SI21763A - Optical fibre pressure sensor with sio2 diaphragm - Google Patents

Optical fibre pressure sensor with sio2 diaphragm Download PDF

Info

Publication number
SI21763A
SI21763A SI200500056A SI200500056A SI21763A SI 21763 A SI21763 A SI 21763A SI 200500056 A SI200500056 A SI 200500056A SI 200500056 A SI200500056 A SI 200500056A SI 21763 A SI21763 A SI 21763A
Authority
SI
Slovenia
Prior art keywords
sensor
pressure
etching
segment
welded
Prior art date
Application number
SI200500056A
Other languages
Slovenian (sl)
Inventor
Edvard Cibula
Denis ĐONLAGIĆ
Original Assignee
Univerza V Mariboru, Feri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza V Mariboru, Feri filed Critical Univerza V Mariboru, Feri
Priority to SI200500056A priority Critical patent/SI21763A/en
Publication of SI21763A publication Critical patent/SI21763A/en
Priority to US11/885,457 priority patent/US8559770B2/en
Priority to PCT/CA2006/000304 priority patent/WO2006092052A1/en
Priority to CA2599696A priority patent/CA2599696C/en

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

The optical fibre pressure sensor solves the problem of implementing a pressure sensor, which is no wider that the cross section of a standard optical fibre, this is 125 micrometers. The key element of the sensor is the SIO2 diaphragm, which is welded on top of the optical fibre with a recess. The measuring of the convexity of the diaphragm or pressure is based on the phenomenon of light interference between the diaphragm and the end of the optical fibre. The procedure of its manufacture includes the preparation of the recess on top of the single-mode fibre, where a segment of any fibre can be welded to. This segment is then cut in the immediate vicinity of the seam and polished if required, so that the remaining welded part is only 1 - 10 micrometers long. This is followed by etching in a container, where the pressure is changing periodically. The continuous monitoring of the sensor response to the periodical change of pressure enables to stop the etching in the very moment, when the welded segment is etched in such a way that the required sensitivity of the sensor is obtained. This procedure is suitable for the manufacture of pressure sensors for ranges between 0 to 20 KPa and up to the range between 0 to 100 MPa.

Description

OPTIČNI VLAKENSKI SENZOR TLAKA S SiO2 MEMBRANOOPTICAL FIBER PRESSURE SENSOR WITH SiO 2 MEMBRANE

Predmet izuma je senzor tlaka in postopek za izdelavo senzorja tlaka, ki se nahaja na koncu optičnega vlakna in ima premer, ki je manjši ali enak premeru optičnega vlakna. Senzor je v celoti zgrajen in silicijevega dioksida. Konstrukcija senzorja omogoča realizacijo visoko občutljivega senzorja, primernega za merjenje nižjih tlakov in višjih industrijskih tlakov. Popolna SiO2 zgradba omogoča dobro temperaturno stabilnost in odpornost na druge vplive okolja.The object of the invention is a pressure sensor and a method for manufacturing a pressure sensor located at the end of an optical fiber having a diameter smaller than or equal to the diameter of the optical fiber. The sensor is fully built and silicon dioxide. The sensor construction enables the realization of a highly sensitive sensor suitable for measuring lower pressures and higher industrial pressures. The complete SiO 2 structure provides good temperature stability and resistance to other environmental influences.

Tehnični problem, ki ga rešuje izum je realizacija senzorja tlaka majhnega premera, primernega za vrsto aplikacij, pri katerih se zahtevajo majhne dimenzije senzorja in/ali električna pasivnost. Poleg tega je senzor zgrajen iz SiO2, kar je odločilnega pomena za področje medicine. Izum obenem rešuje problem visoke cene izdelave te vrste senzorjev in sicer zaradi enostavnega postopka izdelave in možnosti uporabe standardnih vlaken.A technical problem solved by the invention is the realization of a small diameter pressure sensor suitable for a range of applications requiring small sensor dimensions and / or electrical passivity. In addition, the sensor is built of SiO 2 , which is crucial in the medical field. The invention also solves the problem of the high cost of manufacturing this type of sensor, due to its simple fabrication process and the ability to use standard fibers.

Znanih je nekaj izvedb optičnih vlakenskih merilnikov tlaka. Rešitev po patentu WO 02/23148 uporablja ohišje iz silicija, v katero sta pritrjena konec dovodnega optičnega vlakna in tanka silicijeva membrana. Gladko odrezan konec optičnega vlakna in membrana predstavljata dve reflektivni površini, ki tvorita t.i. Fabry-Perot interferometer. Tukaj prihaja do razdelitve optičnega vala na dva dela, ki medsebojno interferirata. Njuna interferenčna vsota je odvisna od razdalje med koncem vlakna in membrano, kar je v osnovi merilo tlaka. Druge znane rešitve so po patentih EP 1 089 062, US 5657405, US 5381229 US 4991590 in WO 99/45352, ki se razlikujejo predvsem po izvedbi ohišja za membrano in optično vlakno. Vsem navedenim rešitvam je skupna značilnost omenjeno ohišje, ki pa je povsod večjega premera od optičnega vlakna. Edini znani rešitvi, kjer je celoten senzor enak premeru optičnega vlakna je po patentu EP 0 997 721 in SI21242. Po EP 0 997 721 je postopek izdelave relativno zapleten in zahteva uporabo posebnih orodij in materialov. Rešitev po SI21242 pa temelji na uporabi polimerne membrane. Pomanjkljivost sistema s polimerno membrano je v veliki občutljivosti membrane na vplive okolice, npr. na absorpcijo vode, temperaturno občutljivost. Postopek izdelave polimerne membrane je tudi relativno zahteven.Some embodiments of optical fiber pressure gauges are known. The solution according to patent WO 02/23148 uses a housing made of silicon, to which is attached the end of the inlet optical fiber and a thin silicon membrane. The smoothly cut end of the optical fiber and the membrane represent two reflective surfaces that form the so-called. Fabry-Perot interferometer. This is where the optical wave is divided into two parts that interfere with each other. Their interference sum depends on the distance between the end of the fiber and the membrane, which is basically a measure of pressure. Other known solutions are those of EP 1 089 062, U.S. Pat. All of the above solutions are a common feature of the said housing, which is everywhere larger than the optical fiber. The only known solution where the entire sensor is equal to the diameter of the optical fiber is EP 0 997 721 and SI21242. According to EP 0 997 721, the manufacturing process is relatively complex and requires the use of special tools and materials. The SI21242 solution is based on the use of a polymeric membrane. The disadvantage of the polymer membrane system is the high sensitivity of the membrane to environmental influences, e.g. on water absorption, temperature sensitivity. The process of manufacturing a polymer membrane is also relatively demanding.

Po izumu je problem rešen s postavitvijo senzorja na konec optičnega vlakna. Izum bo opisan na izvedbenem primeru in slikah, ki prikazujejo:According to the invention, the problem is solved by placing the sensor at the end of the optical fiber. The invention will be described in the embodiment and in the drawings showing:

sl. 1 Izgled in konstrukcija senzorja sl. 2 Posamezne faze izdelave senzorja sl. 3 Kalibracija in nastavitev debeline membrane sl. 4 Značilen odziv senzorja za tlačno območje od 0 do 40 KPa sl. 5. Značilen odziv senzorja za tlačno območje od 0 do 200 KPaFIG. 1 Sensor layout and construction FIG. 2 The individual stages of sensor construction FIG. 3 Calibration and adjustment of membrane thickness FIG. 4 Typical sensor response for pressure range 0 to 40 KPa FIG. 5. Typical sensor response for pressure range 0 to 200 KPa

Opis senzorjaSensor description

Ključni del senzorja je tanka SiO2 membrana 1, ki je s kratkim cilindričnim distančnikom 2 ločena od vrha enorodovnega optičnega vlakna 3 (v nadaljevanju EOV). Vrh EOV in membrana imata vlogo dveh delno odbojnih površin, ki tvorita Fabry-Perot interferometer (v nadaljevanju FPI), kjer se na osnovi interference reflektirane svetlobe z ustreznim sistemom za procesiranje zaznava upogib membrane pod vplivom merjenega tlaka.A key part of the sensor is the thin SiO 2 membrane 1, which is separated by the short cylindrical spacer 2 from the tip of the single-mode optical fiber 3 (hereinafter EOV). The top of the EOV and the membrane play the role of two partially reflective surfaces that form a Fabry-Perot interferometer (hereinafter FPI), where, based on the interference of reflected light, a membrane pressure is detected by the appropriate processing system under the influence of the measured pressure.

Izdelava senzorjaMaking a sensor

Postopek izdelave senzorja poteka v dveh fazah:The sensor fabrication process is in two stages:

a) v prvi fazi se na vrhu vlakna izdela miniaturni FPIa) in the first phase, a miniature FPI is produced at the top of the fiber

b) v drugi fazi se nastavi debelina membrane, ki tvori FPIb) in the second stage, the thickness of the membrane forming the FPI is adjusted

a) Izdelava FPIa) Production of FPI

Na vrhu enorodovnega vlakna 3, po katerem se prenaša svetloba od svetlobnega vira do senzorja in nazaj do detektorja, se izdelav distančnik 2. To se lahko doseže tako, da se privari mnogorodovno optično vlakno 4 (v nadaljevanju MOV). Vlakno se nato odreže na dolžini 5 med tipično 10 in 100pm od spoja. Varjenje se izvede z uporabo standardnega varilnika za optična vlakna. Obe uporabljeni optični vlakni imata zunanji premer 125 pm ali manj. Tako pripravljen konec optičnega vlakna se potopi v 40%-no HF kislino 6, kjer pride do raztapljanja oz. jedkanja MOV. Ker je jedro optičnega vlakna dopirano z GeO2, se le-to raztaplja bistveno hitreje kot obloga. Izmerjena hitrost jedkanja jedra MOV z 20% masnim deležem GeO2 znaša okoli 7 pm na minuto, obloge, ki jo sestavlja čisti SiO2, pa 0,5 pm. Jedkanje poteka vse do spoja obeh optičnih vlaken. Pomembno je, da se jedkanje prekine trenutku, ko je dosežen spoj obeh vlaken, sicer pride do poškodbe površine EOV na spoju in s tem do naglega padca reflektivnosti. Pridobljena struktura se nevtralizira in očisti v ultrazvočnem čistilniku.A spacer 2. A spacer 2. This can be achieved by welding multipurpose optical fiber 4 (hereinafter MOV) at the top of the single-fiber 3, which transmits light from the light source to the sensor and back to the detector. The fiber is then cut at length 5 between typically 10 and 100pm from the joint. Welding is performed using a standard optical fiber welder. Both optical fibers used have an outside diameter of 125 pm or less. The optical fiber end thus prepared is immersed in 40% HF acid 6, where dissolution or resp. etching MOV. Because the fiber optic core is doped with GeO 2 , it dissolves significantly faster than the coating. The measured etching rate of the MOV core with 20% by weight of GeO 2 is about 7 pm per minute and the coating consisting of pure SiO 2 is 0.5 pm. The etching runs all the way to the junction of the two optical fibers. It is important that the etching be interrupted at the moment when the joint of the two fibers is reached, otherwise the surface of the EOV at the joint is damaged and thus a sudden drop in reflectivity occurs. The resulting structure is neutralized and purified in an ultrasonic cleaner.

Na pridobljeno strukturo se nato z varilnikom za optična vlakna privari dodaten segment vlakna 10. To je lahko standardno ali nestandardno enorodovno ali mnogorodovno vlakno ali vlakno brez jedra. Privarjeno vlakno se nato odreže na dolžini 12 med 5 in 100 pm proč od drugega spoja. Sledi poliranje vrha tako pridobljene strukture, kjer se nazadnje privarjeno vlakno stanjša na tipično debelino med 1 in 5 pm. Ta način pridobljena senzorska struktura ima obliko FPI z SiO2 membrano, ki je relativno debela in v večini primerov ne omogoča merjenja nižjih tlakov.The resulting structure is then welded with an additional fiber segment 10 by a fiber optic welder. This may be standard or non-standard single-stranded or multi-stranded or non-core fiber. The welded fiber is then cut at length 12 between 5 and 100 pm away from the second joint. This is followed by polishing the top of the structure thus obtained, where the last welded fiber is reduced to a typical thickness of between 1 and 5 pm. The sensor structure obtained in this way takes the form of an FPI with a SiO 2 membrane, which is relatively thick and in most cases does not allow the measurement of lower pressures.

b.) Nastavitev debeline membrane:b.) Adjusting membrane thickness:

V prejšnjem koraku pridobljena senzorska struktura se poveže preko enorodovnega vlakna 3 s sistemom za procesiranje optičnih signalov 13. Pripravi se pufrana raztopina HF in NH4F 14, v katero se vstavi v senzorska struktura. Pufrana raztopina zagotavlja, da se področje, dopirano z germanijem, sedaj raztaplja počasneje kakor področja, ki vsebujejo čisti SiO2. S tem preprečimo nastanek nezaželene luknje v membrani, kjer se nahaja z germanijem dopirano jedro. V kolikor se uporabi vlakno brez jedra je možno izvesti jedkanje tudi v HF kislini. Senzorska struktura se skupaj z raztopino za jedkanje zapre v posodo 15, v kateri se ciklično spreminja tlak v področju za katerega želimo izdelati senzor. S pomočjo sistema za procesiranje optičnih signalov opazujemo odziv senzorja. Raztopina tako prične raztapljati (tanjšati) membrano, kar se odraža v povečevanju občutljivosti senzorja. Ko je dosežena želena občutljivost, se senzor odstrani iz raztopine ter nevtralizira. Na ta način je možno doseči poljubno občutljivost oziroma delovno področje senzorja ob hkratni dobri ponovljivosti postopka.In the previous step, the sensor structure obtained is connected via a single-stranded fiber 3 to an optical signal processing system 13. A buffer solution of HF and NH 4 F 14 is prepared and inserted into the sensor structure. The buffered solution ensures that the germanium doped area now dissolves more slowly than the areas containing pure SiO 2 . This prevents an unwanted hole in the membrane where the germanium doped nucleus is located. If core-free fiber is used, etching in HF acid can also be performed. The sensor structure, together with the etching solution, is enclosed in a container 15 in which the pressure in the area for which the sensor is desired is cyclically changed. Using the optical signal processing system, the sensor response is observed. The solution thus begins to dissolve the membrane, which is reflected in an increase in the sensitivity of the sensor. When the desired sensitivity is reached, the sensor is removed from the solution and neutralized. In this way, it is possible to achieve any sensitivity or working area of the sensor, while having good repeatability of the process.

Značilni rezultatiTypical results

Senzor je po opisanem postopku možno izdelati za različna tlačna področja. Primera karakteristik za izdelana senzorja za področji 0-40 KPa in 0-200 KPa sta prikazana na slikah 2 in 3. Sliki prikazujeta značilni odbojnosti senzorja opri valovni dolžini 1550 nm v odvisnosti od tlaka.The sensor can be manufactured according to the described procedure for different pressure ranges. Examples of characteristics for fabricated sensors for the 0-40 KPa and 0-200 KPa ranges are shown in Figures 2 and 3. The figures show the characteristic reflectance of the sensor at a wavelength of 1550 nm as a function of pressure.

Claims (5)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1 .Optični vlakenski senzor tlaka, značilen po tem, da ga sestavljajo dovodno enorodovno vlakno (3), ki se nadaljuje v kratek distančnik (2) z notranjim premerom med 20 in 200pm (7), zunanjim premerom med 80 in 300μηη (8) in dolžino 10 in 300 pm (9) ter SiO2 membrana, ki je privarjena na konec cilindričnega elementa (2).Optical fiber pressure sensor, characterized in that it consists of a single inlet fiber (3) extending into a short spacer (2) with an internal diameter of between 20 and 200pm (7), an outer diameter of between 80 and 300μηη (8). and a length of 10 and 300 pm (9) and a SiO 2 membrane welded to the end of the cylindrical element (2). 2. Postopek za izdelavo optičnega senzorja tlaka po zahtevku 1, značilen po tem, da se na enorodovno optično vlakno, na vrhu katerega se izdela vdolbina, izvede zvar s kratkim segmentom poljubnega optičnega vlakna (10), ki se odreže med 1 in 100 pm proč od zvara, čemur sledi jedkanje v HF ali pufrani HF kislini tako, da se privarjeni segment nadalje stanjša na debelino, ki zagotavlja občutljivost senzorja v ciljnem tlačnem področju.A method for manufacturing an optical pressure sensor according to claim 1, characterized in that a weld with a short segment of any optical fiber (10) cut between 1 and 100 pm is made on a single-optical fiber on the top of which the recess is made. away from the weld, followed by etching in HF or buffered HF acid so that the weld segment is further reduced to a thickness that ensures the sensitivity of the sensor in the target pressure region. 3. Postopek za izdelavo optičnega senzorja tlaka po zahtevku 1, značilen po tem, da se na enorodovno optično vlakno, na vrhu katerega se izdela vdolbina izvede zvar s kratkim segmentom poljubnega optičnega vlakna (10), ki se odreže med 1 in 100 pm proč od zvara ter se nato polira tako, da je privarjen segment dolg med 1 in 10 pm, čemur sledi jedkanje v HF ali pufrani HF kislini tako, da se privarjeni segment nadalje stanjša na debelino, ki zagotavlja občutljivost senzorja v ciljnem tlačnem področju.3. A method for manufacturing an optical pressure sensor according to claim 1, characterized in that a weld with a short segment of any optical fiber (10) cut between 1 and 100 pm away is applied to a single optical fiber, at the top of which a recess is made. from the weld and then polished so that the welded segment is between 1 and 10 pm long, followed by etching in HF or buffered HF acid so that the welded segment is further reduced to a thickness that ensures the sensitivity of the sensor in the target pressure region. 4. Postopek za izdelavo optičnega senzorja tlaka po zahtevku 2, značilen po tem, da poteka jedkanje v zaprti posodi, v kateri se ciklično spreminja tlak in hkrati opazuje odziv senzorja tako, da se jedkanje prekine, ko se doseže želena občutljivost senzorja.A method for manufacturing an optical pressure sensor according to claim 2, characterized in that the etching is carried out in a closed container in which the pressure cyclically changes while observing the sensor response such that the etching is interrupted when the desired sensitivity of the sensor is achieved. 5. Postopek za izdelavo optičnega merilnika tlaka po zahtevku 3, značilen po tem, da poteka jedkanje v zaprti posodi, v kateri se ciklično spreminja tlak in hkrati opazuje odziv senzorja tako, da se jedkanje prekine, ko se doseže želena občutljivost senzorja.A method for producing an optical pressure gauge according to claim 3, characterized in that the etching is carried out in a closed container in which the pressure is cyclically changed and at the same time it observes the response of the sensor so that the etching is interrupted when the desired sensor sensitivity is achieved.
SI200500056A 2005-03-02 2005-03-02 Optical fibre pressure sensor with sio2 diaphragm SI21763A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI200500056A SI21763A (en) 2005-03-02 2005-03-02 Optical fibre pressure sensor with sio2 diaphragm
US11/885,457 US8559770B2 (en) 2005-03-02 2006-03-02 Fabry-perot optical sensor and method of manufacturing the same
PCT/CA2006/000304 WO2006092052A1 (en) 2005-03-02 2006-03-02 Fabry-perot optical sensor and method of manufacturing the same
CA2599696A CA2599696C (en) 2005-03-02 2006-03-02 Fabry-perot optical sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200500056A SI21763A (en) 2005-03-02 2005-03-02 Optical fibre pressure sensor with sio2 diaphragm

Publications (1)

Publication Number Publication Date
SI21763A true SI21763A (en) 2005-10-31

Family

ID=35265807

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200500056A SI21763A (en) 2005-03-02 2005-03-02 Optical fibre pressure sensor with sio2 diaphragm

Country Status (1)

Country Link
SI (1) SI21763A (en)

Similar Documents

Publication Publication Date Title
US7054011B2 (en) Optical fiber pressure and acceleration sensor fabricated on a fiber endface
US8151648B2 (en) Ultra-miniature fiber-optic pressure sensor system and method of fabrication
US8966988B2 (en) Ultra-miniature fiber-optic pressure sensor system and method of fabrication
EP2498049B1 (en) Optical fiber sensors having long active lengths, systems, and methods
EP1929249B9 (en) Single piece fabry-perot optical sensor and method of manufacturing the same
EP3163340B1 (en) Method of fabrication of an optical waveguide sensor and such optical waveguide sensor
US20080159687A1 (en) Fabry-Perot Optical Sensor and Method of Manufacturing the Same
CN108572047B (en) Optical fiber air pressure sensing device based on multiple Fabry-Perot microcavities
CN103344277B (en) A kind of Fabry-Perot sensor and pick-up unit that simultaneously can detect two parameter
CN103162722A (en) Microfiber Fabry-Perot microcavity sensor and manufacturing method
CN103344381B (en) Wide region vacuum optical fiber sensor with multiple stage rank and preparation method thereof
CN110160571B (en) Fabry-Perot sensor based on silicon core optical fiber and preparation and application thereof
CN208155479U (en) The fiber optic temperature and pressure sensor of double cavity structure
CN101586967B (en) Fiberguide grating sensor and manufacturing method thereof
CN111337060A (en) Hybrid sensor based on vernier effect of parallel structure and manufacturing method thereof
WO2022156298A1 (en) High-sensitivity air pressure sensor based on suspended-core optical fiber and side-hole optical fiber
SI21816A (en) Optical fibre elongation sensor
CN107861192A (en) Cone is drawn to combine the method that chemical attack prepares optical fiber F P sensors based on optical fiber
CN109655176B (en) High-precision temperature probe based on cavity filling type microstructure optical fiber interferometer
US7630590B2 (en) Optical sensor for measuring thin film disposition in real time
WO2019222932A1 (en) Fiber flex sensor and manufacturing method for fiber flex sensor
SI21763A (en) Optical fibre pressure sensor with sio2 diaphragm
SI21242A (en) Optical fiber pressure sensor
CN216870351U (en) Optical fiber hydrogen sensor based on vernier effect high-sensitivity quick response
Deng et al. Miniaturized fiber-optic Fabry-Perot interferometer for highly sensitive refractive index measurement

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20050706

KO00 Lapse of patent

Effective date: 20091130