SI21242A - Optical fiber pressure sensor - Google Patents

Optical fiber pressure sensor Download PDF

Info

Publication number
SI21242A
SI21242A SI200200150A SI200200150A SI21242A SI 21242 A SI21242 A SI 21242A SI 200200150 A SI200200150 A SI 200200150A SI 200200150 A SI200200150 A SI 200200150A SI 21242 A SI21242 A SI 21242A
Authority
SI
Slovenia
Prior art keywords
optical fiber
fiber
diaphragm
solution
optical
Prior art date
Application number
SI200200150A
Other languages
Slovenian (sl)
Inventor
Edvard Cibula
Denis ĐONLAGIĆ
Original Assignee
Feri Maribor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feri Maribor filed Critical Feri Maribor
Priority to SI200200150A priority Critical patent/SI21242A/en
Publication of SI21242A publication Critical patent/SI21242A/en

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

The optical fiber sensor solves the problem of implementing a pressure sensor, which is no wider than the standard optical fiber, this is 125 micrometer. The key element of the sensor is an elastic diaphragm, which is located inside the cavity at the end of the optical fiber. The measurement of the flexion of the diaphragm or pressure is based on the phenomena of interference of light between the diaphragm and the end of the optical fiber. The procedure of manufacture includes the etching of the end of the optical fiber and implementation of the diaphragm. A short section of a multimode optical fiber with a core having been etched by immersion into HF acid, is welded to the end of the monomode optical fiber. The thus provided end of the optical fiber is immersed into a solution of material, suitable for the manufacture of the diaphragm, dissolved in a suitable solvent. After withdrawal of the fiber from the solution a part of the solution in the shape of a droplet sticks to the fiber where as a result of evaporation it gradually becomes thinner. This way a thin diaphragm is created inside the recess at the end of the optical fiber.

Description

OPTIČNI VLAKENSKI SENZOR TLAKAOPTICAL FIBER PRESSURE SENSOR

Predmet izuma je senzor tlaka in postopek za izdelavo senzorja tlaka, ki se nahaja na koncu optičnega vlakna in ima premer, ki je manjši ali enak premeru optičnega vlakna. Konstrukcija senzorja omogoča realizacijo visoko občutljivega senzorja, primernega za merjenje nižjih tlakov.The object of the invention is a pressure sensor and a method for manufacturing a pressure sensor located at the end of an optical fiber having a diameter smaller than or equal to the diameter of the optical fiber. The construction of the sensor enables the realization of a highly sensitive sensor suitable for measuring lower pressures.

Tehnični problem, ki ga rešuje izum je realizacija občutljivega senzorja tlaka majhnega premera, primernega za vrsto aplikacij, pri katerih se zahtevajo majhne dimenzije senzorja in/ali električna pasivnost. Poleg tega omogoča uporabo biokompatibilnih materialov, kar je odločilnega pomena za področje medicine. Izum obenem rešuje problem visoke cene izdelave te vrste senzorjev in sicer zaradi enostavnega postopka izdelave in možnosti uporabe cenenih materialov.A technical problem solved by the invention is the realization of a sensitive small diameter pressure sensor suitable for a variety of applications requiring small sensor dimensions and / or electrical passivity. In addition, it enables the use of biocompatible materials, which is crucial in the medical field. At the same time, the invention solves the problem of the high cost of manufacturing this type of sensor, due to the simple manufacturing process and the ability to use cheap materials.

Znanih je nekaj izvedb optičnih vlakenskih merilnikov tlaka. Rešitev po patentu WO 02/23148 uporablja ohišje iz silicija, v katero sta pritrjena konec dovodnega optičnega vlakna in tanka silicijeva membrana. Gladko odrezan konec optičnega vlakna in membrana predstavljata dve reflektivni površini, ki tvorita t i. Fabry-Perot interferometer. Tukaj prihaja do razdelitve optičnega vala na dva dela, ki medsebojno interferirata. Njuna interferenčna vsota je odvisna od razdalje med koncem vlakna in membrano, kar je v osnovi merilo tlaka. Druge znane rešitve so po patentih EP 1 089 062, US 5657405, US 5381229 US 4991590 in WO 99/45352, ki se razlikujejo predvsem po izvedbi ohišja za membrano in optično vlakno. Vsem navedenim rešitvam je skupna značilnost omenjeno ohišje, ki pa je povsod večjega premera od optičnega vlakna. Edina znana rešitev, kjer je celoten senzor enak premeru optičnega vlakna je po patentu EP 0 997 721, le da je postopek izdelave zapleten in zahteva uporabo posebnih orodij in materialov.Some embodiments of optical fiber pressure gauges are known. The solution according to patent WO 02/23148 uses a housing made of silicon, to which is attached the end of the inlet optical fiber and a thin silicon membrane. The smoothly cut end of the optical fiber and the membrane represent two reflective surfaces that form t i. Fabry-Perot interferometer. This is where the optical wave is divided into two parts that interfere with each other. Their interference sum depends on the distance between the end of the fiber and the membrane, which is basically a measure of pressure. Other known solutions are those of EP 1 089 062, U.S. Pat. All of the above solutions are a common feature of the said housing, which is everywhere larger than the optical fiber. The only known solution where the entire sensor is the same as the diameter of the optical fiber is EP 0 997 721, except that the manufacturing process is complicated and requires the use of special tools and materials.

Po izumu je problem rešen s postavitvijo senzorja na konec optičnega vlakna in sicer znotraj samega vlakna. Izum bo opisan na izvedbenem primeru in slikah, ki prikazujejo:According to the invention, the problem is solved by placing the sensor at the end of the optical fiber inside the fiber itself. The invention will be described in the embodiment and in the drawings showing:

sl. 1 standardno enorodovno optično vlakno s privarjenim segmentom mnogorodovnega optičnega vlakna sl. 2 zjedkan konec optičnega vlakna sl. 3 Posamezne faze izdelave membrane znotraj optičnega vlaknaFIG. 1 shows a standard single-layer optical fiber with a welded segment of a multiple-layer optical fiber; 2 shows the etched end of the optical fiber; 3 Individual phases of membrane fabrication within an optical fiber

Priprava konca optičnega vlakna:Fiber optic end preparation:

Na enorodovno optično vlakno 1 (v nadaljevanju EOV), po katerem se prenaša svetloba od svetlobnega vira do senzorja in nazaj do detektorja je privarjeno mnogorodovno optično vlakno 2 (v nadaljevanju MOV) in odrezano na dolžini 10Ομηη od spoja 3. Varjenje je izvedeno z uporabo standardnega varilnika za optična vlakna in odrezano z rezalnikom za optična vlakna. Obe uporabljeni optični vlakni imata zunanji premer 125μιτι 4. Premer jedra EOV je 9pm 5. MOV ima stopnični lomni lik s premerom jedra okoli 60pm 6 in je izdelano s standardno tehnologijo za izdelavo optičnih vlaken, kjer je jedro dopirano z GeO2. Masni delež GeO2vjedru je okoli 40%.Single-mode optical fiber 1 (hereinafter referred to as EOV), after which light is transmitted from the light source to the sensor and back to the detector, is welded multi-fiber optical fiber 2 (hereinafter MOV) and cut to length 10Ομηη from junction 3. Welding is performed using standard optical fiber welder and cut with fiber optic cutter. The two optical fibers used have an external diameter of 125μιτι 4. The diameter of the EOV core is 9pm 5. The MOV has a stepwise fracture character with a core diameter of about 60pm 6 and is manufactured using standard fiber optic technology where the core is doped with GeO 2 . The weight of GeO 2 is about 40%.

Jedkanje konca optičnega vlakna:Optical fiber end etching:

Tako pripravljen konec optičnega vlakna je potopljen v 40%-no HF kislino, kjer pride do raztapljanja oz. jedkanja MOV. Ker je jedro optičnega vlakna dopirano z GeO2, se le-to raztaplja bistveno hitreje kot obloga. Izmerjena hitrost jedkanja jedra z 40% masnim deležem GeO2 MOV znaša okoli 7pm na minuto, obloge, ki jo sestavlja čisti SiO2 pa 0,5μηη. Jedkanje poteka vse do spoja obeh optičnih vlaken, kjer pride do porasta reflektivnosti na meji vlakno-zrak z 0,01% na ca. 2%. Tolikšna reflektivnost je nujna za delovanje senzorja na osnovi interference svetlobe. Pomembno je, da se jedkanje prekine trenutku, ko je dosežen spoj obeh vlaken, sicer pride do poškodbe površine EOV na spoju in s tem do naglega padca reflektivnosti. V ta namen se med procesom jedkanja meri moč odbite svetlobe in ko ta doseže maksimum, se jedkanje prekine. Neposredno po jedkanju se konec vlakna potopi v alkohol, da se odstranijo ostanki HF kisline. Zjedkan konec vlakna z vdolbino 7 na čelni strani je prikazan na sliki 2.The optical fiber end thus prepared is immersed in 40% HF acid, where it dissolves. etching MOV. Because the fiber optic core is doped with GeO 2 , it dissolves significantly faster than the coating. The measured etching rate of the core with 40% by weight of GeO 2 MOV is about 7pm per minute and the coating consisting of pure SiO 2 is 0.5μηη. The etching proceeds to the junction of the two optical fibers, where there is an increase in reflectivity at the fiber-air interface from 0.01% to ca. 2%. Such reflectivity is essential for the operation of the sensor based on light interference. It is important that the etching be interrupted at the moment when the joint of the two fibers is reached, otherwise the surface of the EOV at the joint is damaged and thus a sudden drop in reflectivity occurs. To this end, the power of reflected light is measured during the etching process and when it reaches its maximum, the etching is interrupted. Immediately after etching, the fiber end is immersed in alcohol to remove residual HF acid. The etched end of the fiber with recess 7 in the front is shown in Figure 2.

Izdelava membrane:Membrane production:

Pripravi se raztopina iz ustreznega materiala, kot so razni polimeri in poliuretani s primernimi mehanskimi lastnostmi za izdelavo membrane. Izbira materiala je odvisna od želene aplikacije, tako da membrana izpolnjuje zahteve glede natezne trdnosti, temperaturne obstojnosti ter za področje medicine pogoj biokompatibilnosti. Pomembna lastnost materiala za izdelavo membrane je med drugim dober oprijem na steklo oz. optično vlakno. Za primer izdelave membrane iz elastičnega poliuretana P-1190A se pripravi 5%-na raztopina tega poliuretana v topilu dimetil formamid (DMF) - 8. Zjedkan konec optičnega vlakna se nato vertikalno potopi v raztopino - 9. Po dvigu optičnega vlakna iz raztopine se del raztopine v obliki kapljice oprime vlakna - 10. Ker je na spodnji oz. zunanji strani kapljice parni tlak DMF manjši od tistega na zgornji strani t.j. znotraj vdolbine v optičnem vlaknu, DMF tukaj hitreje izhlapeva. Zaradi tega pride do tanjšanja spodnje strani kapljice, dokler se na zunanjem robu vdolbine vlakna ne ustvari tanka membrana - 11. Končna debelina membrane (in s tem njene mehanske lastnosti) je odvisna od hitrosti izhlapevanja topila. V ta namen je potrebno kontrolirati tako koncentracijo hlapov DMF kot temperaturo v okolici membrane.Prepare a solution of suitable material, such as various polymers and polyurethanes, with suitable mechanical properties for the manufacture of the membrane. The choice of material depends on the application desired, so that the membrane meets the requirements of tensile strength, temperature resistance and biocompatibility condition for the field of medicine. An important feature of the membrane fabrication material, among other things, is its good adhesion to the glass and / or glass. optical fiber. For the manufacture of a membrane of elastic polyurethane P-1190A, prepare a 5% solution of this polyurethane in solvent dimethyl formamide (DMF) - 8. The etched end of the optical fiber is then immersed vertically in the solution - 9. After lifting the optical fiber from the solution, part solutions in the form of a drop of fiber grip - 10. Because it is at the bottom or. on the outside of the droplet the DMF vapor pressure is less than that on the upper side i.e. inside the well in the optical fiber, the DMF evaporates here faster. This causes thinning of the underside of the droplet until a thin membrane is formed at the outer edge of the fiber well - 11. The final thickness of the membrane (and thus its mechanical properties) depends on the rate of evaporation of the solvent. For this purpose it is necessary to control both the DMF vapor concentration and the temperature around the membrane.

Claims (5)

1 .Optični vlakenski merilnik tlaka, značilen po tem, da ga sestavljajo dovodno enorodovno vlakno (1), ki se nadaljuje v kratek cilindrični element (2) z notranjim premerom med 10 in 200pm (6), zunanjim premerom med 80 in 300pm (4) in dolžino 10 in 300gm (3) ter polimerna membrana, ki je pritrjena na konec cilindričnega elementa (11).Optical fiber pressure gauge, characterized in that it consists of a single inlet fiber (1) extending into a short cylindrical element (2) with an inside diameter between 10 and 200pm (6), an outer diameter between 80 and 300pm (4). ) and a length of 10 and 300gm (3) and a polymeric membrane attached to the end of the cylindrical element (11). 2. Postopek za izdelavo optičnega merilnika tlaka po zahtevku 1, značilen po tem, da se izvede varjenje kratkega segmenta mnogorodovnega optičnega vlakna (2) na enorodovno optično vlakno (1), kateremu sledi jedkanje v HF kislini.A method for manufacturing an optical pressure gauge according to claim 1, characterized in that a short segment of the multipart optical fiber (2) is welded to a single-optical fiber (1) followed by etching in HF acid. 3. Postopek za izdelavo optičnega merilnika tlaka po zahtevku 1, značilen po tem, da se središče mnogorodovnega optičnega vlakna izjedka v HF kislini in sicer do spoja enorodovnega in mnogorodovnega optičnega vlakna.A method for manufacturing an optical pressure gauge according to claim 1, characterized in that the center of the multipart optical fiber is etched in HF acid to the junction of the single and multipart optical fiber. 4. Postopek za izdelavo optičnega merilnika tlaka po zahtevku 1, značilen po tem, da se uporabi raztopina (8) materiala za membrano v ustreznem topilu, v katero se potopi zjedkan konec optičnega vlakna in sicer orientiran vertikalno navzdol (9); da se po izvlečenju vlakna del raztopine v obliki kapljice oprime konca vlakna (10), kjer zaradi hitrejšega izhlapevanja topila na spodnji (zunanji) strani kapljice raztopine pride do njenega stanjšanja in sicer tako, da se znotraj vdolbine v koncu optičnega vlakna ustvari tanka membrana (11).A method for manufacturing an optical pressure gauge according to claim 1, characterized in that a solution (8) of the membrane material in a suitable solvent is used in which the etched end of the optical fiber is immersed and oriented vertically downwards (9); that after extraction of the fiber, a portion of the droplet solution adheres to the end of the fiber (10), where, due to the faster evaporation of the solvent on the lower (outer) side of the droplet, its thinning occurs by creating a thin membrane inside the recess at the end of the optical fiber ( 11). 5. Mnogorodovno optično vlakno značilno po tem, da ima stopnični ali gradientni lomni lik, premer jedra med 10 in 200pm, zunanji premer med 80 in 300pm in dolžno 10 in 300pm.5. Multiple-fiber optical fiber, characterized in that it has a step or gradient fracture pattern, a core diameter of between 10 and 200pm, an outer diameter of between 80 and 300pm and a length of 10 and 300pm.
SI200200150A 2002-06-13 2002-06-13 Optical fiber pressure sensor SI21242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200200150A SI21242A (en) 2002-06-13 2002-06-13 Optical fiber pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200200150A SI21242A (en) 2002-06-13 2002-06-13 Optical fiber pressure sensor

Publications (1)

Publication Number Publication Date
SI21242A true SI21242A (en) 2003-12-31

Family

ID=29778196

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200200150A SI21242A (en) 2002-06-13 2002-06-13 Optical fiber pressure sensor

Country Status (1)

Country Link
SI (1) SI21242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019676A1 (en) 2005-08-12 2007-02-22 Fiso Technologies Inc. Single piece fabry-perot optical sensor and method of manufacturing the same
US8559770B2 (en) 2005-03-02 2013-10-15 Fiso Technologies Inc. Fabry-perot optical sensor and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559770B2 (en) 2005-03-02 2013-10-15 Fiso Technologies Inc. Fabry-perot optical sensor and method of manufacturing the same
WO2007019676A1 (en) 2005-08-12 2007-02-22 Fiso Technologies Inc. Single piece fabry-perot optical sensor and method of manufacturing the same
EP1929249A1 (en) * 2005-08-12 2008-06-11 Fiso Technologies Inc. Single piece fabry-perot optical sensor and method of manufacturing the same
EP1929249A4 (en) * 2005-08-12 2012-10-17 Fiso Technologies Inc Single piece fabry-perot optical sensor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7684657B2 (en) Single piece Fabry-Perot optical sensor and method of manufacturing the same
US10281348B2 (en) Optical fiber pressure sensor with uniform diaphragm and method of fabricating same
EP3163276A2 (en) Fabry-perot optical sensor
US20080159687A1 (en) Fabry-Perot Optical Sensor and Method of Manufacturing the Same
EP2498049B1 (en) Optical fiber sensors having long active lengths, systems, and methods
US7689071B2 (en) Fiber optic pressure sensor for catheter use
WO2005121697A1 (en) Optical fiber strain sensor
CN209802548U (en) Coating type double-layer sensitive film for FP (Fabry-Perot) cavity optical fiber pressure sensor
SI21242A (en) Optical fiber pressure sensor
CN109470403B (en) Force/torque sensor calibration method based on fiber bragg grating
CN112902995B (en) MEMS (micro-electromechanical systems) process-based open type quartz glass micro F-P (Fabry-Perot) cavity sensing structure
Tuck et al. Low cost optical fibre based Fabry–Perot strain sensor production
CN208366287U (en) A kind of optical fibre bending sensor
SI21763A (en) Optical fibre pressure sensor with sio2 diaphragm
KR101797353B1 (en) Force sensor using optical fibers in series, manufacture method of the same, medical device including the same
CN215115877U (en) High-sensitivity Mach-Zehnder optical fiber refractive index sensor with intracavity tapered structure
Li et al. A Highly Integrated Biomedical Pressure-Temperature Sensor
Li et al. A Low-Cost All-Silica Fabry-Perot Pressure Sensor for Biomedical Applications
CN116719126A (en) Manufacturing method of core-offset conical optical fiber Fabry-Perot interferometer strain sensor
Chan et al. Micromachined fiber optic pressure sensor for in-vivo biomedical applications
Wang Master of Science in Electrical Engineering
Chan et al. University of California, Davis, CA 95616

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20060404