniku toplote 34 sintezni plin odda del toplote in s tem segreva drugi oksidant 9.F. Conducting 33 the synthesis gas from the first heat exchanger 31 to the second heat exchanger 34. In the second heat exchanger 34, the synthesis gas emits part of the heat and thereby heats the second oxidant 9.

G. Vodenje 35 delno ohlajenega sinteznega plina iz drugega toplotnega izmenjevalnika 34 do tretjega izmenjevalnika toplote 36, v katerem sintezni plin del toplote odda mediju za prenos toplote 12, se ohladi pod temperaturo kondenzacije vode in vlaga v sinteznem plinu kondenzira in se izloči 13 kot kondenzna voda na razvlaževalniku (demister). Iz sinteznega plina izločena kondenzna voda je uporabna kot tehnološka voda.G. The conduction 35 of the partially cooled synthesis gas from the second heat exchanger 34 to the third heat exchanger 36, in which the synthesis gas emits part of the heat to the heat transfer medium 12, is cooled below the condensation temperature of the water and the moisture in the synthesis gas condenses. water on the dehumidifier (demister). Condensate extracted from the synthesis gas is usable as process water.

H. Vodenje 14 ohlajenega sinteznega plina brez katranov in prašnih delcev iz opisanega procesa v zalogovnik ali do naprav za nadaljnjo uporabo.H. Conducting 14 cooled synthesis gas free of tar and dust particles from the described process to a storage tank or to devices for further use.

Ohlajen sintezni plin brez katranov in prašnih delcev je uporaben kot tehnični plin, kot energent za proizvodnjo energije ali za izdelavo koristnih kemičnih proizvodov in plinastih ali tekočih goriv, kot so na primer metan, metanol ali drugi derivati, ki jih pridobimo na primer s Fischer-Tropsch procesom.Refrigerated synthesis gas free of tar and particulate matter is useful as a technical gas, as an energy source for energy production or for the production of useful chemical products and gaseous or liquid fuels such as methane, methanol or other derivatives obtained, for example, from Fischer- Tropical process.

Opisani postopek se samodejno zažene tako, da v izogib kondenziranju katranov/ogljikovodikov, z zunanjimi grelci segrejemo mešalni del katalitskega reaktorja, do temperature 400°C. Katalizator segrejemo na delovno temperaturo z zunanjimi električnimi grelci in/ali z zunanjim polnim zgorevanjem. Po segrevanju katalizatorja in mešalnega dela katalitskega reaktorja se z vpihovanjem vročega zraka na rešetko vžge material za uplinjanje v uplinjalniku.The process described is started automatically by heating the mixing part of the catalytic reactor to a temperature of 400 ° C with external heaters to avoid condensation of tars / hydrocarbons. The catalyst is heated to operating temperature by external electric heaters and / or external full combustion. After heating the catalyst and the mixing part of the catalytic reactor, the gasification material in the carburetor is ignited by blowing hot air onto the grate.

Postopek po predmetnem izumu je značilen po:The process according to the present invention is characterized by:

višji dopustni koncentraciji katranov v produktnem plinu, kar omogoča uplinjanje nekvalitetnih ali kompleksnejših materialov z visokimi vsebnostmi vlage in/ali prahu in je s tem uporabnost postopka uplinjanja bistveno razširjena; počasnem uplinjanju materialov pri nižjih temperaturah ob prisotnosti vlage in ustreznemu nasipanju materiala, kar ustvari filtrsko (adsorpcijsko) cono in omogoča kemijsko reakcijo adsorbenta s S in/ali Cl, ter s tem odstranitev S in/ali C1 pri uplinjanju materialov, ki vsebujejo S in/ali Cl;a higher permissible concentration of tars in the product gas, which allows the gasification of low-quality or more complex materials with high moisture and / or dust contents, and thus the applicability of the gasification process is significantly extended; slow gasification of materials at lower temperatures in the presence of moisture and adequate backfilling of the material, which creates a filter (adsorption) zone and allows the chemical reaction of the adsorbent with S and / or Cl, and thus the removal of S and / or C1 in gasification of materials containing S and / or Cl;

katalitski pretvorbi produktnega plina z večjo vsebnostjo katranov v sintezni plin;catalytic conversion of a higher tar product gas into synthesis gas;

procesu delne oksidacije katranov, ki se uporablja za interno ogrevanje katalitskega reaktorja, ki omogoča avtotermen potek katalitske pretvorbe katranov s pomočjo parnega reformiranja brez povečevanja inertnih komponent v plinu (npr. N2 in CO2), hkrati pa višja koncentracija katranov linearno povečuje razmerje H2/CO v sinteznem plinu;partial tar oxidation process used for internal heating of a catalytic reactor, which allows autothermal catalytic conversion of tars by steam reforming without increasing inert components in the gas (eg N2 and CO2), while higher tar concentration linearly increases the H2 / CO ratio in synthesis gas;

pretvorbi ogljika v plinasto stanje pred katalitsko pretvorbo, s procesom delne oksidacije, zaradi česar ne pride do nastanka oglja ali saj, ki bi se izločala v pepel ali v produktni in/ali sintezni plin;the conversion of carbon into a gaseous state prior to the catalytic conversion, by a process of partial oxidation which results in the formation of no carbon or carbon black which would be separated into ash or into a product and / or synthesis gas;

manjših emisijah v primerjavi s sežiganjem, in po tem, da sta po uplinjanju ostanka anorganski pepel katerega lahko po potrebi, z dodatnim termičnim postopkom, nevtraliziramo in kondenzna voda, ki je uporabna kot tehnološka voda v samem postopku uplinjanja za doziranje vode v material, oziroma pod rešetko, v zgoraj opisanem koraku B(i) in za hlajenje sinteznega plina.lower emissions compared to incineration, and the fact that after gasification of the residue are inorganic ash which can be neutralized by additional thermal process and condensate water, which can be used as process water in the gasification process for dosing water into the material, or under the grate, in step B (i) described above, and for cooling the synthesis gas.

Postopek je uporaben za uplinjanje različnih vrst materialov. Rezultat postopka je sintezni plin, brez katranov, spojin S in C1 in prašnih delcev in z majhnimi koncentracijami vlage, CH4 in CO2, v primeru, daje kot prvi oksidant uporabljen zrak, pa tudi N2. Omenjeni sintezni plin je primeren za uporabo kot surovina ali energent.The process is useful for gasification of various types of materials. The result of the process is a synthesis gas, free of tars, compounds S and C1 and dust particles and with low concentrations of moisture, CH4 and CO2, in case it gives air as the first oxidant, as well as N2. Said synthetic gas is suitable for use as a raw material or energy source.

Postopek po predmetnem izumu je opisan in na priloženih slikah prikazan s pomočjo konkretnih izvedbenih primerov, ki pa samega izuma v nobenem primeru ne omejujejo. Možne so tudi razne izvedenke opisanega postopka, ki pa bodo v stroki izkušenim takoj jasne.The process according to the present invention is described and illustrated in the accompanying figures by means of concrete embodiments, which in no way limit the invention itself. Various versions of the described procedure are also possible, but they will be immediately clear to those skilled in the art.

Claims (5)

Patentni zahtevkiPatent claims 1. Postopek uplinjanja trdnih materialov z vsebnostjo ogljika s poudarjeno koncentracijo katranov in njihovo katalitsko pretvorbo v ogljikov monoksid in vodik, značilen po tem, da obsega naslednje faze:A process for the gasification of carbon-containing solid materials with a pronounced concentration of tars and their catalytic conversion to carbon monoxide and hydrogen, characterized in that it comprises the following stages: A. Pripravo surovine za uplinjanje, ki obsega naslednje korake:A. Preparation of the raw material for gasification, comprising the following steps: i. doziranje materiala za uplinjanje (5) z vsebnostjo ogljika v mešalec;i. dosing the gasification material (5) with the carbon content into the mixer; ii. neobvezno mletje in mešanje materiala iz koraka (i);ii. optional grinding and mixing of the material from step (i); iii. ugotavljanje vsebnosti C1 in/ali S v materialu za uplinjanje (5);iii. determining the content of C1 and / or S in the gasification material (5); iv. doziranje odgovarjajoče količine adsorbenta (6) v material za uplinjanje (5);iv. dosing a corresponding amount of adsorbent (6) into the gasification material (5); v. mešanje materiala za uplinjanje (5) in adsorbenta (6);v. mixing the gasification material (5) and the adsorbent (6); vi. neobvezno peletiranje dobljene mešanice; in vii. transport (19) mešanice ali peletirane mešanice, v uplinjalnik (2);you. optional pelleting of the resulting mixture; in vii. transport (19) of the mixture or pelleted mixture to the carburetor (2); B. Uplinjanje goriva, ki obsega naslednje korake:B. Fuel gasification comprising the following steps: i. doziranje prvega oksidanta (7), kot je zrak ali kisik in vode ali vodne pare (8) v spodnji del uplinjalnika (2), pod rešetko (20);i. dosing a first oxidant (7), such as air or oxygen and water or water vapor (8) into the lower part of the carburetor (2), below the grate (20); ii. uplinjanje goriva in doseganje najvišje temperature v vroči plasti (18);ii. gasification of the fuel and reaching the maximum temperature in the hot layer (18); iii. odstranjevanje spojin S in/ali C1 in višjih lahko kondenzirajočih katranov, v hladni filtrski plasti materiala (17), ki ima visoko adsorpcijsko kapaciteto;iii. removing compounds S and / or C1 and higher easily condensing tars, in a cold filter layer of material (17) having a high adsorption capacity; iv. zbiranje produktnega plina, ki vsebuje katrane, v prostoru (21) nad omenjeno hladno plastjo (17);iv. collecting tar-containing product gas in a space (21) above said cold layer (17); C. Neobvezno eno ali večfazno predčiščenje (22) produktnega plina, kjer iz produktnega plina odstranimo preostale spojine S in/ali Cl, ki obsega naslednje korake:C. Optional single or multi-phase purification (22) of the product gas, wherein the remaining compounds S and / or Cl are removed from the product gas, comprising the following steps: i. hidrodesulfurizacija;i. hydrodesulfurization; ii. adsorpcija HC1, ki poteka s pomočjo zeolitov ali drugih polnil;ii. HCl adsorption by zeolites or other fillers; iii. adsorpcija H2S, ki poteka na ZnO ali na podobni alternativni snovi;iii. adsorption of H2S on ZnO or a similar alternative substance; D. Pretvorba katranov v sintezni plin, ki obsega naslednje korake:D. Conversion of tars into synthesis gas comprising the following steps: i. dovajanje (23) produktnega plina, očiščenega spojin S in/ali Cl, v mešalni del (25) katalitskega reaktorja (3), kjer mu doziramo ustrezno količino predhodno segretega drugega oksidanta (9), vžigalnega plina (24), kot je na primer vodik, ter vodo ali vodno paro;i. feeding (23) the product gas purified of compounds S and / or Cl into the mixing part (25) of the catalytic reactor (3), where it is dosed with an appropriate amount of preheated second oxidant (9), ignition gas (24), such as hydrogen, and water or steam; ii. mešanje produktnega plina, segretega drugega oksidanta (9) in prisotnega vžigalnega plina, v mešalnem delu (25) katalitskega reaktorja (3);ii. mixing the product gas, the heated second oxidant (9) and the ignition gas present, in the mixing part (25) of the catalytic reactor (3); iii. vžig mešanice iz predhodnega koraka, v vžigalni komori (26) katalitskega reaktorja (3), kije od mešalnega dela (25) ločena s plamensko zaporo (27) in vsebuje vžigalne elemente (28);iii. ignition of the mixture from the previous step, in the ignition chamber (26) of the catalytic reactor (3), which is separated from the mixing part (25) by a flame barrier (27) and contains ignition elements (28); iv. pretvorbo katranov v sintezni plin z delno oksidacijo in parnim reformingom mešanice iz predhodnega koraka v katalizatorju (29) katalitskega reaktorja (3);iv. converting the tars into a synthesis gas by partial oxidation and steam reforming of the mixture from the previous step in the catalyst (29) of the catalytic reactor (3); E. Vodenje (30) sinteznega plina iz katalitskega reaktorja (3) v prvi toplotni izmenjevalnik (31);E. Conducting (30) the synthesis gas from the catalytic reactor (3) to the first heat exchanger (31); F. Vodenje (33) sinteznega plina iz prvega toplotnega izmenjevalnika (31) do drugega toplotnega izmenjevalnika (34);F. Conducting (33) the synthesis gas from the first heat exchanger (31) to the second heat exchanger (34); G. Vodenje (35) sinteznega plina iz drugega toplotnega izmenjevalnika (34) do tretjega izmenjevalnika toplote (36);G. Conducting (35) the synthesis gas from the second heat exchanger (34) to the third heat exchanger (36); H. Vodenje (14) čistega in ohlajenega sinteznega plina iz opisanega procesa v zalogovnik ali do naprav za nadaljnjo uporabo.H. Conducting (14) clean and cooled synthesis gas from the described process to a storage tank or to devices for further use. 2. Postopek po zahtevku 1, značilen po tem, da:Process according to Claim 1, characterized in that: v fazi A, omenjeni korak ugotavljanja vsebnosti Cl in/ali S v materialu za uplinjanje (5) poteka na podlagi predhodne analize in naknadne ocene razpona vsebnosti Cl in/ali S v omenjenem materialu (5);in step A, said step of determining the Cl and / or S content in the gasification material (5) takes place on the basis of a preliminary analysis and subsequent assessment of the range of Cl and / or S content in said material (5); - je v fazi A, količina doziranega adsorbenta (6) določena na podlagi ugotavljene vsebnosti C1 in/ali S v materialu za uplinjanje (5), in sicer tako, da je količina omenjenega adsorbenta (6) v stehiometrijskem presežku in znaša od 1,5-krat do 5-krat, prednostno je 2,5-kratnik njegove stehiometrijske količine se v fazi B, dosežena najvišja temperatura v vroči plasti (18) giblje med 600° C in 1.100° C, v odvisnosti od sestave in lastnosti surovine za uplinjanje.- in step A, the amount of dosed adsorbent (6) is determined on the basis of the determined content of C1 and / or S in the gasification material (5), so that the amount of said adsorbent (6) is in stoichiometric excess and amounts to 1, 5 times to 5 times, preferably 2.5 times its stoichiometric amount, in phase B, the maximum temperature reached in the hot layer (18) ranges between 600 ° C and 1,100 ° C, depending on the composition and properties of the raw material for gasification. 3. Postopek po zahtevku 1 ali 2, značilen po tem, da:Process according to Claim 1 or 2, characterized in that: sintezni plin, v prvem toplotnem izmenjevalniku (31), kamor pride iz katalitskega reaktorja (3), del toplote odda uplinjalniku (2) in ga s tem segreva;synthesis gas, in the first heat exchanger (31), which comes from the catalytic reactor (3), transfers part of the heat to the carburetor (2) and thus heats it; sintezni plin, v drugem toplotnem izmenjevalniku (34), kamor pride iz prvega toplotnega izmenjevalnika (31), del toplote odda drugemu oksidantu (9) in ga s tem segreva;synthesis gas, in the second heat exchanger (34), where it comes from the first heat exchanger (31), transfers part of the heat to the second oxidant (9) and thereby heats it; sintezni plin, v tretjem toplotnem izmenjevalniku (36), kamor pride iz drugega toplotnega izmenjevalnika (34), del toplote odda mediju za prenos toplote (12), se zato ohladi pod temperaturo kondenzacije vode, vlaga v sinteznem plinu kondenzira in se izloči (13) kot kondenzna voda na razvlaževalniku.synthesis gas, in the third heat exchanger (36), which comes from the second heat exchanger (34), part of the heat is transferred to the heat transfer medium (12), is therefore cooled below the condensation temperature of water, moisture in the synthesis gas condenses and is eliminated (13 ) as condensate water on the dehumidifier. 4. Postopek po kateremkoli predhodnem zahtevku, značilen po tem, da so materiali, ki iz postopka izstopajo:Process according to any one of the preceding claims, characterized in that the materials leaving the process are: sintezni plin, brez katranov, spojin S in C1 in prašnih delcev in z majhnimi koncentracijami vlage, CH4 in CO2, v primeru, ko je kot prvi oksidant uporabljen zrak, pa tudi N2, kjer je omenjeni sintezni plin pripravljen za nadaljnjo uporabo;synthesis gas, free of tars, compounds S and C1 and dust particles and with low concentrations of moisture, CH4 and CO2, in case air is used as the first oxidant, as well as N2, where said synthetic gas is ready for further use; anorganski pepel, ki ga po potrebi stabiliziramo in odlagamo kot inertni material ali ga uporabljamo kot surovino, na primer za izdelavo gradbenih materialov; ininorganic ash which, if necessary, is stabilized and disposed of as an inert material or used as a raw material, for example for the manufacture of building materials; in - tehnološka voda, ki jo uporabljamo v samem postopku uplinjanja za doziranje vode v material za uplinjanje ali v spodnji del uplinjalnika (2), pod rešetko (20).- process water used in the gasification process for dosing water into the gasification material or into the lower part of the carburetor (2), under the grate (20). 5. Postopek po kateremkoli predhodnem zahtevku, značilen po:Process according to any one of the preceding claims, characterized by: višji dopustni koncentraciji katranov v produktnem plinu, kar omogoča uplinjanje nekvalitetnih ali kompleksnejših materialov z visokimi vsebnostmi vlage in/ali prahu in je s tem uporabnost postopka uplinjanja bistveno razširjena;a higher permissible concentration of tars in the product gas, which allows the gasification of low-quality or more complex materials with high moisture and / or dust contents, and thus the applicability of the gasification process is significantly extended; počasnem uplinjanju materialov pri nižjih temperaturah ob prisotnosti vlage in ustreznemu nasipanju materiala, kar ustvari filtrsko (adsorpcijsko) cono in omogoča kemijsko reakcijo adsorbenta s S in/ali Cl, ter s tem odstranitev S in/ali Cl pri uplinjanju materialov, ki vsebujejo S in/ali Cl;slow gasification of materials at lower temperatures in the presence of moisture and adequate backfilling of the material, which creates a filter (adsorption) zone and allows the chemical reaction of the adsorbent with S and / or Cl, and thus the removal of S and / or Cl in gasification of materials containing S and / or Cl; katalitski pretvorbi produktnega plina z večjo vsebnostjo katranov v sintezni plin, kjer se delna oksidacija katranov uporablja kot glavni vir toplote za ogrevanje katalitskega reaktorja in zato zahteva dovolj visoko koncentracijo katranov v produktnem plinu;catalytic conversion of a tar gas with a higher tar content into synthesis gas, where partial tar oxidation is used as the main heat source for heating the catalytic reactor and therefore requires a sufficiently high concentration of tars in the product gas; procesu delne oksidacije katranov, ki se uporablja za interno ogrevanje katalitskega reaktorja, čemur sledi katalitski proces parnega reformiranja in posledično linearno povečuje razmerje H2/CO v sinteznem plinu, ki je odvisno od predhodne vsebnosti katranov v produktnem plinu;the partial tar oxidation process used for internal heating of the catalytic reactor, followed by a catalytic steam reforming process and consequently linearly increasing the H2 / CO ratio in the synthesis gas, which depends on the previous tar content in the product gas; pretvorbi ogljika v plinasto stanje pred katalitsko pretvorbo, s procesom delne oksidacije, zaradi česar ne pride do nastanka oglja ali saj, ki bi se izločala v pepel ali v produktni in/ali sintezni plin;the conversion of carbon into a gaseous state prior to the catalytic conversion, by a process of partial oxidation which results in the formation of no carbon or carbon black which would be separated into ash or into a product and / or synthesis gas; manjših emisijah v okolje v primerjavi s sežiganjem, ostanka po uplinjanju pa sta anorganski pepel in kondenzna voda, ki se jo uporabi kot tehnološko vodo v samem procesu.lower emissions to the environment compared to incineration, and residues after gasification are inorganic ash and condensate water, which is used as process water in the process itself.
SI201900002A 2019-01-07 2019-01-07 Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen SI25770A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201900002A SI25770A (en) 2019-01-07 2019-01-07 Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen
PCT/SI2020/000002 WO2020145904A1 (en) 2019-01-07 2020-01-06 Process for gasification of solid carbonaceous materials with a pronounced concentration of tars and their catalytic conversion into carbon monoxide and hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201900002A SI25770A (en) 2019-01-07 2019-01-07 Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen

Publications (1)

Publication Number Publication Date
SI25770A true SI25770A (en) 2020-07-31

Family

ID=69165470

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201900002A SI25770A (en) 2019-01-07 2019-01-07 Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen

Country Status (2)

Country Link
SI (1) SI25770A (en)
WO (1) WO2020145904A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479950B (en) * 2020-10-27 2023-07-28 中国石油化工股份有限公司 Biomass pyrolysis gasification hydrogen production method and system
CN114772961B (en) * 2022-05-05 2023-09-19 合肥工业大学 Process for producing cement and carbon monoxide by co-pyrolysis of cement raw material and solid-phase carbon
WO2024089472A1 (en) * 2022-10-26 2024-05-02 Aether Fuels Pte. Ltd. Enhanced gasification system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US174348A (en) 1876-03-07 Improvement in compositions for fuel
US3920417A (en) * 1973-06-29 1975-11-18 Combustion Eng Method of gasifying carbonaceous material
IL101531A (en) 1991-04-11 1996-10-31 Ormat Inc Method of and means for exploiting fuel having high sulfur content
IT1248156B (en) 1991-05-08 1995-01-05 Daneco Danieli Ecologia Spa CONVERSION PROCEDURE FOR FUEL DERIVED FROM WASTE (RDF) IN COMBUSTIBLE GAS.
MXPA01007229A (en) 2001-07-13 2003-08-19 Cemex Trademarks Worldwide Ltd Method for producing cement clinker using petroleum coke with sulphur content.
CA2848601C (en) 2004-06-28 2018-10-30 Nox Ii, Ltd. Reducing sulfur gas emissions resulting from the burning of carbonaceous fuels
FI118647B (en) * 2006-04-10 2008-01-31 Valtion Teknillinen Procedure for reforming gas containing tar-like pollutants
CA2713391A1 (en) * 2008-01-14 2009-07-23 Boson Energy Sa A biomass gasification method and apparatus for production of syngas with a rich hydrogen content
CN102165046A (en) 2008-06-25 2011-08-24 奈科斯特瑞系统公司 Generating clean syngas from biomass
FI123686B (en) * 2010-03-03 2013-09-30 Neste Oil Oyj A method for reforming gasification gas

Also Published As

Publication number Publication date
WO2020145904A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
Ayol et al. Investigation of municipal sludge gasification potential: Gasification characteristics of dried sludge in a pilot-scale downdraft fixed bed gasifier
US9193589B2 (en) Systems and methods for oxidation of synthesis gas tar
Van Huynh et al. Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam
US20100301273A1 (en) Biomass gasification method and apparatus for production of syngas with a rich hydrogen content
JP6226423B2 (en) Production of synthesis gas from oxidized biomass by heating with hot gas obtained by oxidation of residual product
AU2014366885B2 (en) Process and apparatus for cleaning raw product gas
SI25770A (en) Process of gasification of solid materials that contain carbon, with an emphasized tar concentration and their catalytic conversion into carbon monoxide and hydrogen
CN102076830A (en) A two-stage high-temperature preheated steam gasifier
US20080230444A1 (en) Hydrocarbon Material Processing System and Method
WO2008013790A2 (en) Conversion of carbonaceous materials to synthetic natural gas by reforming and methanation
US20040035788A1 (en) Method for the gasification of liquid to pasty organic substances and substance mixtures
US20140202079A1 (en) Gas distribution arrangement for rotary reactor
JP5553498B2 (en) Chicken manure fuel gas production equipment
WO2020145903A1 (en) Device for gasification of solid carbonaceous materials with a pronounced concentration of tars and their catalytic conversion into carbon monoxide and hydrogen
Cavanaugh et al. Environmental assessment data base for low/medium-Btu gasification technology. Volume II. Appendices A--F
Burra et al. Gasification of municipal solid wastes with gypsum wastes under different gasifying environments
WO2024058677A1 (en) Horizontal gasifier and the thermochemical conversion of combustible carbonaceous material in a counter-current process
CZ303367B6 (en) Gasification method of treated biomass and apparatus for making the same
EA038741B1 (en) Method and combined solid fuel gasifier for gasification of solid fuel
Yu Co-gasification of biosolids with biomass in a bubbling fluidized bed

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20200806

SP73 Change of data on owner

Owner name: ZIGA ZMAZEK; SI

Effective date: 20200821

SP73 Change of data on owner

Owner name: TEOS PERNE; SI

Effective date: 20201029

SP73 Change of data on owner

Owner name: SYNTECH D.O.O.; SI

Effective date: 20230926