SI23065A - Procedure and circuit for automatic tuning of antenna circuit - Google Patents
Procedure and circuit for automatic tuning of antenna circuit Download PDFInfo
- Publication number
- SI23065A SI23065A SI200900138A SI200900138A SI23065A SI 23065 A SI23065 A SI 23065A SI 200900138 A SI200900138 A SI 200900138A SI 200900138 A SI200900138 A SI 200900138A SI 23065 A SI23065 A SI 23065A
- Authority
- SI
- Slovenia
- Prior art keywords
- antenna circuit
- circuit
- voltage
- reactance
- controller
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
- H01Q1/2216—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/0008—General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03J—TUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
- H03J3/00—Continuous tuning
- H03J3/20—Continuous tuning of single resonant circuit by varying inductance only or capacitance only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03J—TUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
- H03J2200/00—Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
- H03J2200/10—Tuning of a resonator by means of digitally controlled capacitor bank
Landscapes
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
AUSTRIAMICROSYSTEMS AG, Schloss Premstatten, A-8141 UnterpremstattenAUSTRIAMICROSYSTEMS AG, Schloss Premstatten, A-8141 Unterpremstatten
IDS d.o.o., Sojerjeva ulica 63, SI-1000 LjubljanaIDS Ltd., Sojerjeva Street 63, SI-1000 Ljubljana
Postopek in vezje za samodejno uglasitev antenskega vezjaProcedure and circuit for automatic tuning of the antenna circuit
Izum se nanaša na postopek za samodejno uglasitev antenskega vezja, na primer v RFID izpraševalniku, pri čemer se antensko vezje napaja z nosilnim signalom, na katerega frekvenco naj se antensko vezje uglasi, in se reaktanca antenskega vezja spreminja po korakih, dokler se ne doseže uglašena konfiguracija antenskega vezja, katere naravna frekvenca je enaka ali je vsaj v bližini frekvence nosilnega signala. Izum se nanaša tudi na vezje za izvajanje predlaganega postopka.The invention relates to a method for automatically tuning an antenna circuit, for example in an RFID interrogator, wherein the antenna circuit is fed by a carrier signal at which frequency the antenna circuit is tuned, and the reactance of the antenna circuit is changed step by step until tuned is reached configuration of an antenna circuit whose natural frequency is the same or at least near the frequency of the carrier signal. The invention also relates to a circuit for performing the proposed method.
Izum je po mednarodni klasifikaciji patentov uvrščen v razred H 04B 01/40.The invention is classified in class H 04B 01/40 according to the international classification of patents.
Antensko vezje v RFID izpraševalniku je zasnovano tako, da je njegova naravna frekvenca enaka frekvenci nosilnega signala. Na ta način postane nosilni signal kar se da močan. Izpraševalnik tedaj lahko dovaja dovolj moči pasivnemu odzivniku preko induktivne sklopitve.The antenna circuit in the RFID interrogator is designed so that its natural frequency is equal to that of the carrier signal. In this way, the carrier signal becomes as strong as possible. The interrogator can then provide sufficient power to the passive transponder via inductive coupling.
Izpraševalnikovo antensko vezje se uglasi na nosilno frekvenco RFID sistema zaradi boljšega delovanja celega sistema. Najprej se uglasi že med izdelavo, ko se izravnajo odstopanja dejanskih vrednosti komponent antenskega vezja od nominalnih vrednosti.The interrogator antenna circuit tunes to the carrier frequency of the RFID system for better overall system performance. It is first tuned during fabrication when the actual values of the antenna circuit components deviate from the nominal values.
Poznani pa so tudi RFID izpraševalniki, ki obsegajo sredstvo za samodejno uglasitev svojega antenskega vezja na frekvenco nosilnega signala. Uglaševalno vezje v takem RFID izpraševalniku samodejno izravnava vplive okolice, kot so sprememba temperature in vlažnosti ali prisotnost kovinskega predmeta v bližini.RFID interrogators are also known, comprising a means for automatically tuning their antenna circuit to the carrier frequency. The tuning circuit in such an RFID interrogator automatically compensates for environmental influences such as changes in temperature and humidity or the presence of a metal object nearby.
Antensko vezje se uglasi, tako da se nastavi vrednost elementa s kapacitivno reaktanco, elementa z induktivno reaktanco ali obeh. Najpogosteje se nastavi vrednost elementa s kapacitivno reaktanco, s tem da se dodatni kondenzatoiji priklopijo ali nekateri odklopijo s pomočjo krmiljenih stikal.The antenna circuit is tuned to set the value of the capacitive reactance element, the inductive reactance element, or both. Most often, the value of an element with capacitive reactance is set by connecting additional condensates or disconnecting them by means of controlled switches.
Značilna shema vezja za uglasitev antenskega vezja A je prikazana na sl. 1. Generator izmeničnega toka G s frekvenco fcs nosilnega signala je preko gonilnika D priključen na zaporedno vezana kondenzator cO, cl, ..., en in tuljavo co, katere drugi konec je priključen na maso. Element s kapacitivno reaktanco so kondenzator cO in k njemu preko stikal sl do sn, ki jih krmili krmilnik C, vzporedno priključljivi kondenzatoiji cl do cn. Napetost v skupni sponki kondenzatorja cO, cl, cn in tuljave co se zaznava s temenskim detektorjem PD, katerega izhod je preko analogno-digitalnega pretvornika ADC priključen na krmilnik C. Naravna frekvenca fn zaporedno priključenih osnovnega kondenzatorja cO in tuljave co je višja od frekvence fcs nosilnega signala, približuje pa se frekvenci fcs nosilnega signala, ko se priključujejo kondenzatoiji cl do cn. Tok ics, ki teče skozi antensko vezje A, pri tem narašča in je naj večji, ko je naravna frekvenca fn uglašenega antenskega vezja A enaka ali blizu frekvenci fcs nosilnega signala (sl. 2a). Isto velja za napetost, ki jo zaznava temenski detektor PD in s pomočjo katere krmilnik C nastavi stikala sl do sn. Stikala sl do sn se krmilijo po algoritmu za doseganje največje vrednosti omenjene napetosti. Najvišja vrednost omenjene napetosti, ki se želi doseči, pa seveda nikakor ni vnaprej poznana. Vrednost napetosti v posameznem koraku in pripadajoča nastavitev antenskega vezja A se morata vsakič shraniti. Shranjena vrednost napetosti se nato primega z vrednostjo napetosti v naslednjem koraku. Lahko se zgodi, da se nastavitev antenskega vezja iz predhodnega koraka izkaže kot najboljša nastavitev, ki je dosegljiva z uglaševanjem. Treba jo je ponovno shraniti. Takšen algoritem seveda ni časovno najbolj učinkovit.A typical circuit diagram for tuning antenna circuit A is shown in FIG. 1. An alternator G with frequency f cs of the carrier signal is connected to the series capacitor cO, cl, ..., one and a co coil, the other end of which is connected to ground through the driver D. The capacitive reactance element is a capacitor cO and connected to it via switches sl to sn, which are controlled by controller C, in parallel connected capacitors cl to cn. The voltage in the joint terminal of the capacitor cO, cl, cn and coil co is detected by a PD detector whose output is connected to controller C via the ADC analog converter C. The natural frequency f n of the co-connected basic capacitor cO and co coil is higher than the frequency f cs of the carrier signal, and approaches the frequency of f cs of the carrier signal when the condensatoi cl to cn are connected. The current i cs flowing through the antenna circuit A increases and is greatest when the natural frequency f n of the tuned antenna circuit A is equal to or near the frequency f cs of the carrier signal (Fig. 2a). The same applies to the voltage detected by the PD PD detector by which controller C adjusts the sl to sn switches. The sl to sn switches are controlled by the algorithm to obtain the maximum value of said voltage. However, the maximum value of this voltage, which is to be achieved, is by no means known in advance. The voltage value in each step and the corresponding setting of antenna circuit A must be stored each time. The stored voltage value is then compared with the voltage value in the next step. The antenna circuit setup from the previous step may turn out to be the best tuning that can be achieved. It must be stored again. Of course, such an algorithm is not the most time efficient.
Tako je RFID izpraševalnik za nalepko opremljen z enoto, ki po postopku zaporednih približkov samodejno uglasi izpraševalnikovo antensko vezje na naravno frekvenco antenskega vezja v RFID nalepki, s tem da spreminja izpraševalnikovo antensko vezje proti največji napetosti na njem ali največjemu toku skozenj (EP 0 625 832 BI).Thus, the RFID label interrogator is equipped with a unit that automatically adjusts the interrogator antenna circuit to the natural frequency of the antenna circuit in the RFID label by successive approximations, changing the interrogator antenna circuit against the maximum voltage across it or the maximum current through it (EP 0 625 832 WOULD).
Nadalje je poznan RFID izpraševalnik, ki je opremljen s tokovnim ali napetostnim detektorjem, ki je priključen na antensko vezje in vezje za odločanje, ki glede izhodni signal detektoga spreminja izpraševalnikovo antensko vezje proti uglašenosti na vzbujevalni signal (US 6 650 227 BI).Furthermore, there is a known RFID interrogator which is equipped with a current or voltage detector that is connected to an antenna circuit and a decision circuit that changes the interrogator antenna circuit against the excitation signal to the detector output signal (US 6 650 227 BI).
Poznanje tudi RFID izpraševalnik, kije opremljen generatorjem signala in anteno, kije s pomočjo mikroprocesorja nastavljiva na največjo sevano moč, kar se s temenskim detektogem ugotavlja na sprejetem nalepkinem signalu (EP 1 770 665 BI).The RFID interrogator, equipped with signal generators and antenna, adjustable to the maximum radiated power by means of a microprocessor, which is determined by the peak detector on the received label signal (EP 1 770 665 BI).
Po drugi strani pa je dobro poznana tudi naslednja značilnost antenskega vezja A kot vezja, v katerem pride do resonance, ko se skozenj poganja električni tok. Gonilna napetost uocosuQSt s frekvenco fcs (<ocs = 2Ttfcs) nosilnega signala skozi antensko vezje poganja tok i0cos(b)Cst+<f>cs), ki pri vrednosti frekvence fcs pod vrednostjo naravne frekvence fn antenskega vezja prehiteva gonilno napetost in pri vrednosti frekvence fcs nad vrednostjo omenjene naravne frekvence fn zaostaja za gonilno napetostjo, pri fcs = fn pa je fazni kot (f>cs enak nič (sl. 2b). Na prvi sponki 1 kondenzatorja cO, cl, ..., cn je časovni potek napetosti enak kar časovnemu poteku gonilne napetosti, torej je uocosut, na drugi sponki 2 tega kondenzatorja pa je časovni potek napetosti sorazmeren cos(ucst+ <fcs - Tt/2). Pri fcs = fn torej napetost na kondenzatogevi sponki 2 zaostaja za napetostjo na kondenzatoijevi sponki 1 za natančno tt/2. Napetost na drugi sponki tuljave co pa pri fcs = fn prehiteva napetost na prvi sponki te tuljave za natančno τ/2. Ko se naravna frekvenca fn antenskega vezja A izenači s frekvenco fcs nosilnega signala, je fazni kot, ki se izmeri med napetostima na prvi in drugi sponki tako kapacitivnega elementa kot tudi induktivnega elementa po absolutni vrednosti enak natančno τ/2. Antensko vezje A je tedaj uglašeno na frekvenco fcs nosilnega signala. Vrednost omenjenega faznega kota kot vrednosti observable, s pomočjo katere se sedaj želi izvesti uglasitev, pa je v stanju uglašenosti antenskega vezja A vnaprej poznana. Enaka je namreč τ/2. Opisana značilnost antenskega vezja A zato lahko omogoči uporabiti časovno učinkovitejši algoritem.On the other hand, the following feature of antenna circuit A is also well known as a circuit in which resonance occurs when an electric current is driven through it. The driving voltage u o cos QS ts the frequency f cs (<o cs = 2Ttf cs ) of the carrier signal through the antenna circuit drives the current i 0 cos (b) C st + <f> cs ), which at a frequency f fs below the natural frequency f n of the antenna circuit exceeds the driving voltage and at a value of frequency f cs above the value of said natural frequency f n lags behind the driving voltage, and at f cs = f n the phase angle (f> cs equals zero (Fig. 2b). of the capacitor cO, cl, ..., cn the time course of the voltage is equal to the time course of the driving voltage, therefore u o cosut, and on the second terminal 2 of this capacitor the time course of the voltage is proportional to cos (u cs t + <f cs - Tt / Therefore, at f cs = f n , the voltage at the capacitor terminal 2 lags the voltage at the condensate terminal 1 by exactly tt / 2. The voltage at the second coil coil co is, at f cs = f n, overtaking the voltage at the first terminal of this coil by exactly τ / 2. When the natural frequency f n of the antenna circuit A equals the frequency f cs of the carrier s The phase angle measured between the voltages at the first and second terminals of both the capacitive element and the inductive element is exactly τ / 2 in absolute value. The antenna circuit A is then tuned to the frequency f cs of the carrier signal. The value of said phase angle, as the observable value by which tuning is now sought, is known in advance in the state of tuning of antenna circuit A. It is equal to τ / 2. The aforementioned characteristic of antenna circuit A may therefore enable a more time-consuming algorithm to be used.
Naloga izuma je, predlagati postopek in vezje za samodejno uglasitev antenskega vezja na določeno frekvenco, pri čemer naj se uporabijo dobro poznane fazne razmere v uglašenem antenskem vezju, po katerem teče izmenični električni tok.It is an object of the invention to propose a method and a circuit for automatically tuning an antenna circuit to a specific frequency, using well known phase conditions in a tuned antenna circuit through which alternating current flows.
Navedena naloga je rešena s postopkom po izumu za samodejno uglasitev antenskega vezja, opredeljenim z značilnostmi iz označujočega dela prvega patentnega zahtevka, in z vezjem po izumu za izvajanje postopka po izumu, opredeljenim z značilnostmi iz označujočega dela osmega ali štirinajstega patentnega zahtevka, podzahtevki pa opredeljujejo variantne izvedbene primere.The said problem is solved by the method of the invention for automatically tuning the antenna circuit defined by the features of the designating part of the first patent claim and by the circuit of the invention for performing the process of the invention defined by the features of the designating part of the eighth or fourteenth claim, and the sub-claims defining variant embodiments.
Uglasitev antenskega vezja na frekvenco nosilnega signala se s postopkom in vezjem po izumu samodejno izvede na časovno učinkovit način. Predlagana postopek in vezje sta preprosto izvedljiva posebno v prvem izvedbenem primeru, ko ni potrebna analognodigitalna pretvorba izhodnega signala faznega detektorja.The tuning of the antenna circuit to the carrier signal frequency is automatically performed in a time-efficient manner by the method and circuit of the invention. The proposed method and circuit are simply feasible especially in the first embodiment where no analogue-digital conversion of the phase detector output signal is required.
Izum bo v nadaljnjem podrobno obrazložen na osnovi opisa izvedbenih primerov ter pripadajočega načrta, ki prikazuje na sl. 3 vezje po izumu za samodejno uglasitev antenskega vezja in samo antensko vezje, sl. 4a in 4b prvi oziroma drugi izvedbeni primer digitalnega faznega primeijalnika, ki je primeren za izvajanje postopka po izumu za samodejno uglasitev antenskega vezja, sl. 5 preprost fazni detektor, sl. 6 okenski primeijalnik za prvi izvedbeni primer omenjenega digitalnega faznega primeijalnika in sl. 7a in 7b v prvem in drugem oknu časovni potek vhodnih signalov in v tretjem oknu časovni potek izhodnega signala omenjenega faznega detektoija za primera, ko antensko vezje je oziroma ni uglašeno.The invention will now be further explained in detail based on the description of the embodiments and the accompanying plan showing in FIG. 3 is a circuit according to the invention for automatically tuning the antenna circuit and the antenna circuit only; FIG. 4a and 4b show a first or second embodiment of a digital phase receiver suitable for carrying out the process of the invention for automatically tuning the antenna circuit, FIG. 5 is a simple phase detector of FIG. 6 is a window primer for the first embodiment of said digital phase primer and FIG. 7a and 7b, in the first and second windows, the timing of the input signals and in the third window, the timing of the output signal of said phase detection for cases where the antenna circuit is or is not tuned.
Postopek za uglasitev antenskega vezja A, ki se napaja z oddajnikovim nosilnim signalom s frekvenco fcs in ki naj se uglasi na to frekvenco, se kot doslej izvaja, s tem da se reaktanca antenskega vezja A po korakih spreminja v skladu z algoritmom, ki je shranjen v krmilniku C in približuje antensko vezje A k uglašenosti (Sl. 3).The procedure for tuning antenna circuit A, powered by a transmitter carrier signal of frequency f cs and tuning to this frequency, is carried out as before, by varying the reactance of antenna circuit A step by step in accordance with an algorithm that is stored in controller C and approximates antenna circuit A to the tune (Fig. 3).
Z izumom pa se predlaga, da se vsakič določita faza napetosti na prvi priključni sponki 1 in faza napetosti na drugi priključni sponki 2 elementa z reaktanco ene vrste, na primer kondenzatorja cO, cl,... en s kapacitivno reaktanco ali tuljave co z induktivno reaktanco.The invention, however, proposes to determine each time the voltage phase at the first terminal 1 and the voltage phase at the second terminal 2 of an element with a reactance of one type, such as a capacitor cO, cl, ... en with capacitive reactance or coils with inductive reactance.
V naslednjem koraku se določi razlika teh faz omenjenih napetosti.The next step is to determine the difference between these phases of the mentioned voltages.
Reaktanca antenskega vezja A se zatem spremeni tolikokrat, da se omenjena razlika faz približa vrednosti 7t/2, in sicer bliže od najmanjše spremembe v razliki faz, ki je še dosegljiva z izvajanim spreminjanjem reaktance antenskega vezja A.The reactance of antenna circuit A is then changed so many times that the said phase difference approaches the value of 7t / 2, closer to the smallest change in phase difference, which is still achievable by changing the reactance of antenna circuit A.
Dosežena nastavitev antenskega vezja A se shrani kot nastavitev antenskega vezja A, ki je uglašeno na omenjeno frekvenco fcs.The achieved setting of antenna circuit A is saved as tuning of antenna circuit A tuned to the mentioned frequency f cs .
Potem ko se je določila razlika faz omenjenih napetosti, se po postopku po izumu predlagata dve variantni izvedbi.After determining the phase difference of said voltages, two variants are proposed according to the process of the invention.
Po prvi variantni izvedbi se ugotovi, ali je omenjena razlika faz večja od u/2, manjša od 7t/2 ali pa je morda že znotraj izbranega okna razlike faz. To okno je izbrano na naslednji način. Srednja višina okna je enaka izhodni napetosti tega faznega detektoija, ko meri razliko faz, ki je enaka π/2. Širina okna pa je enaka spremembi omenjene fazne razlike, ki se povzroči s korakom, pri katerem se izvede najmanjša sprememba reaktance antenskega vezja. Pri tem ugotovljena dvobitna informacija se prenese v krmilnik C.After the first variant embodiment, it is determined whether said phase difference is greater than u / 2, less than 7t / 2, or may already be within the selected phase difference window. This window is selected as follows. The mean window height is equal to the output voltage of this phase detector when it measures a phase difference equal to π / 2. The width of the window is equal to the change in said phase difference, which is caused by the step in which the smallest change in the reactance of the antenna circuit is made. In this case, the two-bit information found is transmitted to controller C.
Po prvi variantni izvedbi pa se postopek lahko še poenostavi, da se vsakič ugotovi le, ali je omenjena razlika faz večja od tt/2 ali manjša od 7γ/2. V tem primeru se v krmilnik C prenese le enobitna informacija.According to the first variant embodiment, the process can be further simplified to determine each time only whether said phase difference is greater than tt / 2 or less than 7γ / 2. In this case, only one-bit information is transmitted to controller C.
Po drugi variantni izvedbi se omenjena razlika faz digitalizira in se digitalna vrednost razlike omenjenih faz vodi v krmilnik C. V krmilniku C se določi, kakšna je lega ome20 njene digitalne vrednosti glede na okno, o katerem so se podatki vnesli v krmilnik C.In another embodiment, said phase difference is digitized and the digital value of said phase difference is directed to controller C. Controller C determines the position of the limited20 of its digital value relative to the window about which data is entered into controller C.
Krmilnik C nato krmili spreminjanje reaktance antenskega vezja A, tako da se omenjena razlika faz približuje k vrednosti tt/2. Prednostno se omenjeno krmiljenje izvaja po algoritmu zaporednih približkov.Controller C then controls the variation of the antenna circuit reactance A such that said phase difference approaches the value of tt / 2. Preferably, said control is performed according to the sequence approximation algorithm.
Tudi vezje za uglasitev antenskega vezja A, ki se napaja z oddajnikovim nosilnim signalom s frekvenco fcs in ki naj se uglasi na to frekvenco fcs, je kot doslej izvedeno s krmilnikom C in napajalnim vezjem, ki obsega generator G nosilnega signala z omenjeno frekvenco fcs in gonilnik D (sl. 3). Napajalno vezje napaja antensko vezje A z nosilnim signalom, na katerega frekvenco fcs naj se antensko vezje A uglasi. Na poznan način so v antenskem vezju A vgrajena krmiljena stikala sl, ... sn, s katerimi se po korakih spreminja reaktanca antenskega vezja A. Stikala sl, ... sn se krmilijo v skladu z algoritmom v krmilniku C.Also, the tuning circuit of antenna circuit A, which is fed by a transmitter carrier signal with frequency f cs and which is tuned to that frequency f cs , is implemented so far with a controller C and a power circuit comprising generator G of the carrier signal with said frequency f cs and driver D (Fig. 3). The power circuit supplies antenna circuit A with a carrier signal at which frequency f cs the antenna circuit A should tune. In a known manner, control switches sl, ... sn are installed in antenna circuit A, by which the reactance of antenna circuit A. is changed step by step. The switches sl, ... sn are controlled according to the algorithm in controller C.
Z izumom pa se predlaga, da je vsaka od obeh priključnih sponk 1 in 2 elementa z reaktanco ene vrste v antenskem vezju A, na primer kondenzatorja cO, cl, ... cn s kapacitivno reaktanco ali tuljave co z induktivno reaktanco, povezana z eno od obeh vhodnih sponk faznega detektorja PhD (Sl. 4a in 4b), in sicer preko napetostnega io atenuatorja V A in napetostnega primerj alnika Cl oziroma C2.The invention proposes, however, that each of the two terminal blocks 1 and 2 of the reactance element of one type in antenna circuit A, for example capacitor cO, cl, ... cn with capacitive reactance or coils co with inductive reactance, is connected to one from the two input terminals of the PhD phase detector (Figs. 4a and 4b), via the voltage io attenuator VA and the voltage comparator Cl and C2, respectively.
Signal v točki 2 pa se mora navadno oslabiti, preden se dovede na napetostni primerjalnik C2. Amplituda tega signala je namreč pri fn = fcs za faktor, ki je enak Qfaktorju antenskega vezja A, višja od amplitude gonilne napetosti. Oslabitev signala se izvede v napetostnem atenuatorju VA. Napetostni atenuator VA pa mora biti izveden kot kondenzatorski delilnik napetosti, sicer bi v povezavi s kapacitivnostjo napetostnega primerj alnika C2 zasukal fazo signala v točki 2.However, the signal at point 2 must normally be attenuated before being fed to the voltage comparator C2. The amplitude of this signal is, at f n = f cs, for a factor equal to the Q factor of the antenna circuit A higher than the amplitude of the driving voltage. Signal attenuation is performed in the VA voltage attenuator. However, the voltage attenuator VA must be designed as a capacitor voltage divider, otherwise, in conjunction with the capacitance of the voltage comparator C2, it would rotate the signal phase at point 2.
Na prvo sponko napetostnih primerjalnikov Cl in C2 se vodita napetosti a oziroma β z omenjene sponke 1 oziroma preko napetostnega atenuatorja A tudi z omenjene sponkeThe first terminals of the voltage comparators Cl and C2 are driven by the voltages a and β from said terminal 1, or through said terminal by the voltage attenuator A.
2. Druga vhodna sponka napetostnih primerj alniko v Cl in C2 je priključena na maso, njuna izhodna napetost οί oziroma β' pa se vodi na vhodni sponki faznega detektorja PhD.2. The second input terminal of the voltage comparators in Cl and C2 is connected to ground and their output voltage οί or β ′ is maintained at the input terminal of the PhD phase detector.
Fazni detektor PhD je prikazan na sliki 5. Omenjeni napetosti ri in /7 se vodita na vhoda ekskluzivnih ALI logičnih vrat exor, katerih izhod je preko člena rc priključen na izhod faznega detektorja PhD. Tu se pojavi napetostni signal γ stalnega nivoja.The PhD phase detector is shown in Fig. 5. The mentioned voltages ri and / 7 are connected to the inputs of the exclusive OR logic exor gate whose output is connected via the rc termination to the output of the PhD phase detector. This is where a steady-state voltage signal γ occurs.
Časovni potek napetosti ri in /7 na vhodu faznega detektorja PhD je prikazan v prvem oziroma drugem oknu na sliki 7 za primer, ko sta napetosti v točkah 1 in 2 in torej tudi napetosti cl in fi zamaknjeni druga glede na drugo za π/2. Daje fazni zamik res π/2 kaže nivo izhodnega signala γ v tretjem oknu na sliki 7, ki je na polovični višini napetostnega nivoja sv faznemu detektorju PhD dovajanih signalov. Isti signali so prikazani tudi na sliki 8, vendar za primer, ko sta napetosti v točkah 1 in 2 in zamaknjeni druga glede na drugo za fazni kot, ki se razlikuje od π/2.The time course of the ri and / 7 voltages at the input of the PhD phase detector is shown in the first and second windows of Figure 7, respectively, when the voltages at points 1 and 2 and therefore the cl and fi voltages are offset by each other by π / 2. Given that the phase shift really π / 2 shows the level of the output signal γ in the third window in Figure 7, which is at half the height of the voltage level with the phase detector of the PhD input signals. The same signals are also shown in Figure 8, but for the case where the voltages at points 1 and 2 and are offset relative to each other by a phase angle different from π / 2.
Po prvem izvedbenem primeru digitalnega faznega primerjalnika DPhC po izumu se analogni izhodni signal γ faznega detektorja PhD vodi na vhod okenskega primerjalnika WC (sl. 4a). Izhodna signala OH in OL okenskega primerjalnika WC se vodita v io krmilnik C.According to the first embodiment of the DPhC digital phase comparator according to the invention, the analog output signal γ of the PhD phase detector is fed to the input of the WC window comparator (Fig. 4a). The output signals OH and OL of the WC window comparator are output to io controller C.
Krmilnik C iz stanja signalov OH, OL na izhodu kombinatornega logičnega vezja CL vsakič razbere, ali je določana razlika faz večja od rr/2, ali je manjša od π/2 oziroma ali je znotraj okna pri vrednosti π/2.Controller C determines from the state of OH, OL signals at the output of the combinatorial logic circuit CL each time whether the determined phase difference is greater than rr / 2, is less than π / 2, or whether it is inside the window at π / 2.
Gre za preprostejši izvedbeni primer digitalnega faznega primerjalnika DPhC po izumu. Ta izvedbeni primer ne potrebuje analogno-digitalnega pretvornika. Dva digitalna izhodna signala OH in OL okenskega primerjalnika WC posredujeta dovolj podatkov krmilniku C, da lahko z učinkovitim algoritmom krmili uglasitev antenskega vezja A.It is a simpler embodiment of the DPhC digital phase comparator of the invention. This example does not require an analog-to-digital converter. The two digital output signals OH and OL of the WC window comparator transmit sufficient data to controller C to control the tuning of antenna circuit A. with an efficient algorithm.
Okenski primerjalnik WC je v enem izmed možnih izvebenih primerov prikazan na slikiIn one of the possible embodiments, the WC window comparator is shown in the figure
6. Vhodni signal γ se preko napetostnih primerjalnikov C' in C, katerih drugi nivo se določi z napetostnima delilnikoma VD' oziroma VD, vodi na kombinatorno logično vezje CL.6. The input signal γ is fed to the combinatorial logic circuit CL through voltage comparators C 'and C, the second level of which is determined by the voltage dividers VD' or VD.
Nivo sredine okna v okenskem primerjalniku WC je enak izhodni napetosti tega faznega detektorja PhD, ko meri razliko faz, ki je enaka π/2. Za širino okna v okenskem primerjalniku WC pa se izbere sprememba omenjene fazne razlike, ki se povzroči s korakom, pri katerem se izvede najmanjša sprememba reaktance antenskega vezja A.The level of the center window in the WC window comparator is equal to the output voltage of this PhD phase detector when it measures a phase difference equal to π / 2. For the width of the window in the window comparator WC, however, a change in said phase difference is selected, which is caused by a step at which the smallest change in the reactance of the antenna circuit A.
Po drugem izvedbenem primeru digitalnega faznega primeijalnika DPhC' po izumu pa je izhod faznega detektorja PhD priključen na analogno-digitalni pretvornik ADC (sl. 4b). Digitalni izhodni signal 7d analogno-digitalnega pretvornika ADC se vodi v krmilnik C. Krmilnik C sedaj opravlja tudi funkcijo okenskega primerjalnika.In another embodiment of the DPhC 'digital phase primer of the invention, however, the output of the PhD phase detector is connected to the ADC (Fig. 4b). The digital output signal 7d of the ADC ADC is fed to controller C. Controller C now also functions as a window comparator.
Nadalje je vezje prvega in drugega izvedbenega primera po izumu za samodejno uglaševanje antenskega vezja A značilno po tem, da se reaktanca antenskega vezja A s pomočjo krmiljenih stikal sl, ... sn po korakih spreminja tako, da se bo s faznim detektorjem PhD določena razlika faz napetosti na obeh priključnih sponkah 1 in 2 omenjenega elementa cO, cl, ... cn ali co približala vrednosti rr/2 na odddaljenost, kije manjša od najmanjše spremembe v razliki faz, ki je še dosegljiva z izvajanimi spremembami reaktance antenskega vezja A.Further, the circuit of the first and second embodiments of the invention for automatically tuning antenna circuit A is characterized in that the reactance of antenna circuit A by means of controlled switches sl, ... sn is varied step by step so that a PhD phase detector is determined of the voltage phases at both terminal terminals 1 and 2 of said element cO, cl, ... cn or co approximate the value of rr / 2 at a distance that is less than the smallest change in phase difference still achievable by the changes made to the reactance of antenna circuit A.
Pri tem se prednostno uporabi algoritem zaporednih približkov za približevanje omenjene razlike faz napetosti k vrednosti τ/2. Tako dosežena nastavitev antenskega vezja A se shrani kot nastavitev antenskega vezja A, kije uglašeno na omenjeno nosilno frekvenco fcs.Preferably, the sequential approximation algorithm is used to approximate the aforementioned voltage phase difference to the value of τ / 2. The adjustment of antenna circuit A thus obtained is stored as tuning of antenna circuit A tuned to said carrier frequency f cs .
Antensko vezje A na sliki 3 je sicer zaporedno vezje kondenzatorja in tuljave, vendar se tehnična rešitev po izumu ob potrebnih spremembah lahko uporabi tudi pri vzporednem vezju ali mešanem vezju te vrste. Prav tako se predlagana tehnična rešitev lahko uporabi za diferencialno napajano antensko vezje A, ki se priključi med dva protifazno delujoča gonilnika.The antenna circuit A of Figure 3 is a series capacitor and coil circuit, but the technical solution of the invention can be applied to a parallel circuit or mixed circuit of this type with the necessary modifications. Also, the proposed technical solution can be applied to a differential-powered antenna circuit A that connects between two anti-phase drivers.
Samo antensko vezje A se navadno izvede z visokonapetostnimi krmiljenimi stikali sl, ... sn (sl. 3). Amplituda napetosti v točki 2 antenskega vezja A je namreč pri fn = fcs za faktor, ki je enak Q-faktorju antenskega vezja A, višja od amplitude gonilne napetosti. Če v tehnologiji antenskega vezja A ni mogoče izdelati visokonapetostnih tranzistorjev tipa p in n, se antensko vezje A lahko izdela z visokonapetostnimi tranzistoiji samo tipa n, ki pa so priključeni na maso in ne na gonilnik.Only antenna circuit A is usually implemented with high voltage controlled switches sl, ... sn (Fig. 3). The voltage amplitude at point 2 of antenna circuit A is, at f n = f cs, for a factor equal to the Q-factor of antenna circuit A higher than the amplitude of the driving voltage. If high-voltage transistors of type p and n cannot be manufactured in antenna circuit technology A, antenna circuit A may be made with high-voltage transistors of type n only, but which are connected to ground and not to the driver.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200900138A SI23065A (en) | 2009-05-11 | 2009-05-11 | Procedure and circuit for automatic tuning of antenna circuit |
PCT/SI2010/000024 WO2010132031A1 (en) | 2009-05-11 | 2010-05-11 | Method and circuit for automatic tuning of an antenna circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200900138A SI23065A (en) | 2009-05-11 | 2009-05-11 | Procedure and circuit for automatic tuning of antenna circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23065A true SI23065A (en) | 2010-11-30 |
Family
ID=42342294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200900138A SI23065A (en) | 2009-05-11 | 2009-05-11 | Procedure and circuit for automatic tuning of antenna circuit |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI23065A (en) |
WO (1) | WO2010132031A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012015406A1 (en) * | 2012-08-01 | 2014-02-06 | Gantner Electronic Gmbh | Method and device for optimizing the RFID field of an access control device |
FR3070563A1 (en) | 2017-08-31 | 2019-03-01 | Stmicroelectronics (Rousset) Sas | NFC ANTENNA PILOTAGE CIRCUIT |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4327642C2 (en) | 1993-05-17 | 1998-09-24 | Anatoli Stobbe | Reader for a detection plate |
US5491715A (en) * | 1993-06-28 | 1996-02-13 | Texas Instruments Deutschland Gmbh | Automatic antenna tuning method and circuit |
DE19755250A1 (en) * | 1997-12-12 | 1999-07-01 | Philips Patentverwaltung | Circuit for setting the resonant frequency of the antenna resonant circuit of a base station for contactless data and power transfer |
US6317027B1 (en) | 1999-01-12 | 2001-11-13 | Randy Watkins | Auto-tunning scanning proximity reader |
US6650227B1 (en) | 1999-12-08 | 2003-11-18 | Hid Corporation | Reader for a radio frequency identification system having automatic tuning capability |
FR2847089B1 (en) * | 2002-11-12 | 2005-02-04 | Inside Technologies | TUNABLE ANTENNA CIRCUIT, IN PARTICULAR FOR NON-CONTACT INTEGRATED CIRCUIT READER |
-
2009
- 2009-05-11 SI SI200900138A patent/SI23065A/en not_active IP Right Cessation
-
2010
- 2010-05-11 WO PCT/SI2010/000024 patent/WO2010132031A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2010132031A1 (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0663724B1 (en) | Method of automatic antenna tuning and of demodulation of a FSK modulated signal, respectively | |
KR100404013B1 (en) | Contactless energy and data transmission system | |
US6028503A (en) | Contactless data transmission and receiving device with a synchronous demodulator | |
EP1961117B1 (en) | Resonant circuits | |
US6272321B1 (en) | Method for tuning an oscillating receiver circuit of a transponder built into a RFID system | |
EP3240142B1 (en) | Automatic tuning of resonance-based wireless charging receiver | |
US6070803A (en) | Reading device for a transponder | |
US7535362B2 (en) | Circuit arrangement and method for supplying power to a transponder | |
US6703921B1 (en) | Operation in very close coupling of an electromagnetic transponder system | |
US6650229B1 (en) | Electromagnetic transponder read terminal operating in very close coupling | |
US20030006880A1 (en) | Device and method for contactless transmission of power or data | |
KR102362921B1 (en) | Q factor measurement | |
JPH1084304A (en) | Operating method for system consisting of base station and responder and system proper to the method | |
JP4608169B2 (en) | Implantable dielectrically programmed temperature sensing transponder | |
US20100052430A1 (en) | Noncontact transmission device | |
US20180188076A1 (en) | Device for measuring a mearsurement variable | |
CN109428629B (en) | Frequency adjustment of NFC circuits | |
US20160141883A1 (en) | Control circuit, resonance circuit, electronic device, control method, control program, and semiconductor element | |
SI23065A (en) | Procedure and circuit for automatic tuning of antenna circuit | |
US20170373671A1 (en) | Electronic tuning system | |
JP3717741B2 (en) | Automatic tuning antenna system | |
CN111585587B (en) | Low frequency LF antenna control circuit | |
US11327097B2 (en) | Voltage measurement through reference circuit based impedance detection | |
EP1595201A2 (en) | System and method for calibrating the clock frequency of a clock generator unit over a data line | |
RU2110139C1 (en) | Automatic generator-to-load matching device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20101208 |
|
SP73 | Change of data on owner |
Owner name: AMS R & D ANALOGNI POLPREVODNIKI, D.O.O.; AT Effective date: 20140305 |
|
KO00 | Lapse of patent |
Effective date: 20170216 |