SI23987A - Mass occurence prevention of harmful cyanobacteria - Google Patents

Mass occurence prevention of harmful cyanobacteria Download PDF

Info

Publication number
SI23987A
SI23987A SI201200026A SI201200026A SI23987A SI 23987 A SI23987 A SI 23987A SI 201200026 A SI201200026 A SI 201200026A SI 201200026 A SI201200026 A SI 201200026A SI 23987 A SI23987 A SI 23987A
Authority
SI
Slovenia
Prior art keywords
cyanobacteria
water
work platform
lysogenic
population
Prior art date
Application number
SI201200026A
Other languages
Slovenian (sl)
Inventor
Domen Leštan
Bojan Sedmak
Gorazd Lakovič
Original Assignee
ENVIT, okoljske tehnologije in inženiring d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENVIT, okoljske tehnologije in inženiring d.o.o. filed Critical ENVIT, okoljske tehnologije in inženiring d.o.o.
Priority to SI201200026A priority Critical patent/SI23987A/en
Priority to PCT/SI2013/000006 priority patent/WO2013115732A2/en
Publication of SI23987A publication Critical patent/SI23987A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • C12N1/066Lysis of microorganisms by physical methods
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46147Diamond coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower or fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/36Biological material, e.g. enzymes or ATP
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/003Mechanically induced gas or liquid streams in seas, lakes or water-courses for forming weirs or breakwaters; making or keeping water surfaces free from ice, aerating or circulating water, e.g. screens of air-bubbles against sludge formation or salt water entry, pump-assisted water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Water Supply & Treatment (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Inorganic Chemistry (AREA)
  • Catching Or Destruction (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Postopek in naprava za preprečevanje masovnega pojavljanja škodljivih cianobakterij rešujeta problem prekomernega razmnoževanja cianobakterij, znanega tudi kot cvetenje, ki predstavlja grožnjo zdravju ljudi in okolju zaradi hkratne biosinteze toksičnih, genotoksičnih in rakotvornih spojin. Postopek temelji na strateškem proženju litičnega cikla pri lizogenih cianobakterij ah v prostorsko ločenih delih populacije in sproščanju virusov, ki kot virusna epidemija zajamejo celotno populacijo, ali pa na razplastitvi temperaturno stratificiranih vodnih mas in s tem zmanjšani ekološki prednosti cianobakterij pred ostalim planktonom. Strateško proženje virusne epidemije in razplastitev vodnih mas omogoča naprava, ki je konstrukcijsko sestavljena iz servisnega pristana na obrežju vodnega telesa in delovne ploščadi, ki se prosto premika po površini vodnega telesa po v naprej predvidenih ali izračunanih trajektorijah.The procedure and device for preventing the mass occurrence of harmful cyanobacteria solve the problem of excessive reproduction of cyanobacteria, also known as blooming, which poses a threat to human health and the environment due to the simultaneous biosynthesis of toxic, genotoxic and carcinogenic compounds. The process is based on the strategic activation of the lithium cycle in lysogenic cyanobacteria ah in spatially separated parts of the population and the release of viruses that, as a viral epidemic, capture the entire population, or on the splitting of temperature-stratified aqueous masses, and thereby reducing the ecological benefits of cyanobacteria in the rest of the plankton. Strategic triggering of the viral epidemic and the decomposition of water bodies is provided by a device that is structurally composed of a service harbor at the waterfront and work platforms that freely moves along the surface of the body of water according to predetermined or calculated trajectories.

Description

LEŠTAN DomenLESTAN Domain

GrosupljeGrosuplje

SlovenijaSlovenia

SEDMAK Bojan Portorož Slovenija inWEEK Bojan Portorož Slovenia and

LAKOVIČ GorazdLAKOVIČ Gorazd

ŠkofljicaBishop

SlovenijaSlovenia

PREPREČEVANJE MASOVNEGA POJAVLJANJA ŠKODLJIVIH CIANOBAKTERIJPREVENTION OF THE MASS RELEASE OF HARMFUL CYANOBACTERIA

Predmet izuma sta postopek in naprava za Preprečevanje masovnega pojavljanja škodljivih cianobakterij v vodnih telesih. Masovno pojavljanje cianobakterij, znano tudi kot cvetenje, predstavlja grožnjo zdravju ljudi in okolju zaradi hkratne biosinteze toksičnih, genotoksičnih in rakotvornih spojin. Postopek temelji na strateškem proženju litičnega cikla pri lizogenih cianobakterijah v prostorsko ločenih delih populacije in sproščanju virusov, ki kot virusna epidemija zajamejo celotno populacijo, ali pa na razplastitvi temperaturno stratificiranih vodnih mas in s tem zmanjšani ekološki prednosti cianobakterij pred ostalim planktonom. Strateško proženje virusne epidemije in razplastitev vodnih mas omogoča naprava, ki je konstrukcijsko sestavljena iz servisnega pristana na obrežju vodnega telesa in delovne ploščadi, ki se prosto premika po površini vodnega telesa.The subject of the invention is a method and a device for the prevention of the mass appearance of harmful cyanobacteria in water bodies. The mass occurrence of cyanobacteria, also known as flowering, poses a threat to human health and the environment due to the simultaneous biosynthesis of toxic, genotoxic and carcinogenic compounds. The process is based on the strategic initiation of the lytic cycle in lysogenic cyanobacteria in spatially separated parts of the population and the release of viruses that cover the entire population as a viral epidemic, or on the stratification of temperature-stratified water masses and thereby reduce the ecological advantages of cyanobacteria over other plankton. The strategic initiation of a viral epidemic and the spreading of water masses is enabled by a device which is structurally composed of a service dock on the shore of a body of water and a work platform that moves freely over the surface of the body of water.

Izum sodi po mednarodni patentni klasifikaciji v B67D1/00.The invention belongs to the international patent classification in B67D1 / 00.

Izum sodi po evropski patentni klasifikaciji v A01N59/00.The invention belongs to the European patent classification in A01N59 / 00.

S hranili bogata vodna okolja od zmernega pasu do tropskih območij so lahko mesta prekomernega pojavljanja škodljivih cianobakterij. V industrijskih državah sta za njihovo masovno pojavljanje odgovorna prekomerna raba vodnih virov in onesnaževanje, medtem ko je v tropih njihovo pojavljanje običajno naravno in zelo pogosto.Nutrient-rich aquatic environments from the temperate zone to the tropics can be sites of over-occurrence of harmful cyanobacteria. In industrialized countries, their mass occurrence is responsible for the overuse of water resources and pollution, while in the tropics their occurrence is usually natural and very common.

Vse cianobakterij e vsebujejo tako klorofil a kot fikocianine. S temi pomožnimi fotosinteznimi pigmenti so sposobne učinkovito izrabiti tudi svetlobo nizke intenzitete ter dele svetlobnega spektra, ki jih drugi avtotrofi niso sposobni. Nadaljnja prilagoditev, ki jim prinaša prednost pred drugimi fitoplanktonskimi organizmi, so plinski mehurčki. Z njihovo pomočjo lahko uravnavajo svoj položaj v vodnem stolpcu in tako kar najbolje izkoristijo fizikalne (svetloba) • · · · ··· · · · · · ·All cyanobacteria contain both chlorophyll a and phycocyanins. With these auxiliary photosynthetic pigments, they are also able to efficiently utilize low-intensity light and portions of the light spectrum that other autotrophs are not capable of. A further adaptation that favors them over other phytoplankton organisms is gas bubbles. With their help, they can regulate their position in the water column and make the most of the physical (light) • · · · ··· · · · · · ·

-- ·..· ··;· in kemijske (hranila) dejavnike okolja (Walsby, A. E. The gas vesicles of aquatic prokaryotes.......- · .. · ··; · and Chemical (Nutrients) Environmental Factors (Walsby, A. E. The gas vesicles of aquatic prokaryotes .......

Cambridge University Press, 1978, pp. 388.). Modrozelene alge se kot akinete oziroma spore kopičijo na/v sedimentnem dnu, tam prebrodijo neugodne razmere ter v primernem trenutku predstavljajo izvor novega cianobakterijskega cvetenja in njihove prevlade.Cambridge University Press, 1978, pp. 388.). Blue-green algae accumulate on / in the sediment bed as acinetes or spores, there they endure unfavorable conditions and at the appropriate moment represent the origin of new cyanobacterial flowering and their dominance.

Pojav prekomerne rasti in masovnega pojavljanja populacij cianobakterij opisujemo z izrazom škodljivo cvetenje. Med cvetenjem cianobakterij se tvorijo cianotoksini, ki spadajo med najnevarnejše strupe. Številni rodovi npr. Anabaena, Aphanizomenon, Cylindorspermopsis, Lyngbya, Microcystis, Planktothrix proizvajajo različne tipe toksinov, ki se lahko v fazi rasti stalno sproščajo v vodno okolje (npr. anatoksini, LPS) oziroma takšni, ki se masovno sprostijo šele ob propadu cveta (ihikrocistini). Sčasoma naravni pogoji privedejo do postopnega kolapsa cveta in sproščanja toksinov. Učinke toksinov cianobakterij na višje organizme opisujemo kot hepatotoksičnost, nevrotoksičnost, dermatotoksičnost, genotoksičnost in splošno inhibicijo proteinske sinteze. Glede na njihovo kemijsko strukturo jih delimo na manjše peptide, s posebnim poudarkom na cikličnih peptidih, na alkaloide in na lipopolisaharide. Nedavno so v vseh glavnih rodovih cianobakterij, ki so sposobne cvetenja, ugotovili prisotnost neproteinske nevrotoksične aminokisline L-BMAA. Ta spojina ne kaže akutne toksičnosti, jo pa povezujejo z razvojem smrtne nevrološke bolezni ALS-PDC (Kulrand L. T. Amyotrophic lateral sclerosis and parkinson's disease complex on Guam linked to environmental neurotoxin. Trends Neurosci., 1988, 11, 51-55,). Zastrupitve s cianobakterij ami ne moremo pripisati izključno prisotnosti hepatotoksinov in/ali nevrotoksinov, saj prihajamo v stik z mešanico različnih biološko aktivnih snovi, ki so v cianobakterij ah ali so se iz njih sprostile. Ključni mehanizem zastrupitve s hepatotoksini je inhibicija celičnih proteinskih fosfataz. V zadnjem času so takšno delovanje zasledili tudi pri predstavnikih nehepatotoksičnih peptidov z ureido vezjo in pri depsipeptidih (Gkelis S., Lanaras T., Sivonen K. The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters. Aquatic Toxicol., 2006, 78, 241.). Prisotno je tudi sinergistično delovanje toksičnih in nehepatotoksičnih metabolitov. Pri oceni tveganja za zdravje ljudi je morda najpomembnejša genotoksičnost mikrocistinov (Žegura B., Sedmak B., Filipič M. Microcystin-LR induces oxidative DNA damage in human hepatoma celi line HepG2. Toxicon, 2003, 41, 41-48) in njihovo učinkovanje na različne notranje organe višjih organizmov (Filipič M., Žegura B., Sedmak B., Horvat-Žnidaršič I., Milutinovič A., Šuput D. Subchronic exposure of rats to sublethal dose of microcystin - YR induces DNA damage in multiple organs. Radiol. Oncol., 2007, 41, 15-22) in visoko pojavnostjo hepatocelulamega karcinoma (vrsta raka na jetrih).The occurrence of overgrowth and mass occurrence of cyanobacterial populations is described by the term harmful flowering. During the flowering of cyanobacteria, cyanotoxins are formed, which are among the most dangerous toxins. Many genera e.g. Anabaena, Aphanizomenon, Cylindorspermopsis, Lyngbya, Microcystis, Planktothrix produce different types of toxins that can be released into the aquatic environment (eg, anatoxins, LPS) during the growth phase, or those that release only when the flower collapses (ihrocystins). Over time, natural conditions lead to the gradual collapse of the flower and the release of toxins. The effects of cyanobacteria toxins on higher organisms are described as hepatotoxicity, neurotoxicity, dermatotoxicity, genotoxicity, and general inhibition of protein synthesis. Depending on their chemical structure, they are divided into smaller peptides, with particular emphasis on cyclic peptides, alkaloids and lipopolysaccharides. Recently, the presence of the non-protein neurotoxic amino acid L-BMAA was detected in all major genera of cyanobacteria capable of flowering. This compound does not exhibit acute toxicity but is associated with the development of ALS-PDC (Kulrand L. T. Amyotrophic lateral sclerosis and Parkinson's disease complex on Guam linked to environmental neurotoxin. Trends Neurosci. 1988, 11, 51-55,). Cyanobacterial poisoning cannot be attributed solely to the presence of hepatotoxins and / or neurotoxins, as they come into contact with a mixture of various biologically active substances that are released or released from cyanobacteria. A key mechanism of hepatotoxin intoxication is the inhibition of cellular protein phosphatases. Recently, such activity has also been observed in representatives of non-hepatotoxic peptides with ureido and in depsipeptides (Gkelis S., Lanaras T., Sivonen K. The presence of microcystins and other cyanobacterial bioactive peptides and aquatic fauna collected from Greek freshwaters. Aquatic Toxicol. , 2006, 78, 241.). Synergistic activity of toxic and non-hepatotoxic metabolites is also present. Microcystin genotoxicity (Žegura B., Sedmak B., Filipič M. Microcystin-LR induces oxidative DNA damage and human hepatoma whole line HepG2. Toxicon, 2003, 41, 41-48) is perhaps the most important factor in human health risk assessment. to different internal organs of higher organisms (Filipič M., Žegura B., Sedmak B., Horvat-Žnidaršič I., Milutinovič A., Šuput D. Subchronic exposure of rats to sublethal reach of microcystin - YR induces DNA damage in multiple organs. Radiol. Oncol. 2007, 41, 15-22) and the high incidence of hepatocellular carcinoma (a type of liver cancer).

Procesu škodljivega cvetenja cianobakterij niso podvržena samo stoječa in počasi tekoča sladkovodna vodna telesa, temveč tudi moije. Pojav povzroča veliko gospodarsko škodo predvsem pridelovalcem školjk. Školjke na dan filtrirajo do 500 litrov vode in na ta način akumulirajo tudi toksine, ki pa jih ne izločajo. Ti toksini so povzročitelji življenjsko nevarnih • · c · paralitičnih in diarejogenih zastrupitev.The process of harmful flowering of cyanobacteria is not only subject to stagnant and slow-flowing freshwater bodies of water, but also to myos. The phenomenon causes great economic damage, especially to shellfish producers. Shells filter up to 500 liters of water a day and thus accumulate toxins, which do not excrete them. These toxins are the agents of life-threatening paralytic and diarrheal poisoning.

ZNANI POSTOPKI IN NAPRAVE ZA PREPREČEVANJE MASOVNEGA POJAVLJANJA ŠKODLJIVIH CIANOBAKTERIJKnown methods and devices for preventing the mass occurrence of harmful cyanobacteria

Do sedaj znani načini zmanjševanja pojavljanja škodljivega cvetenja alg so:The known methods of reducing the occurrence of harmful algal blooms so far are:

a. Preprečevanje evtrofikacije vodnih teles. Znan je postopek odstranjevanja dušikovih in fosforjevih spojin iz voda (KR Pat. No. 100937004).a. Prevention of eutrophication of water bodies. A process for removing nitrogen and phosphorus compounds from water is known (KR Pat. No. 100937004).

b. Obrežna filtracija je uveljavljena metoda za pridobivanje pitne vode iz površinskih vodnih virov, vendar je za odstranjevanje cianobakterij in njihovih toksinov učinkovita le v specifičnih razmerah primerne sestave tal (Miller M. J., Hutson J., Fallowfield H. J. The adsorption of cyanobacterial hepatoxins as a function of soil properties. J. Water Health, 2005, 3, 339-247) Predvsem prodnata, naplavinska tla lahko omogočajo potovanje toksinov in v manjši meri tudi samih cianobakterij (Bricelj M., Sedmak B. Transport of biologically active substances through gravel strata. Netherlands, Swets & Zeitlinger Lisse, 2011,25-29).b. Riparian filtration is an established method of extracting drinking water from surface water sources, but it is only effective in the removal of cyanobacteria and their toxins under specific conditions of suitable soil composition (Miller MJ, Hutson J., Fallowfield HJ) The adsorption of cyanobacterial hepatoxins as a function of soil J. Water Health, 2005, 3, 339-247) In particular, gravelly, alluvial soils may allow the toxins and, to a lesser extent, the cyanobacteria themselves to travel (Bricelj M., Sedmak B. Transport of biologically active substances through the gravel strata. Swets & Zeitlinger Lisse, 2011,25-29).

c. Znano je odstranjevanje cianobakterij z napravami, ki omogočajo filtracijo z gostimi mrežami (CN Pat. No. 201873977), napravami, ki omogočajo posnemanje škodljivega cveta iz vodne površine (KR Pat. No. 20100101716) ter napravami, ki omogočajo elektrokoagulacijo celic in potem filtracijo (CN Pat. No. 201367380). Znani so tudi postopki odstranjevanja cianobakterij s flokulacijo in usedanjem (CN Pat. No. 101134626). V zadnjem času so se izkazale kot učinkovite različne ultrafiltracije in nanofiltracije, vendar so te metode neustrezne za sanacijo večjih vodnih teles (Gijsbertsen-Abrahamse A. J., Schmidt W., Chorus I., Heijman S. G. J. Removal of cyanotoxins by ultrafiltration and nanofiltration. J. Mem. Sci., 2006, 276, 252-259). Odstranjevanje cianobakterij z napravami za zračno flotacijo izkorišča sposobnost cianobakterij pri prilagajanju lastnega vzgona trenutnim potrebam po svetlobi (Teixeira M. R., Sousa V., Rosa M. J. Investigating dissolved air flotation performance with cyanobacterial celiš and filaments.Water Res., 2010,44,3337-3344).c. It is known to remove cyanobacteria with devices that allow filtration with dense nets (CN Pat. No. 201873977), devices that allow imitation of harmful flower from the water surface (KR Pat. No. 20100101716), and devices that allow electrocoagulation of cells and then filtration (CN Pat. No. 201367380). Methods for the removal of cyanobacteria by flocculation and deposition are also known (CN Pat. No. 101134626). Various ultrafiltrations and nanofiltrations have recently proven effective, but these methods are inadequate for rehabilitation of larger bodies of water (Gijsbertsen-Abrahamse AJ, Schmidt W., Chorus I., Heijman SGJ. Removal of cyanotoxins by ultrafiltration and nanofiltration. J. Mem Sci., 2006, 276, 252-259). Removal of cyanobacteria by air flotation devices utilizes the ability of cyanobacteria to adapt their own buoyancy to current light needs (Teixeira MR, Sousa V., Rosa MJ Investigating dissolved air flotation performance with cyanobacterial whorls and filaments.Water Res., 2010,44,3337-3344 ).

d. Običajni so postopki kloriranja in dodajanja CUSO4 in drugih algicidov, ki pa povzročajo razbitje celic cianobakterij in sprostitev toksične vsebine v vodo (Schmidt W., Willmitzer H., Bommann K., Pietsch J. Production of drinking water from raw water containing cyanobacteria - pilot plant studies for assessing the risk of microcystin breakthrough. Environ.Toxicol., 2002, 17, 375-385). Ponavljajoče dodajanje CUSO4 v vodno telo ima škodljiv vpliv na vodni ekosistem in lahko zaradi prisotnosti na Cu odpornih populaciji (npr. Microcystis aeruginosa) vodi do neučinkovitosti postopka odpravljanja toksičnih cianobakterij (Garcia-Villada L.G., Rico M., Altamirano M., Sanchez-Martin L. Occurrence of copper resistant mutants in the toxic cyanobacteria M. aeruginosa characterisation and future implications in the use of copper sulphate as algaecide. Water Res., 2007, 8, 2207-2213). Ti postopki običajno povzročijo dlje časa trajajoče nevarno visoke koncentracije cianotoksinov v vodnem telesu.d. Processes for chlorination and addition of CUSO4 and other algicides are common, which in turn cause cyanobacteria cells to break down and release the toxic content into water (Schmidt W., Willmitzer H., Bommann K., Pietsch J. Production of drinking water from raw water containing cyanobacteria - pilot plant studies for assessing the risk of microcystin breakthrough. Environ.Toxicol., 2002, 17, 375-385). Repeated addition of CUSO4 to the body of water has a detrimental effect on the aquatic ecosystem and, due to the presence of Cu-resistant populations (e.g., Microcystis aeruginosa), may lead to the ineffectiveness of the process of eliminating toxic cyanobacteria (Garcia-Villada LG, Rico M., Altamirano M., Sanchez-Martin L. Occurrence of copper resistant mutants in the toxic cyanobacteria of M. aeruginosa characterization and future implications in the use of copper sulphate as algaecide. Water Res. 2007, 8, 2207-2213). These processes usually result in long-lasting dangerously high concentrations of cyanotoxins in the body of water.

e. Znani so postopki preprečevanja škodljivega cvetenja in uničevanja celic cianobakterij z algicidi na osnovi mineralnih snovi kot je mešanica kalijevega permanaganata, aluminijevih soli in kacijevega karbonata (CN Pat. No. 101584345), postopki z algicidi na osnovi rastlinskih izvlečkov (GB Pat. No. 2468849) in postopki z algicidi na osnovi izvlečkov iz mikroorganizmov (CN Pat. No. 101481670).e. Methods for the prevention of harmful flowering and destruction of cyanobacterial cells by mineral-based algicides, such as a mixture of potassium permanaganate, aluminum salts and calcium carbonate (CN Pat. No. 101584345), methods of vegetable extract-based algicides (GB Pat. No. 2468849 ) and processes with algicides based on microbial extracts (CN Pat. No. 101481670).

f. Znana je uporaba alelopatskih substanc za zatiranje populacij cianobakterij. To so tiste naravne snovi, s katerimi se običajni neškodljivi vodni organizmi v boju za obstanek zoperstavijo drugim konkurenčnim organizmom, tudi cianobakterij am (Vardi A., Schatz D., Beeri K., Motro U., Sukenik A., Levine A., Kaplan A. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol., 2002, 12, 1767-1772).f. The use of allelopathic substances for the suppression of cyanobacterial populations is known. These are those natural substances that, in the fight against survival, are harmed by other harmless aquatic organisms against other competing organisms, including cyanobacteria am (Vardi A., Schatz D., Beeri K., Motro U., Sukenik A., Levine A., Kaplan A. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol. 2002, 12, 1767-1772).

g. Znano je, da ultrazvok poškoduje celično membrano in druge celične strukture cianobakterij, kot sta fotosintezni aparat in plinski mehurček, in jih s tem uničuje. Znane so naprave z generatorjem ultrazvoka nameščenim v vodo s cianobakterijami. Te naprave so lahko nameščene na kopnem in so stacionarne (WO Pat. No. 2007114528), lahko pa so nameščene na plavajočih objektih tako, da dosežejo območje cvetenja ali globino vodnega stolpca, kjer secianobakterije pojavljajo (CN Pat. No. 101712497). Znana je naprava z generatorjem ultrazvoka, ki se napaja preko elektro-voltaičnih sončnih celic in je energijsko avtonomna (CN Pat. No. 201569904).Mr Rücker Ultrasound is known to damage the cell membrane and other cellular structures of cyanobacteria, such as the photosynthesis apparatus and the gas bubble, thereby destroying them. Devices with an ultrasound generator mounted in cyanobacterial water are known. These devices may be land-based and stationary (WO Pat. No. 2007114528), or may be installed on floating objects to reach the flowering area or depth of water column where secianobacteria occur (CN Pat. No. 101712497). A device with an ultrasound generator that is powered by electro-voltaic solar cells and is energy-autonomous is known (CN Pat. No. 201569904).

h. Znani so postopki in naprave, ki uničujejo cianobakterij e z oksidacijo celičnih membran z nizkimi koncentracijami vodikovega peroksida (H2O2), ki ga razpršujejo po površini škodljivega cveta (CN Pat. No. 101624240), H2O2 uvajajo v vodno telo preko mešanja z vodo (CN Pat. No. 101139129), ali direktno, vbrizgavaj o H2O2 v vodo iz rezervoarja na plovilu (JP Pat. No. 3221191).h. Methods and devices known to be known to destroy cyanobacteria by oxidizing cell membranes with low concentrations of hydrogen peroxide (H2O2) dispersed over the surface of the harmful flower (CN Pat. No. 101624240), introducing H2O2 into the water body through mixing with water (CN Pat No. 101139129), or directly, inject H2O2 into water from a vessel on board (JP Pat. No. 3221191).

i. Znani so postopki in naprave, ki uničujejo celice ali sprožijo programirano celično smrt cianobakterij z oksidacijo celičnih membran z vpihavanjem plina ozona (O3) v vodo (U.S. Pat. No. 2005006316) in plina dušikovega monoksida (NO) v vodo (U.S. Pat. No. 20110021357). Naprava za uvajanje NO v vodno telo je lahko stacionarna ali mobilna in se premika na površini ali pod vodno gladino. Znano je, da v kontaktu z vodo H2O2, O3 in NO hitro razpadejo, pri čemer se tvorijo hidroksilni radikali (·ΟΗ), ki so še močnejši oksidanti kot izvorne spojine.i. Methods and devices known to destroy cells or trigger programmed cell death of cyanobacteria by oxidizing cell membranes by blowing ozone gas (O3) into water (U.S. Pat. No. 2005006316) and nitrogen monoxide (NO) gas into water (U.S. Pat. 20110021357). The device for introducing NO into the water body may be stationary or mobile and move on the surface or below the water surface. It is known that in contact with water, H 2 O 2 , O3 and NO decompose rapidly, forming hydroxyl radicals (· ΟΗ), which are even more powerful oxidizers than the parent compounds.

j. Znani so postopki in naprave, ki uničujejo cianobakterij e z oksidacijo celičnih membran s hidroksilnimi radikali. Znani so postopki in naprave, kjer hidroksilni radikali nastanejo v kombinaciji ultravioličnih (UV) žarkov in zračnega kisika pri prezračevanju in obsevanju vode v UV žarki (CN Pat. No.1511789). Znani so postopki in naprave, kjer hidroksilni radikali nastanejo kot posledica elektro-Fentonove reakcije med H2O2 in Fe3+, pri čemer sej. Methods and devices that destroy cyanobacteria by oxidizing cell membranes with hydroxyl radicals are known. Methods and apparatus are known in which hydroxyl radicals are formed by the combination of ultraviolet (UV) rays and air oxygen in the aeration and irradiation of water in UV rays (CN Pat. No.1511789). Methods and apparatus are known in which hydroxyl radicals are formed as a result of an electro-Fenton reaction between H2O2 and Fe 3+ , whereby

železo regenerira v elektrolitski celici (CN Pat. No. 101962216). Znani so postopki, kjer se hidroksilni radikali tvorijo direktno na anodi, pri čemer je anoda iz materialov, ki imajo visok nad-potencial tvoijenja «OH preden se začne tvoriti molekulami kisik (O2) (CN Pat. No. 101428878). Znane so naprave, kjer elektrolitsko celico skozi območje škodljivega cvetenja prevaža plovilo (KR Pat. No. 20080042632). Znana je naprava z elektrolitsko celico, kjer je energijsko napajanje izvedeno preko elektro-voltaičnih sončnih celic (CN Pat. No. 201842678). Znane so naprave, ki združujejo elektrolitsko celico za tvorjenje ·ΟΗ in filtracijo odmrlih celic (WO Pat. No. 2007126189). Iz znanstvene literature je znano, da so pri uničevanju cianobakterij posebno učinkoviti elektrolitski postopki, kjer se kot anodni materal uporablja rubidijev oksid (RuO2) na titanovem (Ti) substratu (Liang, W.Y., Qu, J.H., Chen, L.B. Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes. Environ. Sci. Technol., 2005, 39, 46334639).iron regenerates in an electrolytic cell (CN Pat. No. 101962216). Methods are known where hydroxyl radicals are formed directly at the anode, the anode being from materials having a high over-potential of 'OH' before it is formed by oxygen (O 2 ) molecules (CN Pat. No. 101428878). Devices are known to transport a vessel through an area of harmful flowering through an electrolytic cell (KR Pat. No. 20080042632). An electrolytic cell device is known wherein the energy supply is via electro-voltaic solar cells (CN Pat. No. 201842678). Devices combining an electrolytic cell for the formation of · ΟΗ and the filtration of dead cells are known (WO Pat. No. 2007126189). It is known from the scientific literature that electrolytic processes are used in the destruction of cyanobacteria, where rubidium oxide (RuO 2 ) on a titanium (Ti) substrate (Liang, WY, Qu, JH, Chen, LB Inactivation of Microcystis aeruginosa is used as the anode material) by continuous electrochemical cycling process in tube using Ti / RuO 2 electrodes. Environ. Sci. Technol., 2005, 39, 46334639).

k. Glede na ekološke posebnosti cianobakterij lahko cvetenje preprečimo s spreminjanjem hidroloških razmer, z razslojitvijo vodnih mas s pomočjo različnih mešalcev in s prezračevanjem (Huisman J., Sharples J., Stroom J.M.,Visser P.M., Kardinaal, E.A., Verspagen J.M.H., Sommeijer B. Changes in turbulent mixing shift competition for light betvveen phytoplankton species. Ecology, 2004, 85, 2960-2970). Pristop ne povzroča celične smrti in s tem sproščanja toksinov v vodno okolje. Znana je naprava, kjer se površinsko mešanje vode izvaja z mešali na plavajoči ploščadi in kjer je energijsko napajanje pogonskih delov naprave izvedeno preko elektro-voltaičnih sončnih celic (WO Pat. No. 2011034282).k. Depending on the ecological peculiarities of cyanobacteria, flowering can be prevented by changing hydrological conditions, stratifying the water masses through various mixers and by aeration (Huisman J., Sharples J., Stroom J.M., Visser P.M., Kardinaal, E.A., Verspagen J.M.H., Sommeijer B. Changes. in turbulent mixing shift competition for light betvveen phytoplankton species. Ecology, 2004, 85, 2960-2970). The approach does not cause cell death and thus the release of toxins into the aquatic environment. A device is known in which surface mixing of water is carried out with floating platform mixers and where the power supply to the drive parts of the device is via electro-voltaic solar cells (WO Pat. No. 2011034282).

Med postopki in napravami za zmanjševanje pojavljanja škodljivega cvetenja so postopki in naprave, ki uničujejo cianobakterij e s hidroksilnimi radikali ali sprožanjem programirane celične smrti cianobakterij še najbolj podobne postopku po izumu. Bistvene razlike med znanimi postopki za zmanjševanje pojavljanja škodljivega cvetenja alg in postopki po izumu so:Among the processes and devices for reducing the occurrence of harmful flowering, the methods and devices that destroy cyanobacteria by hydroxyl radicals or trigger the programmed cell death of cyanobacteria are most similar to the process of the invention. The essential differences between the known methods for reducing the occurrence of harmful algal blooms and the methods of the invention are:

a. Pri znanih rešitvah se s postopki, ki uničujejo cianobakterije ali sprožajo programirano celično smrt neselektivno učinkuje celotna znana fitoplantonska populacija. Pri postopku po izumu pa s strateškim proženjem litičnega cikla pri lizogenih cianobakterij ah v izbranih, prostorsko ločenih delih populacije sproščamo viruse, ki kot virusna epidemija potem zajamejo celotno populacijo cianobakterij in jo na ta način oslabijo ali uničijo. Postopek po izumu na ta način omogoča preprečevanje masovnega pojavljanja škodljivih cianobakterij ob manjši porabi energije in s tem večji avtonomiji delovanja naprave kot pri znanih rešitvah, ob hkratnem manjšem oziroma ničnem vnosu dodanih škodljivih snovi in energije v vodno telo.a. For known solutions, cyanobacterial killing or programmed cell death processes have indiscriminate effects on the entire known phytoplankton population. In the process of the invention, the strategic initiation of the lytic cycle in lysogenic cyanobacteria in selected, spatially separated sections of the population releases viruses which, as a viral epidemic, then capture the entire cyanobacterial population and thus weaken or destroy it. The method according to the invention thus prevents the mass appearance of harmful cyanobacteria with lower energy consumption and thus greater autonomy of operation of the device than in the known solutions, while the minor or zero introduction of added harmful substances and energy into the body of water.

b. Noben od znanih postopkov ni podoben toplotni oslabitvi celic in proženju litičnega cikla pri lizogenih cianobakterij ah s toplotnim šokom, ki je predviden v eni od možnih izvedbb. None of the known methods is similar to the thermal attenuation of cells and the triggering of the lytic cycle in lysogenic cyanobacteria ah with the heat shock provided in one of the possible embodiments

• · · · postopka po izumu.The process according to the invention.

c. Noben od znanih elektrolitskih postopkov uničevanja cianobakterij kot delovno elektrodo ne predvideva uporabo z borom dopirane diamantne anode, katere uporaba je predvidena v eni od prednostnih izvedb postopka po izumu. Med vsemi znanimi anodnimi materiali ima z borom dopirana diamantna anoda najvišji nad-potencial in s tem najvišjo učinkovitost tvorbe hidroksilnih radikalov.c. None of the known electrolytic methods of destroying cyanobacteria as a working electrode contemplates the use of a boron doped diamond anode, the use of which is contemplated in one of the preferred embodiments of the process of the invention. Among all known anode materials, boron doped diamond anode has the highest over-potential and therefore the highest efficiency of hydroxyl radical formation.

Bistvene razlike med znanimi napravami za preprečevanje masovnega pojavljanja škodljivih cianobakterij in napravo po izumu so:The essential differences between the known devices for preventing the mass appearance of harmful cyanobacteria and the device according to the invention are:

a. Pri znanih rešitvah je naprava bodisi obrežna in stacionarna, bodisi plavajoča in stacionarna, bodisi mobilna. Naprava po izumu pa je sestavljena iz dveh ločenih delov: servisnega pristana na obrežju vodnega telesa in delovne ploščadi, ki se prosto premika po površini vodnega telesa.a. With known solutions, the device is either shore and stationary, either floating and stationary, or mobile. The device according to the invention, however, consists of two separate parts: a service dock on the shore of the water body and a work platform that moves freely over the surface of the water body.

b. Preskrba z energijo in materiali pri nobeni od znanih naprav ni podobna preskrbi naprave po izumu. Pri napravi po izumu je energijsko napajanje pogonskih in delovnih delov delovne ploščadi izvedeno preko elektro-voltaičnih sončnih celic na delovni ploščadi in preko napajanja z virom električne energije, ki je zagotovljen v servisnem pristanu po avtomatskem pristanku delovne ploščadi. Pri napravi po izumu se po avtomatskem pristanku delovna ploščad po potrebi oskrbuje z materiali, ki so skladiščeni in zagotovljeni v servisnem pristanu.b. The supply of energy and materials to any of the known devices is not similar to the supply of the device according to the invention. In the apparatus according to the invention, the power supply to the drive and working parts of the work platform is carried out via electro-voltaic solar cells on the work platform and through the power supply provided in the service dock after the automatic landing of the work platform. In the device according to the invention, the work platform is, where necessary, automatically supplied with the materials, which are stored and provided in the service port.

c. Operativno delovanje pri nobeni od znanih naprav ni podobno kot pri napravi po izumu. Delovna ploščad naprave po izumu se po površini vodnega telesa premika samostojno s pomočjo samo-učečega algoritma ali po vnaprej predpisanih trajektorijah in je pred neugodnimi vremenskimi razmerami, zamrzovanjem vodnega telesa in drugimi motnjami iz okolja zaščitena z avtomatskim pristankom v servisnem pristanu. Odpravljanje napak in servisiranje delovne ploščadi naprave po izumu je omogočeno po avtomatskem pristanku v servisnem pristanu.c. The operative operation of any of the known devices is not similar to that of the device of the invention. The working platform of the device according to the invention moves independently on the surface of the water body by means of a self-learning algorithm or by pre-defined trajectories and is protected by an automatic landing at a service port against adverse weather conditions, freezing of the water body and other environmental disturbances. The debugging and servicing of the work platform of the device according to the invention is made possible after an automatic landing in the service port.

Postopek in naprava po izumu sta podobna tudi znanemu postopku in napravi za razplastenje vodnega stolpca z mešalno napravo na plavajoči platformi, kjer je energijsko napajanje pogonskih delov naprave izvedeno preko elektro-voltaičnih sončnih celic. Bistveni razliki med znanim postopkom in postopkom in napravo po izumu sta:The process and apparatus of the invention are also similar to the known method and apparatus for flushing a water column with a mixing device on a floating platform, where the power supply to the drive parts of the device is via electro-voltaic solar cells. The essential differences between the known process and the process and apparatus of the invention are:

a. Pri postopku po izumu vodni stolpec razplastimo s črpanjem hladne vode iz epilimnija, (habitata cianobakterij) ali izpod termokline, segrevanjem vode v toplotnih kolektogih na krovu delovne ploščadi in uvajanjem segrete vode nazaj v epilimnij, oziroma izpod termokline.a. In the process according to the invention, the water column is flushed by pumping cold water from the epilimnium (cyanobacteria habitat) or under the thermocline, heating the water in the thermal collectors on the work platform deck and introducing the heated water back to the epilimnium, or under the thermocline.

b. Naprava po izumu je sestavljena iz stacionarnega servisnega pristana in mobilne delovne ploščadi.b. The device according to the invention consists of a stationary service dock and a mobile work platform.

OPIS PREDNOSTNE IZVEDBE IZUMADESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

Prednostna izvedba postopka po izumuA preferred embodiment of the process of the invention

Razumevanje pojavljanja škodljivih cvetenj cianobakterij je nujen predpogoj za učinkovito poseganje v njihov razvoj. Trdimo, da glavni nadzor nad gostoto populacij cianobakterij v vodah opravljajo virusi, temperirani in litični fagi. Ti virusi za svojo aktivacijo potrebujejo sprožilec liže ali litičnega cikla, ki je lahko fizikalnega, kemijskega in tudi naravnega (biološkega) izvora. Glede na ekološko posebnost cianobakterij (sposobnost optimizacije svojega položaja v vodnem stolpcu glede na konkurenčne organizme) lahko cvetenje preprečimo tudi s spreminjanjem hidroloških razmer z razplastitvijo temperaturno stratificiranih vodnih mas s pomočjo različnih načinov mešanja.Understanding the occurrence of harmful cyanobacterial blooms is a necessary prerequisite for effective interference with their development. We argue that the main control of the density of cyanobacterial populations in water is performed by viruses, tempered and lytic phages. These viruses require the activation of a lick or lytic cycle, which can be of physical, chemical and also natural (biological) origin for their activation. Due to the ecological peculiarity of cyanobacteria (the ability to optimize its position in the water column with respect to competing organisms), flowering can also be prevented by changing hydrological conditions by stratifying the temperature-stratified water masses through various mixing methods.

Pri postopku po izumu z različnimi sprožilci ne povzročimo takojšnje liže cianobakterij temveč vzbudimo litični cikel v lizogenih osebkih. S strateškim proženjem litičnega cikla pri lizogenih cianobakterij ah v izbranih, prostorsko ločenih delih populacije sproščamo viruse, ki kot virusna epidemija zajamejo celotno populacijo cianobakterij in jo na ta način oslabijo ali uničijo. Slika 1 prikazuje sprožitev litičnega cikla lizogenih cianobakterij in tvorbo lizogenih žarišč iz katerih se sproži razpad cveta.In the process according to the invention, different triggers do not cause immediate cyanobacterial lysis but induce a lytic cycle in lysogenic specimens. By strategically triggering the lytic cycle in lysogenic cyanobacteria in selected, spatially separated sections of the population, viruses are released that, as a viral epidemic, capture the entire cyanobacterial population and thus weaken or destroy it. Figure 1 shows the triggering of the lytic cycle of lysogenic cyanobacteria and the formation of lysogenic foci from which flower decay is triggered.

Pri postopku po izumu kot sprožilec litičnega cikla cianobakterij prednostno uporabljamo anodno oksidacijo celičnih membran s hidroksilnimi radikali (·ΟΗ). Pri postopku po izumu hidroksilne radikale prednostno proizvajamo z kemijsko inertno z borom dopirano diamantno anodo (BDDA). Med anodno oksidacijo pri elektrolizi vode nastaja kisik, razen v primeru visokega anodnega nad-potenciala za nastajanje kisika. BDDA ima izjemen nadpotencial > 3 V, preden se začneta razvijati H2 (katoda) in O2 (anoda). To elektrolitsko okno omogoča proizvodnjo hidroksilnih radikalov na anodi direktno iz vode z visoko tokovno učinkovitostjo in v skladu z enačbo:In the process of the invention, the anode oxidation of cell membranes with hydroxyl radicals (· ΟΗ) is preferably used as a trigger for the lytic cycle of cyanobacteria. In the process of the invention, hydroxyl radicals are preferably produced by a chemically inert boron doped diamond anode (BDDA). During anodic oxidation, oxygen is generated by water electrolysis, except in the case of high anodic over-potential for oxygen production. The BDDA has a remarkable overpotential of> 3 V before the development of H 2 (cathode) and O 2 (anode). This electrolytic window allows the production of hydroxyl radicals at the anode directly from water with high current efficiency and according to the equation:

H2O -> ·ΟΗ + e’+ H+ H 2 O -> · ΟΗ + e '+ H +

Med vsemi znanimi anodnimi materiali ima BDDA najvišji nad-pontecial in s tem najvišjo učinkovitost tvorbe hidroksilnih radikalov. Hidroksilni radikali so kratkoživi in ne predstavljajo obremenitve za okolje. Po postopku po izumu z borom dopirano diamantno anodo namestimo v elektrolitsko celico z vodo privedeno na delovno ploščad iz različnih globin epilimnija, habitata cianobakterij, ali pa elektrolitsko celico potopimo v epilimnij. Katoda je lahko iz nerjavečega jekla ali drugih materialov, ki so znani povprečnemu strokovnjaku iz zadevnega področja. Gostota toka na anodi znaša med 0.01 in 500 mA cm'2, napetost med 0.05 in 30 V ter razdalja med elektrodama med 0.1 in 30 mm.Among all known anode materials, BDDA has the highest supra-pontecial and thus the highest formation efficiency of hydroxyl radicals. Hydroxyl radicals are short-lived and do not pose any environmental burden. According to the method of the invention, the doped diamond anode is placed in an electrolytic cell with water brought to the work platform from different depths of the epilimnium, cyanobacteria habitat, or immersed in the epilimnium. The cathode may be of stainless steel or other materials known to the average person skilled in the art. The current density at the anode is between 0.01 and 500 mA cm ' 2 , the voltage is between 0.05 and 30 V and the electrode distance is between 0.1 and 30 mm.

V drugi prednostni izvedbi postopka po izumu kot sprožilec litičnega cikla uporabljamo toplotni šok. Celice cianobakterij toplotno oslabimo tako, da vodo s cianobakterij ami iz epilimnija v toplotnih sončnih kolektorjih nameščenih na delovni platformi segrejemo do 50 95 °C.In another preferred embodiment of the process according to the invention, a heat shock is used as the trigger of the lytic cycle. The cyanobacteria cells are thermally weakened by heating the cyanobacterium ami epilimnium water in the solar thermal collectors mounted on the work platform to 50 95 ° C.

• · • · · ·• · · · ·

Pri postopku po izumu lahko uporabimo tudi druge fizikalne, kemijske in biološke količine, ki pri cianobakterijah sprožajo litični cikel, kot so vendar ne izključno, UV žarki, ultrazvok, ozon, dušikov monoksid (NO), alelopatske substance, samo v skrajnem primeru tudi kloriranje, CuSO4 in druge algicide. Lahko uporabimo tudi hidroksilne radikale, ki nastanejo kot posledica Fentonovih ali elektro-Fentonovih reakcij ali pa nastajajo elektrolitsko na ustrezni anodi in pa različne kombinacije sprožilcev. Primer takega znanega sprožilca je doziranje H2O2 v vodo prečrpano iz epilimnija, habitata cianobakterij, na krov delovne platforme, ali pa doziranje H2O2 v epilimnij. Nizke koncentracije H2O2 med 10'2 in IO4 M so selektivno toksične za cianobakterij e medtem ko evkariontski organizmi ostanejo nepoškodovani. Doziranje H2O2 v vodo ne predstavlja večje obremenitve za okolje, saj se spontano eksotermno razgrajuje na vodo in kisik:Other physical, chemical and biological quantities may be used in the process according to the invention, triggering a lytic cycle in cyanobacteria, such as but not limited to, UV rays, ultrasound, ozone, nitrogen monoxide (NO), allelopathic substances, and in extreme cases chlorination. , CuSO 4 and other algicides. We can also use hydroxyl radicals that result from Fenton or electro-Fenton reactions, or which are formed electrolytically at the appropriate anode and different combinations of triggers. An example of such a known trigger is the dosage of H2O2 into water pumped from epilimnium, cyanobacteria habitat to the deck of a work platform, or the dosage of H2O2 into epilimnium. Low concentrations of H2O2 between 10 ' 2 and IO 4 M are selectively toxic to cyanobacteria while eukaryotic organisms remain intact. The dosage of H 2 O 2 in water does not pose a major environmental burden, as it spontaneously exothermically decomposes into water and oxygen:

H2O2 -> 2 H2O + O2 H 2 O 2 -> 2 H 2 O + O 2

Spet v drugi prednostni izvedbi postopka po izumu za nadzor nad gostoto populacij cianobakterij uporabljamo razplastitev temperaturno stratificiranih vodnih mas v vodnem stolpcu s črpanjem hladne vode iz epilimnija, (habitata cianobakterij) ali izpod termokline, segrevanjem vode v toplotnih kolektoijih na delovni plavajoči platformi na 20 - 95 °C. in uvajanjem segrete vode nazaj v epilimnij, oziroma izpod termokline.Again, in another preferred embodiment of the process of the invention for controlling the density of cyanobacteria populations, we use the stratification of temperature-stratified water masses in a water column by pumping cold water from an epilimnium (cyanobacteria habitat) or under thermocline, heating water in thermal collections on a working floating platform 95 ° C. and introducing the heated water back to the epilimnium, or below the thermocline.

Prednostna izvedba naprave po izumuA preferred embodiment of the device according to the invention

Strateško proženje litičnega cikla in virusno epidemijo populacije cianobakterij oziroma oslabitev populacije cianobakterij z razplastitvijo vodnih mas po postopku po izumu omogoča naprava po izumu. Naprava po izumu je konstrukcijsko sestavljena iz dveh ločenih delov: servisnega pristana (Slika 2, 1) na obrežju vodnega telesa in delovne ploščadi (2), ki se prosto premika po površini vodnega telesa in je primerna za avtonomno obdelavo velikih vodnih površin. Plovnost, pogon in premikanje delovne ploščadi po vodni površini je lahko zagotovljena na kateregakoli od načinov, ki so znani povprečnemu strokovnjaku iz zadevnega področja.The strategic initiation of the lytic cycle and the viral epidemic of the cyanobacterial population, or the attenuation of the cyanobacterial population by the dewatering of the water masses according to the method of the invention, are made possible by the device of the invention. The device according to the invention is structurally composed of two separate parts: a service dock (Figure 2, 1) on the bank of the water body and a work platform (2) that freely moves over the surface of the water body and is suitable for autonomous treatment of large water surfaces. The buoyancy, propulsion and movement of the work platform over the water surface can be ensured in any of the methods known to the average person skilled in the art.

Pri napravi po izumu je energijsko napajanje pogonskih in delovnih delov delovne ploščadi naprave izvedeno preko elektro-voltaičnih sončnih celic (3) in akumulatorjev na delovni ploščadi (4) in preko avtomatskega pristanka v servisnem pristanu in napajanja z virom električne energije, ki je zagotovljen v servisnem pristanu. Vir električne energije v servisnem pristanu je lahko avtonomen, na primer elektro-voltaične sončne celice (5), ali pa stacionarno električno omrežje (6). Pri napravi po izumu se delovna ploščad po potrebi z avtomatskim pristankom oskrbuje z materiali, ki so skladiščeni in zagotovljeni v servisnem pristanu (7). Delovna ploščad naprave po izumu se po površini vodnega telesa premika samostojno po vnaprej predpisanih trajektorijah ali trajektorijah izračunanih s pomočjo samo-učečega algoritma. Pozicioniranje delovne ploščadi je izvedeno preko referenčne satelitske navigacije ali z referenčnimi signali (trigonometrično pozicioniranje). Delovna ploščad naprave po izumu je pred neugodnimi vremenskimi razmerami, zamrzovanjem vodnega telesa in drugimi motnjami iz okolja zaščitena z avtomatskim pristankom v servisnem pristanu. Odpravljanje napak in servisiranje delovne ploščadi je omogočeno po avtomatskem pristanku v servisnem pristanu.In the apparatus according to the invention, the power supply to the drive and working parts of the work platform of the device is carried out through electro-voltaic solar cells (3) and accumulators on the work platform (4) and through an automatic landing in the service port and supply with the power source provided in service dock. The source of electricity in the service port may be autonomous, such as electro-voltaic solar cells (5) or a stationary electrical network (6). In the device according to the invention, the work platform is provided with an automatic landing, if necessary, with materials stored and provided in the service port (7). The work platform of the device according to the invention moves independently on the surface of the water body according to predefined trajectories or trajectories calculated using a self-learning algorithm. Positioning of the work platform is performed via reference satellite navigation or with reference signals (trigonometric positioning). The working platform of the device according to the invention is protected by an automatic landing at a service port against adverse weather conditions, freezing of the water body and other environmental disturbances. Debugging and servicing of the work platform is enabled after an automatic landing at the service port.

Delovna ploščad naprave po izumu je zasnovana kot rekonfigurabilni sistem tako, da so možne njene različne izvedbe. Pri prednosti izvedbi delovne ploščadi so sistemi za proženje litičega cikla pri cianobakterijah z različnimi fizikalnimi, kemijskimi in biološkimi količinami (8) nameščeni na krovu delovne ploščadi in je voda s cianobakterijami preko cevnega sistema, vitla in črpalke (9) privedena na krov delovne ploščadi iz različnih globin vodnega telesa.. Možna je tudi izvedba delovne ploščadi pri kateri različne fizikalne, kemijske in biološke količine ža proženje litičnega cikla cianobakterij uvajamo direktno v različne globine vodnega telesa. Na krovu delovne ploščadi ali potopljena na različne globine je lahko nameščena tudi sonda fluorescenčnega spektrofotometra za meijenje koncentracije cianobakterij.The working platform of the device according to the invention is designed as a reconfigurable system in such a way that its various embodiments are possible. For the advantage of the work platform implementation, cast cycle triggering systems for cyanobacteria of varying physical, chemical and biological quantities (8) are installed on the work platform deck and water with cyanobacteria is brought through the work platform, winch and pump (9) from the work platform. It is also possible to construct a working platform in which different physical, chemical and biological quantities are introduced directly into different water body depths by triggering the lytic cycle of cyanobacteria. A probe of a fluorescence spectrophotometer for changing cyanobacterial concentrations may also be fitted on the work platform deck or submerged at different depths.

V eni od možnih izvedb so poleg elektro-voltaičnih sončnih celic (3) na delovni ploščadi nameščeni tudi sončni toplotnih kolektoiji (10) za segrevanje vode in proženje litičnega cikla cianobakterij s toplotnim šokom ali pa za razplastitev temperaturno stratificiranih vodnih mas vodnega stolpca s črpanjem hladne vode iz epilimnija, (habitata cianobakterij) ali izpod termokline, segrevanjem vode v toplotnih kolektoijih na delovni ploščadi in uvajanjem segrete vode nazaj v epilimnij, oziroma izpod termokline.In one embodiment, in addition to electro-voltaic solar cells (3), solar thermal collections (10) are mounted on the work platform for heating water and triggering the lytic cycle of cyanobacteria by heat shock, or for stratifying the water-stratified water masses of a water column by pumping cold water. water from the epilimnium (cyanobacteria habitat) or under the thermocline, heating the water in thermal collections on the work platform and introducing the heated water back to the epilimnium, or under the thermocline.

V eni od možnih izvedb naprave po izumu je lahko na delovni ploščadi mikroprocesorska enota z merilno-nadzomim sistemom, ki razporeja energijo med delovnimi sistemi za izvedbo postopka po izumu, krmilno enoto elektromotoijev za pogon delovne ploščadi in pozicioniranje elektro-voltaičnih sončnih celic, ter enoto za polnjenje akumulatorjev, glede na algoritem za iskanje točke največje moči in modula za adaptivno kontrolo, ki temelji na klimatskih in sončnih pogojih.In one of the possible embodiments of the device according to the invention, the work platform may include a microprocessor unit with a metering and control system that distributes energy between the work systems for carrying out the process according to the invention, a control unit of electric motors for driving the work platform and positioning of electro-voltaic solar cells, and a unit for battery charging, according to the algorithm for finding the maximum power point and the adaptive control module based on climatic and solar conditions.

V eni od možnih izvedb naprave po izumu je lahko na delovni ploščadi mikroprocesorska enota z merilno-nadzomim sistemom in senzorji za merjenje vrednosti specifičnih kemičnih in bioloških indikatorjev stanja vodnega ekosistema kot so, vendar ne izključno, fluorescenca in koncentracija cianobakterij, temperaturni profil po vodnem stolpcu, pH, redoks potencial, raztopljen kisik, motnost vode. Senzorji so lahko nameščeni na krovu delovne ploščadi ali potopljivi v različne globine vodnega telesa. Izvedba delovne ploščadi z merjenjem fluorescence omogoča delovanje sistemov za izvedbo postopka po izumu, torej proženje litičnega cikla cianobakterij z različnimi fizikalnimi, kemijskimi in biološkimi količinami le takrat, ko zazna prisotnost oziroma dovolj visoke koncentracije cianobakterij. Taka izvedba omogoča tudi 3-dimenzionalno kartiranje gostote populacij cianobaterij v vodnem telesu. Izvedba delovne ploščadi z merjenjem fluorescence in temperaturnega profila po vodnem stolpcu omogoča delovanje sistema za razplastitev vodnega stolpca s črpanjem in segrevanjem hladne, ter vračanju tople vode v epilimnij oziroma izpod termokline le takrat, ko zazna prisotnost oziroma dovolj visoke koncentracije cianobakterij ter stratifikacijo vodnega stolpca. Izvedba delovne ploščadi s telemetrijsko enoto omogoča prenašanje izmerjenih podatkov preko GSM mreže centralnemu nadzornemu centru.In one of the possible embodiments of the device according to the invention, the working platform may include a microprocessor unit with a measurement and control system and sensors for measuring the values of specific chemical and biological indicators of the status of the aquatic ecosystem such as, but not limited to, fluorescence and concentration of cyanobacteria, temperature profile according to the water column , pH, redox potential, dissolved oxygen, turbidity of water. The sensors can be installed aboard the work platform or submerged in different depths of the body of water. The construction of a work platform with fluorescence measurement allows the operation of the systems for carrying out the process according to the invention, that is, triggering the lytic cycle of cyanobacteria with different physical, chemical and biological quantities only when it detects the presence or sufficiently high concentrations of cyanobacteria. Such an embodiment also enables a 3-dimensional mapping of the population density of cyanobacteria in the body of water. The construction of the work platform by measuring the fluorescence and temperature profile of the water column enables the operation of the water column stratification system by pumping and heating the cold, and returning warm water to the epilimnium or below the thermocline only when it detects the presence or sufficiently high concentrations of cyanobacteria and stratification of the water column. The construction of the work platform with the telemetry unit enables the transmission of the measured data via the GSM network to the central control center.

Konec postopka po izumu je označen s tem, da preprečimo pojav masovnega pojavljanja škodljivih cianobakterij v vodnem telesu in sicer tako, da z napravo po izumu strateško sprožamo litične cikle in povzročimo virusno epidemijo celotne populacije cianobakterij, ali pa oslabitev populacije cianobakterij povzročimo s toplotno stratificirane vodne mase. Prikaz naprave po izumu na Sliki 2 je simboličen in ne predstavlja omejitev pri izvedbi naprave.The end of the process according to the invention is characterized by preventing the mass appearance of harmful cyanobacteria in the water body by strategically triggering the lytic cycles and causing a viral epidemic of the entire cyanobacterial population, or by reducing the cyanobacterial population from heat stratified aqueous masses. The representation of the device according to the invention in Figure 2 is symbolic and does not imply any restrictions on the device's construction.

OPIS SLIKDESCRIPTION OF THE IMAGES

Slikal.Painted.

Sproženje litičnega cikla v lizogeni koloniji cianobakterij s postopkom po izumu. Od zgoraj navzdol; tvorba lizogenega žarišča, žarišče lizogenih (inficiranih) celic in sprožitev liže, aktiviranje lizogenih žarišč v cianobakterij skem cvetu, ki vodi v končno lizo cveta.Initiation of the lytic cycle in a lysogenic cyanobacterial colony by the method of the invention. From top to bottom; formation of lysogenic foci, foci of lysogenic (infected) cells and triggering of licks, activation of lysogenic foci in cyanobacterial flower leading to final lysis of the flower.

Slika 2.Figure 2.

Shema prednostne izvedbe naprave po izumu Preprečevanje masovnega pojavljanja škodljivih cianobakterij v vodnih telesih.Preferred embodiment of the device according to the invention Prevention of the mass appearance of harmful cyanobacteria in water bodies.

Domen LEŠTANDomain LEŠTAN

Bojan SEDMAKBojan SEDMAK

Gorazd LAKOVIČGorazd LAKOVIČ

Claims (20)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek za Preprečevanje masovnega pojavljanja škodljivih cianobakterij v vodnih telesih, označen s tem, da z različnimi sprožilci sprožamo litični cikel lizogenih cianobakterij in s tem povzročimo virusno infekcijo in oslabitev populacije, ali pa z razplastitvijo temperaturno stratificiranih vodnih mas v vodnem stolpcu zmanjšamo ekološko prednost cianobakterij pred ostalim planktonom in s tem zmanjšamo gostoto populacije cianobakterij.1. A method for preventing the mass occurrence of harmful cyanobacteria in water bodies, characterized in that different triggers trigger the lytic cycle of lysogenic cyanobacteria, thereby causing viral infection and population impairment, or reducing the temperature stratified water masses in the water column of cyanobacteria over other plankton, thereby reducing the population density of cyanobacteria. 2. Postopek po zahtevku 1, označen s tem, da strateško sprožamo litične cikle v izbranih, prostorsko ločenih delih populacije cianobakterij in na ta način povzročimo virusno infekcijo, ki se kot epidemija razširi na celotno populacijo cianobakterij in jo na ta način oslabi ali uniči.A method according to claim 1, characterized in that it strategically initiates lytic cycles in selected, spatially separated parts of the cyanobacterial population, thereby causing a viral infection which, as an epidemic, spreads to the entire cyanobacterial population, thereby weakening or destroying it. 3. Postopek po zahtevku 1 in 2, označen s tem, da kot sprožilec litičnega cikla lizogenih cianobakterij prednostno uporabljamo anodno oksidacijo celičnih membran cianobakterij s hidroksilnimi radikali proizvedenimi v elektrolitski celici, ki vključuje z borom dopirano diamantno anodo kot delovno anodo.Method according to Claims 1 and 2, characterized in that the anode oxidation of cyanobacterial cell membranes with hydroxyl radicals produced in the electrolytic cell, which includes boron doped diamond anode as a working anode, is preferably used as a trigger for the lytic cycle of lysogenic cyanobacteria. 4. Postopek po zahtevku 1 in 2, označen s tem, da kot sprožilec litičnega cikla lizogenih cianobakterij lahko prednostno uporabljamo tudi toplotni šok.Method according to Claims 1 and 2, characterized in that heat shock can preferably be used as a trigger for the lytic cycle of lysogenic cyanobacteria. 5. Postopek po zahtevku 1, označen s tem, da razplastitev temperaturno stratificiranih vodnih mas v vodnem stolpcu dosežemo s črpanjem hladne vode iz epilimnija, ki je habitat cianobakterij, ali izpod termokline, segrevanjem vode in uvajanjem segrete vode nazaj v epilimnij, oziroma izpod termokline.Method according to claim 1, characterized in that the stratification of water-stratified water masses in the water column is achieved by pumping cold water from the epilimnium, which is the habitat of cyanobacteria, or under the thermocline, heating the water and introducing the heated water back into the epilimnium, or below the thermocline . 6. Naprava za Preprečevanje masovnega pojavljanja škodljivih cianobakterij v vodnih telesih, označena s tem, da oslabitev ali uničenje populacije cianobakterij z proženjem litičnega cikla lizogenih cianobakterij in virusne epidemije ali z razplastitvijo temperaturno stratificiranih vodnih • · mas v vodnem stolpcu izvedemo z napravo, ki je konstrukcijsko sestavljena iz servisnega pristana na obrežju vodnega telesa (Slika 2, 1) in delovne ploščadi (2), ki se prosto premika po površini vodnega telesa.6. A device for the prevention of the mass occurrence of harmful cyanobacteria in water bodies, characterized in that the attenuation or destruction of the cyanobacteria population by triggering the lytic cycle of lysogenic cyanobacteria and viral epidemics or by spreading temperature-stratified water • is carried out with a device in a water column. Structurally consisting of a service dock on the bank of the water body (Figure 2, 1) and a work platform (2) that moves freely over the surface of the water body. 7. Naprava po zahtevku 6, označena s tem, da je energijsko napajanje pogonskih in delovnih delov delovne ploščadi izvedeno z elektro-voltaičnimi sončnimi celicami (3), akumulatorji (4) in z avtomatskim pristankom in napajanjem z virom električne energije, kije zagotovljen v servisnem pristanu.Apparatus according to claim 6, characterized in that the power supply to the drive and working parts of the work platform is provided by electro-voltaic solar cells (3), batteries (4) and by an automatic landing and supply with a source of electricity provided in service dock. 8. Naprava po zahtevku 6, označena s tem, da so vir električne energije v servisnem pristanu lahko elektro-voltaične sončne celice (5) ali pa stacionarno električno omrežje (6).Apparatus according to claim 6, characterized in that the power source in the service port can be electro-voltaic solar cells (5) or a stationary electrical network (6). 9. Naprava po zahtevku 6, označena s tem, da se delovna ploščad lahko avtomatsko s pristankom oskrbuje z materiali, ki so skladiščeni in zagotovljeni v servisnem pristanu (7).Apparatus according to claim 6, characterized in that the work platform can be landed automatically with materials stored and secured in the service port (7). 10. Naprava po zahtevku 6, označena s tem, da se delovna ploščad po površini vodnega telesa premika samostojno po vnaprej predpisanih trajektorijah ali trajektorijah izračunanih s pomočjo samo-učečega algoritma.Apparatus according to claim 6, characterized in that the work platform moves independently on the surface of the water body according to predetermined trajectories or trajectories calculated using a self-learning algorithm. 11. Naprava po zahtevku 10, označena s tem, da je pozicioniranje delovne ploščadi je izvedeno preko referenčne satelitske navigacije ali z referenčnimi signali.Apparatus according to claim 10, characterized in that the positioning of the work platform is carried out by reference satellite navigation or by reference signals. 12. Naprava po zahtevku 6, označena s tem, daje delovna ploščad pred neugodnimi vremenskimi razmerami, zamrzovanjem vodnega telesa in drugimi motnjami iz okolja zaščitena z avtomatskim pristankom v servisnem pristanu.Apparatus according to claim 6, characterized in that the working platform is protected by an automatic landing at a service port against adverse weather conditions, freezing of the water body and other environmental disturbances. 13. Naprava po zahtevku 6 in 12, označena s tem, da je odpravljanje napak in servisiranje delovne ploščadi omogočeno po avtomatskem pristanku v servisnem pristanu.Apparatus according to claims 6 and 12, characterized in that the debugging and servicing of the work platform is enabled after an automatic landing in the service port. 14. Naprava po zahtevku 6, označena s tem, da je delovna ploščad zasnovana kot rekonfigurabilni sistem tako, da so možne različne izvedbe delovanja.Apparatus according to claim 6, characterized in that the work platform is designed as a reconfigurable system so that different embodiments are possible. 15. Naprava po zahtevku 6 in 14, označena s tem, da so sistemi za proženje liričnega cikla lizogenih cianobakterij (8) nameščeni na krovu delovne ploščadi.Apparatus according to claims 6 and 14, characterized in that the lyric cycle triggering systems of the lysogenic cyanobacteria (8) are mounted on the deck of the work platform. 16. Naprava po zahtevku 15, označena s tem, da je voda s cianobakterijami preko cevnega sistema, vitla in črpalke (9) privedena na krov delovne ploščadi iz različnih globin vodnega telesa.Apparatus according to claim 15, characterized in that the cyanobacterial water is brought to the working platform from various water body depths via a pipe system, winch and pump (9). 17. Naprava po zahtevku 6, označena s tem, da so na delovni ploščadi lahko nameščeni sončni toplotnih kolektoiji (10) za segrevanje vode za proženje liričnega cikla lizogenih cianobakterij s toplotnim šokom ari za razplastitev vodnih mas.Apparatus according to claim 6, characterized in that solar thermal collections (10) may be provided on the work platform for heating the water to trigger the lyric cycle of lysogenic cyanobacteria with heat shock of the ari to expel water masses. 18. Naprava po zahtevku 6 in 14, označena s tem, da je so na delovni ploščadi lahko nameščeni fluorescenčni spektrofotometer za merjenje koncentracije cianobakterij, merilniki temperaturnega profila po vodnem stolpcu in drugi merilniki, ki kažejo na stanje vodnega ekosistema ter, da so senzoiji teh merilnikov lahko nameščeni na krovu delovne ploščadi ari potopljivi v različne globine vodnega telesa.Apparatus according to claims 6 and 14, characterized in that a work platform may be equipped with a fluorescence spectrophotometer for measuring the concentration of cyanobacteria, temperature profile gauges according to the water column and other meters indicating the status of the aquatic ecosystem and the sensors thereof. gauges can be installed on board work platforms ars immersed in different depths of water body. 19. Naprava po zahtevku 18, označena s tem, da meijenje fluorescence omogoča tri-dimenzionalno kartiranje gostote populacij cianobakterij v vodnem telesu.A device according to claim 18, characterized in that fluorescence changes allow a three-dimensional mapping of the population density of cyanobacteria in the water body. 20. Naprava po zahtevku 15, 16, 17, 18 in 19, označena s tem, da merjenje fluorescence in temperaturnega profila po vodnem stolpcu omogoča delovanje sistemov za proženje litičnega cikla lizogenih cianobakterij in sistema za razplastitev vodnih mas le takrat, ko je zaznana dovolj visoka koncentracija cianobakterij v preiskovanem delu in globini vodnega telesa.Apparatus according to claim 15, 16, 17, 18 and 19, characterized in that the fluorescence and temperature profile measurement according to the water column allows the operation of the lytic cycle cyanobacterial lytic cycle triggering systems and the water mass stratification system only when sufficiently detected. high concentration of cyanobacteria in the investigated part and depth of the water body.
SI201200026A 2012-02-01 2012-02-01 Mass occurence prevention of harmful cyanobacteria SI23987A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201200026A SI23987A (en) 2012-02-01 2012-02-01 Mass occurence prevention of harmful cyanobacteria
PCT/SI2013/000006 WO2013115732A2 (en) 2012-02-01 2013-01-31 Process and device to control harmful cyanobacterial blooms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201200026A SI23987A (en) 2012-02-01 2012-02-01 Mass occurence prevention of harmful cyanobacteria

Publications (1)

Publication Number Publication Date
SI23987A true SI23987A (en) 2013-08-30

Family

ID=48182988

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201200026A SI23987A (en) 2012-02-01 2012-02-01 Mass occurence prevention of harmful cyanobacteria

Country Status (2)

Country Link
SI (1) SI23987A (en)
WO (1) WO2013115732A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616490B (en) * 2013-12-03 2015-09-23 中国科学院南京地理与湖泊研究所 The method of a kind of large-scale shallow water lake bloom blue algae total inventory estimation
US10120103B2 (en) 2015-12-30 2018-11-06 International Business Machines Corporation Intelligent/autonomous thermocline mapping and monitoring for marine and freshwater applications
US11414329B2 (en) 2018-02-14 2022-08-16 Evonik Operations Gmbh Treatment of cyanotoxin-containing water
CN111646632B (en) * 2020-05-11 2022-11-04 南京岱蒙特科技有限公司 Green energy-saving photoelectrocatalysis water treatment system and water treatment method thereof
CN113516373B (en) * 2021-06-18 2023-07-25 中国科学院南京地理与湖泊研究所 Construction method of cyanobacteria bloom prevention and control integrated technology system

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221191B2 (en) 1992-11-13 2001-10-22 松下電器産業株式会社 Bonding apparatus and bonding method
NO312413B1 (en) * 2000-01-04 2002-05-06 Forinnova As Method and apparatus for preventing the bloom of microorganisms in an aqueous system
CN1511789A (en) 2002-11-14 2004-07-14 华中科技大学 Submerged ultraviolet control method and its device for preventing and treating algal bloom and red tide, and water supply and drainage process alga removal
US6984330B2 (en) 2003-07-07 2006-01-10 Mote Marine Laboratory Use of ozone for controlling growth of organisms
WO2007114528A1 (en) 2006-03-31 2007-10-11 Korea Research Institute Of Bioscience And Biotechnology Apparatus and method for algal bloom control
WO2007126189A1 (en) 2006-04-28 2007-11-08 Dolki Korea, Ltd Apparatus for removing red tide and apparatus for preventing water in pool from decaying
KR100873698B1 (en) 2006-11-10 2008-12-12 한국돌기 주식회사 Underwater sterilizer of red tide
CN101134626A (en) 2007-08-01 2008-03-05 济南市供排水监测中心 Emergency handling process for sudden burst of raw material alga
CN101139129A (en) 2007-08-13 2008-03-12 袁玉平 Method for processing blue algae in pool, riverway or lake
CN101428878A (en) 2007-11-08 2009-05-13 武汉绿沃环保技术设备有限公司 Algae removal purifier for water body
CN101624240A (en) 2008-07-08 2010-01-13 昆山瑞仕莱斯水处理科技有限公司 Blue algae killing method
US20100147781A1 (en) * 2008-12-15 2010-06-17 Desert Lake Technologies, Llc. Apparatus for extracting material from liquid and methods therefor
CN101481670A (en) 2009-01-20 2009-07-15 南京大学 Copper green pseudomonas with lytic activity and use thereof in blue algae bloom control
KR100937004B1 (en) 2009-02-12 2010-01-15 씨앤지환경기술 (주) Removal equipment for waterbloom
CN201368777Y (en) * 2009-02-19 2009-12-23 昆明理工大学 Temperature measuring device for automatically monitoring water temperature of polluted lake
KR101088860B1 (en) 2009-03-10 2011-12-06 (주)상승글로벌 Inhalation appararus for the surface of the water
CN201367380Y (en) 2009-03-13 2009-12-23 范国防 Aquaculture water purifying device
GB2468849A (en) 2009-03-23 2010-09-29 Arab Biotechnology Company Compositions and methods for treating or preventing harmful algal blooms
US8476196B2 (en) 2009-07-06 2013-07-02 University Of South Florida Control of harmful algal blooms by induction of programmed cell death
CN101584345B (en) 2009-07-06 2011-12-21 浙江大学 Algaecide for algal bloom emergency treatment and use method thereof that can control over-proliferation of alga
KR100965784B1 (en) 2009-09-15 2010-06-29 한국기계연구원 Water circulation device for water-bloom prevention using sunlight
CN201569904U (en) 2009-11-06 2010-09-01 河海大学 Real-time monitoring device for cyanobacterial bloom
CN101712497A (en) 2009-11-06 2010-05-26 东南大学 Ultrasonic algal-removing boat used for water bloom emergency treatment
CN101962216A (en) 2010-09-21 2011-02-02 复旦大学 Method for removing harmful algae in water body by adopting electro-Fenton
CN201842678U (en) 2010-09-30 2011-05-25 长江水利委员会长江科学院 Float type electrochemical treatment device of cyanobacteria in water body
CN201873977U (en) 2010-11-10 2011-06-22 淮海工学院 Assembled blue algal bloom floating intercept net

Also Published As

Publication number Publication date
WO2013115732A8 (en) 2013-09-26
WO2013115732A2 (en) 2013-08-08
WO2013115732A3 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
An et al. A novel electro-coagulation-Fenton for energy efficient cyanobacteria and cyanotoxins removal without chemical addition
SI23987A (en) Mass occurence prevention of harmful cyanobacteria
KR101100662B1 (en) Method of treating ship ballast water
Asamoah et al. Assessment of the quality of bottled/sachet water in the Tarkwa-Nsuaem municipality (TM) of Ghana
CN109231369A (en) Ballast water treatment plant
Duca et al. Reactions' mechanisms and applications of hydrogen peroxide
CN101624240A (en) Blue algae killing method
KR20160041546A (en) A hydrogen water production device in water or indoor air
Baydum et al. Feasibility of producing sodium hypochlorite for disinfection purposes using desalination brine
Kemp et al. Potassium permanganate as an algicide
KR101775960B1 (en) Green algae eliminate apparatus using supersonic waves
KR101694380B1 (en) Apparatus for generating electrolysis reduction water
CA3065387A1 (en) Method and system for treating fish in fish farms
KR100756282B1 (en) Apparatus and method for algal bloom control
Oh et al. Effects of submerged aerator on the growth of algae in Daechung Reservoir
Bakheet et al. Potential control of cyanobacterial blooms by using a floating‐mobile electrochemical system
Toor et al. Suitability of village pond waters for irrigation—a case study from district Ludhiana, India
Talwar et al. Assessment of concentration and variations due to seasonal effect on the presence of heavy metals in the water of Upper Lake, Bhopal
Wright et al. Shipboard trials of menadione as a ballast water treatment
CN101891275A (en) Method for controlling microcystis waterbloom
WO2013135923A1 (en) Device for producing disinfectant and disinfected water by means of electrochemical activation of aqueous solutions
US20210347662A1 (en) Methods and apparatus for controlling or destroying red tide
Aryal Evaluating The Effectiveness Of Algaecide In A Continuous Flow Through System
Kim et al. Consideration on the environmental acceptability and biological effectiveness of the electrochemical disinfection system for ballast water management
Stanković et al. Macrophytes of the Grlište reservoir (Serbia): fifteen years after its establishment

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20130910

KO00 Lapse of patent

Effective date: 20220303