SI21319A - Method for baking and calcinating shaped carbon bodies in an annular furnace - Google Patents
Method for baking and calcinating shaped carbon bodies in an annular furnace Download PDFInfo
- Publication number
- SI21319A SI21319A SI200220014A SI200220014A SI21319A SI 21319 A SI21319 A SI 21319A SI 200220014 A SI200220014 A SI 200220014A SI 200220014 A SI200220014 A SI 200220014A SI 21319 A SI21319 A SI 21319A
- Authority
- SI
- Slovenia
- Prior art keywords
- coke
- content
- cao
- sio
- baking
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
- C04B35/532—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
OpisDescription
Predloženi izum se nanaša na postopek za kalciniranje in žganje oblikovanih ogljikovih teles, še zlasti ogljikovih ali grafitnih elektrod v krožni komorni peči (Ringkammerofen).The present invention relates to a process for calcining and firing molded carbon bodies, in particular carbon or graphite electrodes in a circular chamber furnace (Ringkammerofen).
Na primer, anode ali katode za proizvodnjo aluminija s Herault-Hallovim postopkom se v t. im. krožnih komornih pečeh žgejo v zaprti ali odprti konstrukciji pri temperaturah prednostno od približno 900 °C do 1300 °C. Tovrstne peči sestojijo iz množice stacionarnih komor, nad katerimi je, na splošno, razporejenih več krožečih ognjev, ki, med drugim, sestojijo iz gorilne naprave in hladilne naprave.For example, anodes or cathodes for the production of aluminum by the Herault-Hall process in t. im. Circular chamber furnaces are fired in a closed or open structure at temperatures preferably from about 900 ° C to 1300 ° C. Such furnaces consist of a plurality of stationary chambers over which, in general, several circulating fires are arranged, which, inter alia, consist of a combustion apparatus and a cooling device.
Krožna komorna peč zaprte izvedbe je npr. opisana v WO 92/22780. Z namenom zaščititi zelene anode ali katode, ki so v komorah pretežno razvrščene v večih plasteh, pred deformacijo in odgorom (oksidacijo), se votlinice, ki ostanejo okoli le-teh, zapolnijo s petrolejskim koksom, metalurškim koksom in podobnim, v splošnem v granulaciji od 1 mm do 20 mm (v nadaljevanju označen kot polnilni koks). Po procesu žganja se polnilni koks s pomočjo odsesovalne naprave odstrani in anode ali katode se vzamejo ven. Vrhnji anodni oz. katodni bloki so gorilno tehnično pogojeni kot še zlasti ogroženi proti odgoru, zaradi česar je tudi na njihovo površino položena pokrivna plast, običajno iz enakega materiala, kot je uporabljen polnilni koks. Npr., pri zaprti anodni peči znaša debelina pokrivne plasti pri uporabi metalurškega koksa približno 30 do 40 cm, pri uporabi petrolejskega koksa pa približno 55 do 70 cm. V odprtih anodnih pečeh so, v primerjavi z zaprto pečjo, vrhnji anodni bloki pokriti z znatno debelejšo plastjo.The closed-loop circular chamber furnace is e.g. described in WO 92/22780. In order to protect green anodes or cathodes predominantly arranged in chambers in several layers from deformation and abrasion (oxidation), the cavities remaining around them are filled with petroleum coke, metallurgical coke and the like, generally in granulation. from 1 mm to 20 mm (hereinafter referred to as coke). After the firing process, the coke is removed with the help of a suction device and the anodes or cathodes are taken out. The top anode respectively. The cathode blocks are technically conditioned as particularly threatening to the combustion, resulting in a cover layer, usually made of the same material as the coke used, on their surface. For example, in a closed anode furnace, the thickness of the coating layer when using metallurgical coke is about 30 to 40 cm, and when using petroleum coke it is about 55 to 70 cm. In open anode furnaces, compared to a closed furnace, the top anode blocks are covered with a much thicker layer.
V bistvu so za pokrivni material v peči za žganje ogljikovih oblikovancev postavljene naslednje zahteve:Essentially, the cover material in a carbon burner furnace has the following requirements:
- preprečevanje tvorbe žlindre in skorje, še zlasti pri vožku koksov, ki tvorijo žlindro;- the prevention of slag and crust formation, especially when driving slag-forming coke;
- večkratna uporaba;- multiple use;
- znatno zmanjšanje debeline pokrivne plasti v primerjavi s samim vložkom koksa;- a significant reduction in the thickness of the coating layer compared to the coke insert itself;
- ni negativnega vpliva na kvaliteto ogljikovih oblikovancev;- there is no negative impact on the quality of the carbon form;
- enostavno ravnanje z njim;- easy handling;
- pozitivna gospodarska bilanca.- a positive economic balance.
Iz DE 2 314 391 je kot stanje tehnike znano, da se za preprečevanje oksidacije polnilnih koksov med žganjem vrhnjo površino polnilnega koksa, ki je naložen okoli ogljikovih oblikovancev, pokrije s silicijevim dioksidnim peskom, naravno surovino (ki mineraloško sestoji iz kvarca), samim ali kot z zmesjo s koksom. Vendar pa seje kot zelo pomanjkljiva izkazala zelo močna tvorba skorje, večkratna uporaba ni bila možna.It is known from DE 2 314 391 that, in order to prevent oxidation of filler coke, the top surface of the filler coke loaded around the carbon molds is coated with silica sand, naturally occurring (mineralogically composed of quartz), by itself or as with a mixture of coke. However, very strong crust formation proved to be very defective and repeated use was not possible.
V DE 2 314 391 je kot dodatna pokrivna plast polnilnih koksov predlagan ognjevzdržen material, katerega delci (v obliki kroglic, zrn, tablet ali kock) so večji od delcev polnilnega koksa, vendar pa manjši od okoli 50 mm. S to klasifikacijo naj bi bilo možno kasnejše ločevanje in ponovna uporaba polnilnega koksa in pokrivnega materiala. Vendar pa so v primerih navedene preplastene kroglice skupine materialov aluminijevega oksida (90 mas.% A12O3, 10 mas.% SiO2, kot tudi 99 mas.% A12O3 in 1 mas.% SiO2) in mulita (31,8 mas.% A12O3 in 66,2 mas.% SiO2) v pripravi izredno drage. Skladno s spisom je za postopek nujno potrebna dodatna plast polnilnega koksa, ki je nameščena pod ognjevzdržen material, da se prepreči odgor površine ogljikovih oblikovancev. Ni pa navedena debelina te plasti polnilnega koksa. Še zlasti pri uporabi metalurških koksov v dodatni pokrivni plasti koksa nastajajo pri procesu žganja z železom bogate žlindre, ki opisani pokrivni material delno skepijo in povzročijo težko ločevanje od preostalega polnilnega in pokrivnega koksa s sejanjem. V tej objavi ni poročano o vplivih plinastih sestavin, ki uhajajo pri procesu žganja iz ogljikovih teles.DE 2 314 391 proposes a refractory material with a refractory material whose particles (in the form of beads, grains, tablets or cubes) are larger than the particles of the coke, but smaller than about 50 mm. This classification should allow for the subsequent separation and re-use of filler coke and cover material. However, in the examples, interlaced beads of the alumina material group (90 wt% A1 2 O 3 , 10 wt% SiO 2 , as well as 99 wt% A1 2 O 3 and 1 wt% SiO 2 ) and mullite ( 31.8 wt.% A1 2 O 3 and 66.2 wt.% SiO 2 ) are extremely expensive to prepare. According to the file, an additional layer of filler coke, which is placed underneath the refractory material, is urgently needed to prevent the carbon form from being blown off the surface. However, the thickness of this layer of filler coke is not indicated. Particularly when metallurgical coke is used in the additional coke layer, rich slags are formed in the process of burning with iron, which partially scratches the described covering material and causes difficult separation from the rest of the coke by filling and sieving. This post does not report the effects of gaseous constituents that leak in the carbon burning process.
Pri poizkusih, obravnavanih v smislu predloženega izuma, se je pokazalo, da se npr. kroglice aluminijevega oksida pri vložku v zaprto krzno komorno peč uničijo že po dveh obhodih.In the experiments contemplated by the present invention, it has been shown that e.g. Aluminum oxide balls are destroyed after two bypasses when inserted into a closed fur chamber furnace.
V EP 0 779 258 A2 je opisan material za polnjenje votlinic med ogljikovimi telesi in stenami posameznih komor žgalne peči, ki sestoji iz homogene zmesi ogljikovega nosilca in materiala, ki vsebuje silicijev oksid. S1O2 naj bi pri tem služil kot dajalec, ki pri procesu žganja absorbira nastale proste nečistote, še zlasti natrij, in s čimer naj bi se zmanjšala korozija ognjevzdržnih sten komore. Kot bistvena prednost tega načina ravnanja je razvidno, da lahko uporabimo tudi reciklimi material, kot npr. kontaminirane ogljikove-filtrske prahove in zdrobljene uporabljene samotne opeke. Primeri za mešalna razmerja polnilnega materiala in njihova priprava so znani. Definirana poročila o kemični sestavi komponente, ki vsebuje silicijev oksid, niso podana. Opozorjeno je na škodljivo tvorbo žlindre pri uporabi koksa kot polnilnega materiala, še zlasti v gornjem področju sten komore, pri čemer pa naj bi v patentnem spisu predlagani polnilni material lahko zmanjšal ta problem. Vendar pa v vložku niso mogli preprečiti, da ne bi na površini nasutja nastajala žlindra, ki se, še zlasti pri zaprti krožni komorni peči, v gornjem področju sten komore trdno oprime na ognjevzdržen opečni material in z njim reagira. Kot posledica nujnih mehanskih čiščenj se stene hitro uničijo in jih je potrebno popravljati. Uporaba kontaminiranih reciklimih materialov okrepi pojave tvorbe žlindre in skorje.EP 0 779 258 A2 describes a material for filling cavities between carbon bodies and the walls of individual combustion chambers, consisting of a homogeneous mixture of carbon support and material containing silicon oxide. S1O2 is intended to serve as a donor to absorb the resulting free impurities, especially sodium, during the firing process, thereby reducing the corrosion of the refractory walls of the chamber. An essential advantage of this method of treatment is that recyclable material such as e.g. contaminated carbon-filter powders and crushed used solitary bricks. Examples of mixing ratios of filler material and their preparation are known. Defined reports on the chemical composition of the silicon oxide component are not given. The harmful formation of slag when using coke as a filler material, especially in the upper region of the chamber walls, is pointed out, and the proposed filler material in the patent file is expected to reduce this problem. However, the insert could not prevent the formation of slag on the surface of the bulk, which, especially in the closed circular chamber furnace, firmly adheres to and reacts with the refractory brick material in the upper region of the chamber walls. As a result of urgent mechanical cleaning, the walls are quickly destroyed and need to be repaired. The use of contaminated recycled materials enhances the formation of slag and crust.
Naloga izuma je izboljšati znane postopke za žganje ali kalciniranje oblikovanih ogljikovih teles.It is an object of the invention to improve known methods for calcining or calcining shaped carbon bodies.
Izum torej med drugim obravnava postopek za žganje ali kalciniranje s polnilnimi koksi pokritih oblikovanih ogljikovih teles v krožni komorni peči pri temperaturah nad 900°C, pri čemer so polnilni koksi dodatno prekriti s CaO-vsebujočim materialom, kije bogat s kristobalitom in/ali tridimitom, ki ima vsebnost CaO od 1,5 do 10 mas.% in vsebnost SiO2 od 90 do 98,5 mas.%.The invention therefore relates, inter alia, to a process for calcining or calcining with filler coke-covered molded carbon bodies in a circular chamber furnace at temperatures above 900 ° C, wherein the filler coke is further coated with a CaO-containing material rich in cristobalite and / or tridimite, having a CaO content of 1.5 to 10 wt% and a SiO 2 content of 90 to 98.5 wt%.
Z vložkom delcev iz CaO-vsebujočega materiala, ki je bogat s kristobalitom in/ali tridimitom, in ima vsebnost SiO2 od 90 do 98,5 mas.% in vsebnost CaO od 1,5 do 10 mas.% in granulacijo od 2 do 35 mm, smo na presenetljiv način dosegli uvodoma opisane zahteve za pokrivni material, še zlasti preprečevanje tvorbe žlindre in skorje pri uporabi koksov, ki tvorijo žlindre. Pokrivni material se položi čez polnilni koks, ki z vseh strani obkroža ogljikove oblikovance.With a particle insert made of cristobalite and / or tridimite-rich CaO-containing material having a SiO 2 content of 90 to 98.5 wt% and a CaO content of 1.5 to 10 wt% and a granulation content of 2 to 35 mm, we achieved in a surprising way the requirements for covering material described above, in particular the prevention of slag formation and the crust when using slag coke. The cover material is laid over the coke, which surrounds the carbon moldings on all sides.
Torej smo v smislu izuma najprej razvili material z mešanjem vsaj ene zrnate ognjevzdržne surovine z vsebnostjo SiO2 nad 94 mas.%, z vsaj eno surovino, ki je bogata s CaO in, po izbiri, vezivi, tako daje nastala masa, ki sejo da oblikovati. Npr., naravni kvarciti ali reciklimi material iz notranje obloge peči, npr. koksamiške peči, so sestavljeni tako, da je v suhi masi 90 do 99 mas.% SiO2, prednostno 93 do 95 mas.% SiO2. Kot surovino CaO primešamo apneno mleko, apnenec in/ali druge kalcijeve spojine, in sicer toliko, daje prisotno 1,5 do 10 mas.%, prednostno 2 do 4 mas.% glede na suho maso. Kot veziva lahko uporabimo npr. sulfitno odpadno lužino in umetne smole. Surovine smiselno sestavimo tako, da imajo granulacijsko sestavo od 0 do 10 mm, prednostno 0-5 mm.Thus, according to the invention, we first developed a material by mixing at least one granular refractory with a content of SiO 2 above 94% by weight, with at least one CaO-rich feedstock and, optionally, binders so that the resulting sowing mass to design. For example, natural quartzite or recyclable material from the furnace liner, e.g. coke ovens, which are assembled so that in the dry weight of 90 to 99 wt.% SiO 2 , preferably 93 to 95 wt.% SiO 2 . Lime milk, limestone and / or other calcium compounds are mixed as CaO feedstock to the extent that 1.5 to 10% by weight, preferably 2 to 4% by weight, of the dry weight are present. As binders, for example, sulphite scrap and artificial resins. The raw materials are conveniently assembled so that they have a granular composition of 0 to 10 mm, preferably 0-5 mm.
Pripravljeno maso npr. stisnemo v kvadrataste oblikovance, posušimo in prednostno sintramo pri temperaturah med 900 in 1600 °C. Po žganju oblikovance zdrobimo in klasificiramo debelino zrn od 2 do 35 mm, prednostno 6 do 20 mm.Prepared mass e.g. they are compressed into square molds, dried and preferably sintered at temperatures between 900 and 1600 ° C. After calcining the mold, the grain thickness from 2 to 35 mm, preferably 6 to 20 mm, is crushed and graded.
Po eni izvedbeni obliki izuma pripravljeno maso oblikujemo v telesa, npr. cilindre, kocke in podobne tako, da imajo po žganju želeno velikost delcev od 2 do 25 mm, s čimer odpade drobljenje z naknadnim klasificiranjem.According to one embodiment of the invention, the prepared mass is molded into bodies, e.g. cylinders, cubes and the like, having a desired particle size of from 2 to 25 mm after firing, eliminating crushing by subsequent classification.
Po posebni izvedbeni obliki izuma uporabimo uporabljeno kremenovo opeko npr. iz koksamiških peči in obokov talilnih peči za steklo, ki ima že od prej vsebnost CaO večjo od 1,5 mas.%, je bogata s kristobalitom in/ali tridimitom in ima vsebnost SiO2 večjo od 90 mas.%. Tovrstne pred-produkte zdrobimo na zmatost od 2 do 35 mm, prednostno od 6 do 20 mm.According to a particular embodiment of the invention, the quartz brick used is e.g. from coke oven furnaces and vaulting melting furnaces for glass having an earlier CaO content of more than 1.5% by weight, is rich in cristobalite and / or tridimite and having a SiO 2 content exceeding 90% by weight. Such pre-products are ground to a thickness of 2 to 35 mm, preferably 6 to 20 mm.
Na vrhnjo površino ogljikovih oblikovancev nanesemo plast iz, prednostno, polnilnega koksa, da preprečimo odgor. Po posebni izvedbeni obliki izuma to plast nadomestimo z materialom, ki po žganju v krožni komorni peči obstaja kot pokrivni material. To dosežemo tako, da pri mešanju SiO2- in CaO-surovinskem nosilcu dodamo enega ali več ogljikovih nosilcev, pri čemer po oblikovanju in temu sledeči temperaturni obdelavi pod prednostno 350 °C obstaja zadostna trdnost za uporabo. Pri žganju v krožni komorni peči ogljik zgoreva v CaO-vsebujočem oblikovancu in pri tem zasintrani material lahko uporabimo kot pokrivni material, pri čemer je, po izbiri, lahko nujno drobljenje in klasifikacija,.Apply a layer of, preferably, filler coke to the top surface of the carbon molds to prevent scorching. According to a particular embodiment of the invention, this layer is replaced by a material which, after burning in a circular chamber furnace, exists as a covering material. This is achieved by mixing one or more carbon carriers when mixing the SiO 2 - and CaO feedstocks, whereby after the formation and subsequent temperature treatment below a preferred 350 ° C there is sufficient strength to be used. When firing in a circular chamber furnace, carbon combusts in a CaO-containing mold, whereby the sintered material can be used as a covering material, and optionally crushing and classification may be necessary.
Izum je bližje pojasnjen s pomočjo naslednjih izvedbenih primerov.The invention is further explained by the following embodiments.
Poizkuse smo izvedli v zaprti krožni komorni peči za žganje zelenih anod. Posamezne komore so bile spet sestavljene iz posameznih kaset. Dimenzije kasete so znašale približno: 4,64 m globina, 3,8 m dolžina in 1 m širina. V kasete A, B, C in D smo strojno napolnili metalurški koks (polnilni koks) z granulacijo od 5 do 12 mm v votlinice okoli zelenih anod, ki smo jih nameravali žgati.The experiments were carried out in a closed circular chamber furnace for the anode firing. The individual chambers were again made up of individual cassettes. The dimensions of the cassette were approximately: 4.64 m deep, 3.8 m long and 1 m wide. We filled machine cassettes A, B, C and D with a metallurgical coke (filler coke) with a granulation of 5 to 12 mm into the cavities around the green anodes that we intended to burn.
V kaseto A smo na vrhnjo anodno površino preko celotnega prečnega prereza komore (3,8 m χ 1 m) naložili metalurški koks v debelini plasti okoli 45 cm.A metallurgical coke in a layer thickness of about 45 cm was loaded into the cassette A on the upper anode surface over the entire cross section of the chamber (3.8 m χ 1 m).
V kaseto B smo na vrhnjo anodno površino naložili približno 40 cm debelo plast metalurškega koksa in nanjo nasipali približno 5 cm debelo plast, sestavljeno iz samotnega drobirja 2-12 mm, s približno 0,3 mas.% CaO, 45 mas.% SiO2 in 50 % A12O3. Tako ravnanje je splošno običajno in znatno zmanjša odgor metalurškega koksa v primerjavi z ravnanjem v kaseti A.A layer of metallurgical coke about 40 cm thick was loaded onto cassette B and a 5 cm thick layer composed of solitary debris 2-12 mm, with about 0.3 wt% CaO, 45 wt% SiO 2 was poured into it. and 50% A1 2 O 3 . Such behavior is generally common and significantly reduces the metallurgical coke burst when compared to that in cassette A.
V kaseto C smo na vrhnjo anodno površino prav tako naložili približno 40 cm debelo plast metalurškega koksa, nanjo pa približo 5 cm debelo plast, sestavljeno iz CaOvsebujočega materiala v smislu izuma, kije bogat s kristobalitom in tridimitom in ima granulacijo 2-12 mm. Vsebnost CaO je znašala približno 2,5 mas.%, vsebnost SiO2 je znašala približno 94,5 mas. % in vsebnost vsote tridimita in kristobalita je bila večja od 80 mas.%. Trdnost materiala je bila približno 3000 N, nasipna teža pa približno 850 g/l.A cassette of about 40 cm thick metallurgical coke layer was also loaded into cassette C and approximately 5 cm thick, consisting of CaO-containing material of the invention, which is rich in cristobalite and tridymite and has a granularity of 2-12 mm. CaO content was about 2.5 wt%, SiO 2 content was about 94.5 wt. and the content of the sum of tridimite and cristobalite was greater than 80% by weight. The strength of the material was about 3000 N and the bulk density was about 850 g / l.
V kaseti D smo plast metalurškega koksa na vrhnji anodni površini zmanjšali na 8 cm, nanjo pa smo naložili v debelini plasti približno 15 cm enak material v smislu izuma, kot v komori C. V kaseti D je znašala celotna debelina plasti nad vrhnjo anodo približno 23 cm, kar je, v primerjavi s kasetami A, B in C, torej za približno 22 cm manj.In cassette D, the metallurgical coke layer on the top anode surface was reduced to 8 cm and loaded with a layer thickness of about 15 cm, the same material of the invention as in chamber C. In cassette D, the total layer thickness above the top anode was about 23 cm, which is about 22 cm less compared to the A, B and C cassettes.
Pod zgoraj navedenimi pogoji smo žgali zelene anode pri temperaturi žganja približno 1280 °C. V kasetah uporabljeni pokrivni materiali so se obnašali tako, kot je navedeno v tabeli 1. V kasetah B in D smo dodatno določili celotno porabo metalurškega koksa kot merilo za odgor, podatki pa so prav tako navedeni v tabeli 1.Under the above conditions, green anodes were fired at a firing temperature of approximately 1280 ° C. The materials used in the cassettes behaved as indicated in Table 1. In the cassettes B and D, we further specified the total consumption of metallurgical coke as a benchmark, and the data are also listed in Table 1.
Tabela 1Table 1
Material v smislu izuma smo lahko vzeli iz komor in po zgoraj navedenih postopkih (primera kasete C in D) ponovno uporabili kot pokrivni material v drugih kasetah. Tudi po več kot 5 žganjih material ni kazal tvorbe žlindre ali skorje in na stenah kaset ni bilo nobenih spekanj, ki bi lahko reagirala z ognjevržnim opečnim materialom, še zlasti v gornjem področju sten kasete. Predloženi primeri ponazarjajo, da se z uporabo materiala prepreči tvorba žlindre in skorje tudi po večkratni uporabi in da se poraba metalurškega koksa drastično zmanjša. Ognjevzdržni opečni material v steni kasete se z uporabo pokrivnega materiala, še zlasti v gornjem področju sten kasete, zaščiti pred žlindmo korozijo.The material of the invention may have been taken from the chambers and, following the procedures described above (examples of cassettes C and D), reused as cover material in other cassettes. Even after more than 5 spirits, the material showed no slag or crust formation, and there were no burns on the cassette walls that could react with the refractory brick material, especially in the upper region of the cassette walls. The examples provided illustrate that the use of the material prevents the formation of slag and crust even after repeated use and that the consumption of metallurgical coke is drastically reduced. The refractory brick material in the cassette wall is protected against slag corrosion by the use of cover material, especially in the upper area of the cassette walls.
Še zlasti izstopa pri primeru postopka v kaseti D to, da je z zmanjšanjem celotne debeline plasti nad vrhnjo anodo sedaj možno v peči žgati večje anode, ne da bi za to morali spremeniti izmere kasete.It is particularly noteworthy in the case of the process in cassette D that, by reducing the overall thickness of the layer above the top anode, it is now possible to burn larger anodes in the furnace without having to change the dimensions of the cassette.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001124299 DE10124299B4 (en) | 2001-05-17 | 2001-05-17 | A method of firing or calcining shaped carbon bodies in an annular furnace and method of making a cover material |
PCT/DE2002/001201 WO2002092534A1 (en) | 2001-05-17 | 2002-04-03 | Method for baking or calcining shaped carbon bodies in an annular furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
SI21319A true SI21319A (en) | 2004-04-30 |
Family
ID=7685307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200220014A SI21319A (en) | 2001-05-17 | 2002-04-03 | Method for baking and calcinating shaped carbon bodies in an annular furnace |
Country Status (7)
Country | Link |
---|---|
AU (1) | AU2002257550B2 (en) |
CA (1) | CA2445130C (en) |
DE (1) | DE10124299B4 (en) |
HR (1) | HRP20031035B1 (en) |
NO (1) | NO20034851L (en) |
SI (1) | SI21319A (en) |
WO (1) | WO2002092534A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1015118A (en) * | 1972-03-23 | 1977-08-09 | Sumitomo Aluminium Smelting Company | Process of baking or graphitizing carbon moldings |
DE4119320C1 (en) * | 1991-06-12 | 1993-01-07 | Riedhammer Gmbh Und Co Kg, 8500 Nuernberg, De | |
NO306549B1 (en) * | 1995-12-15 | 1999-11-22 | Norsk Hydro As | Method of baking or calcining molded charcoal bodies in a calcination furnace as well as packing material for use in the same |
-
2001
- 2001-05-17 DE DE2001124299 patent/DE10124299B4/en not_active Expired - Fee Related
-
2002
- 2002-04-03 SI SI200220014A patent/SI21319A/en not_active IP Right Cessation
- 2002-04-03 WO PCT/DE2002/001201 patent/WO2002092534A1/en active IP Right Grant
- 2002-04-03 CA CA2445130A patent/CA2445130C/en not_active Expired - Fee Related
- 2002-04-03 AU AU2002257550A patent/AU2002257550B2/en not_active Ceased
-
2003
- 2003-10-30 NO NO20034851A patent/NO20034851L/en not_active Application Discontinuation
- 2003-12-15 HR HR20031035A patent/HRP20031035B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE10124299A1 (en) | 2002-11-21 |
HRP20031035B1 (en) | 2012-02-29 |
WO2002092534A1 (en) | 2002-11-21 |
DE10124299B4 (en) | 2007-04-26 |
NO20034851D0 (en) | 2003-10-30 |
HRP20031035A2 (en) | 2005-08-31 |
CA2445130C (en) | 2010-07-06 |
AU2002257550B2 (en) | 2007-03-15 |
CA2445130A1 (en) | 2002-11-21 |
NO20034851L (en) | 2003-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8076255B2 (en) | Castable refractory | |
US8030236B2 (en) | Fire-resistant ordinary ceramic batch, and fire-resistant product therefrom | |
US4257806A (en) | Fired iron-ore pellets having macro pores and process for producing the same | |
JP2010053012A (en) | Raw material of refractory repairing material of iron making/steel making equipment and method of making the same and repairing material containing the same | |
EA033939B1 (en) | Process for dephosphorization of molten steel during a refining process | |
CN103011853A (en) | Manufacturing method of magnesium-calcium regeneration brick | |
CN101319257B (en) | Bottom blowing ventilating structure of combined-blowing revolving furnace | |
US8216954B2 (en) | Taphole fill material and method for manufacturing the same | |
SI21319A (en) | Method for baking and calcinating shaped carbon bodies in an annular furnace | |
CN110183212A (en) | A kind of intermediate frequency furnace furnace lining dry dnockout of conite matter and preparation method thereof | |
KR100396074B1 (en) | Landfill filler for vacuum refining | |
EP0936008A1 (en) | Nozzle for continuous casting of steel | |
JP6992734B2 (en) | Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore | |
JP2743783B2 (en) | How to measure refractory wear | |
JP6996485B2 (en) | Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore | |
JPH07315913A (en) | Magnesia refractory brick | |
KR101934758B1 (en) | Method for refining of waste refractory materials containing spinel and decarbonation | |
US20230212078A1 (en) | Refractory lining design and separation via destructive hydration | |
KR20010056828A (en) | Method for sealing burden material in blast furnace at repair processing | |
US4379691A (en) | Olivine bedding material for soaking pits | |
KR100868449B1 (en) | Ramming refractory for well block and the method thereof | |
JP2737439B2 (en) | Coating material and method for kiln interior | |
CN113883884A (en) | Wall brick structure of air guide wall of shaft furnace and preparation process thereof | |
JPH0355427B2 (en) | ||
KR20040021230A (en) | Refractory for gas bubbling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the event date | ||
OU01 | Decison according to article 73(1) ipa 1992, publication of decision on fulfilment of conditions on patentability |
Effective date: 20101207 |
|
KO00 | Lapse of patent |
Effective date: 20140120 |