SI21003A - Integrated position resolver for hybrid synchronous power drives - Google Patents
Integrated position resolver for hybrid synchronous power drives Download PDFInfo
- Publication number
- SI21003A SI21003A SI200100179A SI200100179A SI21003A SI 21003 A SI21003 A SI 21003A SI 200100179 A SI200100179 A SI 200100179A SI 200100179 A SI200100179 A SI 200100179A SI 21003 A SI21003 A SI 21003A
- Authority
- SI
- Slovenia
- Prior art keywords
- phase
- motor
- current
- resolver
- hybrid
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 38
- 230000004907 flux Effects 0.000 claims abstract description 10
- 238000004804 winding Methods 0.000 claims description 29
- 230000010363 phase shift Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 4
- 230000004048 modification Effects 0.000 abstract 1
- 238000012986 modification Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 17
- 230000010355 oscillation Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000006698 induction Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K37/00—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
- H02K37/10—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
- H02K37/20—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with rotating flux distributors, the armatures and magnets both being stationary
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/06—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
- H02K29/12—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/38—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
- H02K21/44—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
Andrej Detela in Uroš PlatišeAndrej Detela and Uros Platishe
Integrirani pozicijski resolver za hibridne sinhrone električne strojeIntegrated positional resolver for hybrid synchronous electrical machines
Predstavljeni izum opisuje novo metodo pozijske kontrole za sinhrone elektromotorje. Ta nova metoda združuje prednosti metod z resolverji in metod brez senzorjev.The present invention describes a new method of position control for synchronous electric motors. This new method combines the advantages of resolver and sensorless methods.
Sodobni elektromotorji so običajno opremljeni z dodatnim sistemom za natančno vodenje položaja. Eden od načinov, da to dosežemo, je uporaba zunanjega pozicijskega senzorja (optični enkoder, magnetni resolver, ipd.). Druga metoda, ki je običajno bolj privlačna, je pozicijska kontrola brez senzorja položaja (t.i. sensorless oz. brez-senzorska metoda).Modern electric motors are usually equipped with an additional precision guidance system. One way to achieve this is to use an external position sensor (optical encoder, magnetic resolver, etc.). Another method that is usually more appealing is positional control without the position sensor (ie sensorless or non-sensor method).
Številni načini brez-senzorskega opazovanja rotorskega položaja v sinhronih elektromotorjih so že poznani. Taki motorji ne potrebujejo optičnega enkoderja ali resolverja ali drugega senzorja za ugotavljanje položaja rotorja. V takih brez-senzorskih sistemih običijano določimo rotorski položaj iz električne napetosti v navitjih motorja. En del te napetosti je Ohmova napetost, ki je proporcionalna ohmski upornosti tuljave in električnemu toku v tuljavi. Drugi del te napetosti pa je napetost zaradi magnetne indukcije v navitju motorja in je običajno večji od prvega. Ta inducirana napetost je zapletena matematična funkcija večih spremenljivk in med drugim vključuje tudi položaj rotorja. Z uporabo zmogoljivih digitalnih procesorjev za obdelavo signalov (Digital Signal Processor - DSP) je mogoče določiti položaj rotorja iz znanih vrednosti ostalih spremenljivk. Te spremenljivke so električni tokovi v navitjih vseh faz motorja (npr. trije tokovi v trofaznih motorjih) in napetosti v teh navitjih (v trofaznem motorju so to ponovno tri spremenljivke).Many methods of non-sensory observation of rotor position in synchronous electric motors are already known. Such motors do not require an optical encoder or resolver or other sensor to determine the rotor position. In such non-sensor systems, it is common to determine the rotor position from the electrical voltage in the motor windings. One part of this voltage is the Ohm voltage, which is proportional to the ohmic resistance of the coil and the electrical current in the coil. The second part of this voltage, however, is the voltage due to magnetic induction in the motor winding and is usually greater than the first. This induced voltage is a complex mathematical function of several variables and also includes the position of the impeller. By using powerful Digital Signal Processor (DSP) it is possible to determine the rotor position from the known values of the other variables. These variables are the electrical currents in the windings of all motor phases (eg three currents in three-phase motors) and the voltages in these windings (in the three-phase motor these are three variables again).
Ta metoda pa ima vsaj eno pomankljivost. Položaja rotorja ne moremo določiti, kadar rotor miruje, kajti pri ničelni hitrosti ni inducirane napetosti. Zato je pri znanih brez-senzorskih metodah potrebno rotor na začetku premakniti (za približno ±60 električnih stopinj) in šele nato izvemo njegovo začetno pozicijo. To pa ni v skladu z mehkim štartom, kar je ena od osnovnih zahtev številnih preciznih aplikacij (kot v robotiki, FA, itn).This method, however, has at least one drawback. The position of the rotor cannot be determined when the rotor is stationary, since no voltage is induced at zero speed. Therefore, for known non-sensory methods, the rotor must be moved initially (by about ± 60 electrical degrees) and then its initial position is performed. However, this is not in line with soft start, which is one of the basic requirements of many precision applications (such as in robotics, FA, etc.).
Na drugi strani poznamo kontrolo položaja s senzorji. Rešitve s tradicionalnimi resolverji k motorju dodajo masivne dele. Pogosto magnetni resolverji tudi magnetno interferirajo z motorji, kar je problem mnogih aplikacij.On the other hand, we know the position control with sensors. Solutions with traditional resolvers add massive parts to the engine. Often, magnetic resolvers also interfere with motors magnetically, which is a problem for many applications.
Ta patent ponuja rešitev z majhno spremembo konstrukcije hibridnega sinhronskega motorja, tako da sta motor in magnetni resolver združena (integrirana) skupaj. Ta sprememba ne sme v motor uvesti nobenih težkih, dragih ali zapletenih delov. Zanimajo nas predvsem take rešitve, pri katerih ni bistvenih konstrukcijskih sprememb.This patent offers a solution with a slight change to the construction of a hybrid synchronous motor so that the motor and the magnetic resolver are combined (integrated) together. This change should not introduce any heavy, expensive or complicated parts into the engine. We are particularly interested in such solutions where there are no significant structural changes.
Ta izum predstavlja motor, ki ima v primerjavi z motorji z brez-senzorsko kontrolo prav tako majhno maso, poleg tega pa je moč odčitati natančno pozicijo tudi kadar je motor v mirovanju.The present invention is a motor which, in comparison with non-sensor control motors, is also of low mass and can be read accurately even when the engine is stationary.
Ta problem je bil uspešno rešen z majhnim konstrukcijskim dodatkom v hibridnem sinhronskem motorju. Ostalim navitjem v motorju je dodano še posebno merilno navitje. Drugi del rešitve pa je način generiranja PWM (Pulse Width Modulation) pulzov v polifaznem navitju motorja. V primerjavi s klasičnimi sinhronskimi hibridnimi brez-senzorskimi motorji, ima motor potem patentu dodano merilno navitje, posebne PWM generatorje in dekoder, ki iz inducirane napetosti v merilnem navitju izračunava položaj rotorja. Regulacijo sinhrone faze opravi DSP tako, da za vsak položaj rotorja natančno določi ustrezno širino PWM pulzov v vseh fazah motorja.This problem was successfully solved with a small construction additive in a hybrid synchronous motor. Other motor windings have a special measuring coil added. The second part of the solution is the method of generating PWM (Pulse Width Modulation) pulses in the polyphase winding of the motor. Compared to conventional synchronous hybrid sensorless motors, the motor then has a patent-pending measuring coil, special PWM generators and a decoder that calculates the rotor position from the induced voltage in the measuring coil. Synchronous phase regulation is performed by the DSP by accurately determining for each rotor position the appropriate PWM pulse width at all engine stages.
Ta nova metoda pozicijske kontrole je predmet predstavljenega izuma. Bistvo metode in delovanje pozicijske kontrole bosta razložena na primeru hibridnega sinhronskegaThis new method of positional control is the object of the present invention. The essence of the method and the operation of positional control will be explained in the case of hybrid synchronous
-3motorja iz patenta št. P-200000004 oz. PC/JP01/00070 (Sinhronski hibridni električni stroj s toroidnim navitjem). Ta metoda se seveda lahko uporabi tudi pri drugih motorjih iz razreda hibridnih sinhronskih električnih strojev. V nadaljnem besedilu se bo motor po patentu PC/JP01/00070 imenoval motor Mukade.-3 engine from patent no. P-200000004 oz. PC / JP01 / 00070 (Synchronous hybrid electric machine with toroidal winding). Of course, this method can be used with other motors in the class of hybrid synchronous electric machines. Hereinafter referred to as PC / JP01 / 00070, the engine will be referred to as a Mukade engine.
Pozicijska kontrola po pričujočem patentu deluje z nezmanjšano resolucijo tudi pri ničelni hitrosti, toda ohrani vse prednosti brez-senzorskih metod. Edini dodatek v notranjosti motorja je majhna in zelo preprosta merilna tuljava. Poleg tega v motorju ni drugih dodatnih delov.Positive control according to the present patent operates at an unmodified resolution even at zero speed, but retains all the advantages of non-sensor methods. The only accessory inside the engine is a small and very simple measuring coil. In addition, there are no other spare parts in the engine.
Izum bo v nadaljnem natančneje razložen s pomočjo slik, ki predstavljajo primere stroja z integriranim pozicijskim resolverjem in elektronske funkcionalne bloke po pričujočem izumu.The invention will now be further explained by means of figures illustrating examples of a machine with an integrated position resolver and electronic functional blocks of the present invention.
• Slika 1 je aksonometrični pogled na trofazni hibridni sinhronski električni stroj z merilno tuljavo integriranega pozicijskega resolverja po izumu, v delnem prerezu.• Figure 1 is an axonometric view of a three-phase hybrid synchronous electric machine with a measuring coil of an integrated position resolver according to the invention, in partial section.
• Slika 2 predstavlja isto kot slika 1 s pogledom na razstavljene dele, tako da se posebej vidita rotor in stator.• Figure 2 represents the same as Figure 1 with a view of the disassembled parts so that the rotor and the stator are separately visible.
• Slika 3 prikazuje časovne vzorce PWM pulzov v treh fazah (U, V, W) trofaznega sinhronskega motorja z integriranim pozicijskim resolverjem po izumu.• Figure 3 shows the time patterns of PWM pulses in three phases (U, V, W) of a three-phase synchronous motor with an integrated position resolver according to the invention.
• Slika 4 prikazuje blokovno shemo posebnega PWM generatorja za trofazni sistem po izumu.• Figure 4 shows a block diagram of a special PWM generator for the three-phase system of the invention.
• Slika 5 prikazuje blokovno shemo dekoderja položaja rotorja po izumu.• Figure 5 shows a block diagram of a rotor position decoder according to the invention.
Izum bo predstavljen na primeru trofaznega sinhronskega motorja s toroidnim navitjem (to je motor tipa Mukade), toda ista teorija velja za tudi druge polifazne hibridne sinhronske motorje.The invention will be exemplified by the example of a three-phase synchronous motor with toroidal winding (that is, a Mukade type motor), but the same theory applies to other polyphase hybrid synchronous motors.
-4Slika 1 prikazuje konstrukcijo trofaznega hibridnega sinhronskega električnega stroja storoidnim navitjem in z merilnim navitjem integriranega pozicijskega resolverja po izumu. Ista konstrukcija je prikazan tudi na sliki 2, s to razliko, da sta na sliki 2 rotor (15) in stator (14) s krogličnim ležajem (8) prikazana posebej. Aktivni deli rotorja so štirje ozobljeni železni obroči (9, 10, 11, 12). Aktivni deli statorja so dva ozobljena železna obroča (2, 3), obročast permanentni magnet (4) vložen med ta železna obroča (2, 3) in toroidna tuljava (6) navita na sklop statorskih obročev (2,3,4). Po izumu je na obročasti permanenti magnet (4) navito preprosto merilno navitje (1) integriranega pozicijskega resolverja, tako da je navitje (1) koaksialno z osjo motorja (7). Merilno navitje (1) je lahko narejeno iz zelo tanke žice, zato ne zavzema veliko prostora in ne spremeni bistveno mer drugih delov motorja. Oba konca (la, lb) merilnega navitja (1) sta speljana iz motorja skozi statorsko ohišje (5) in sta priključena na elektroniko, točneje na dekoder pozicije rotorja.-4Figure 1 shows the construction of a three-phase hybrid synchronous electric machine with storoid winding and with the measuring winding of the integrated position resolver of the invention. The same construction is also shown in Figure 2, except that in Figure 2 the rotor (15) and the stator (14) with the ball bearing (8) are shown separately. The active parts of the impeller are four serrated iron rings (9, 10, 11, 12). The active parts of the stator are two serrated iron rings (2, 3), an annular permanent magnet (4) inserted between these iron rings (2, 3) and a toroidal coil (6) wound on the stator ring assembly (2,3,4). According to the invention, a simple measuring winding (1) of an integrated position resolver is wound on the annular permanent magnet (4) so that the winding (1) is coaxial with the motor axis (7). The measuring coil (1) can be made of very thin wire, so it does not take up much space and does not significantly alter the dimensions of other parts of the engine. Both ends (1a, 1b) of the measuring coil (1) are driven from the motor through the stator housing (5) and are connected to the electronics, namely to the rotor position decoder.
Zgoraj opisana konstrukcija motorja je že znana, z izjemo merilnega navitja (1) integriranega pozicijskega resolverja. Zato bo tu predstavljen samo opis delovanja merilnega navitja (1), kar je predmet izuma.The engine design described above is already known, with the exception of the measuring winding (1) of the integrated position resolver. Therefore, only a description of the operation of the measuring coil (1), which is the subject of the invention, will be presented here.
Merilno navitje (1) je navito na obročasti permanentni magnet (4), zato meri spremembe magnetnega pretoka skozi obročasti permanetni magnet (4). Med delovanjem motorja se magnetni pretok skozi magnet (4) neprestano spreminja. Te spremembe so majhne toda merljive. Lahko jih merimo npr. z merilnim navitjem (1). Sprememba magnetnega pretoka je praktično nič, če so delovni tokovi v polifaznem navitju (6) motorja dobro sinhronizirani s položajem rotorja. Sprememba pretoka pa se poveča, takoj ko električna faza sinhronizacije uide od idealnega položaja. Po matematični teoriji motorjev tipa Mukade in podobnih hibridnih sinhronskih motorjev je ta sprememba fluksa:The measuring coil (1) is wound on a ring permanent magnet (4), so it measures changes in the magnetic flux through the ring permanent magnet (4). During the operation of the motor, the magnetic flux through the magnet (4) is constantly changing. These changes are small but measurable. They can be measured e.g. with measuring winding (1). The change in magnetic flux is practically zero if the operating currents in the motor polyphase (6) are well synchronized with the rotor position. The change in flow is, however, increased as soon as the electrical phase of synchronization escapes from the ideal position. According to the mathematical theory of Mukade-type engines and similar hybrid synchronous motors, this flux change is:
Δφ = KI0 snry (1) kjer je:Δφ = KI 0 snry (1) where:
• Δφ je majhna sprememba magnetnega pretoka skozi permanentni magnet (4) (gledano relativno na povprečno vrednost) • K je določena multiplikacijska konstanta ki zavzame vrednost približno §.224>m/Iomax • </>m povprečni magnetni pretok skozi permanetni magnet (4), v delovni točki magneta • Io je amplituda električnega toka v vsaki fazi navitja (6) motorja • Iomax je zgornja amplituda tega toka, pri vršnem navoru motorja • 7 je fazni zamik (električni kot) električnega toka v glavnem navitju (6) motorja, glede na tisti fazni zamik, pri katerem je delovni tok najbolje sinhroniziran s položajem rotorja.• Δφ is a small change in the magnetic flux through a permanent magnet (4) (relative to the average value) • K is a multiplication constant that takes a value of approximately §.224> m / I omax • </ i > m average magnetic flux through a permanent magnet ( 4), at the operating point of the magnet • I o is the amplitude of the electric current in each phase of the winding (6) of the motor • Iomax is the upper amplitude of this current, at the peak torque of the motor • 7 is the phase offset (electric angle) of the electric current in the main winding ( 6) the motor, according to the phase delay at which the operating current is best synchronized with the position of the rotor.
Zgornja formula velja za delovni tok v navitjih (6) motorja. Ta tok mora biti sinhroniziran s položajem rotorja, vendar formula velja prav tako, če ima tok kako drugo frekvenco in ni nujno sinhroniziran s položajem rotorja. Edini pogoj je, da je ta tok prav tako trofazni tok kot delovni tok v navitju (6). Če frekvenca električnega toka ne ustreza sinhroni frekvenci motorja, potem je 7 spremenljivka odvisna od časa.The above formula applies to the working current in the motor windings (6). This current must be synchronized with the rotor position, but the formula also applies if the current has a different frequency and is not necessarily synchronized with the rotor position. The only condition is that this current is as much a three-phase current as the working current in the winding (6). If the electric frequency does not correspond to the synchronous motor frequency, then the 7 variable is time dependent.
Po izumu generator trofaznega močnostnega toka (elektronski inverter) proizvaja tak signal, da je električni tok v trofaznem sistemu navitja (6) vsota dveh različnih trofaznih tokov:According to the invention, a three-phase power generator (electronic inverter) produces such a signal that the electric current in the three-phase winding system (6) is the sum of two different three-phase currents:
• Prvi električni tok je delovni tok (glavni tok, ki proizvaja navor motorja), zato ima znatno amplitudo, ki je približno proporcionalna z navorom. Električna faza tega trofaznega toka je sinhronizirana s položajem rotorja, zato frekvenca tega toka ustreza sinhroni frekvenci motorja.• The first electrical current is the operating current (the main current that produces the torque of the motor), so it has a significant amplitude that is approximately proportional to the torque. The electrical phase of this three-phase current is synchronized with the position of the rotor, so the frequency of this current corresponds to the synchronous frequency of the motor.
• Drugi tok ima veliko višjo frekvenco toda veliko manjšo amplitudo. Sicer pa je to prav tako trofazni tok: električne nihanje v priležnih fazah U,V,W je medsebojno fazno razmaknjeno za 120 električnih stopinj. Ta drugi tok se imenuje merilni tok.• The second current has a much higher frequency but a much smaller amplitude. Otherwise, this is also a three-phase current: the electrical oscillations in the adjacent phases U, V, W are separated by a phase distance of 120 electrical degrees. This second current is called the measuring current.
Ta drugi tok ni sinhroniziran s položajem rotorja, zato se fazni zamik 7 merilnega toka neprestano spreminja. Ta fazni zamik je razlika med sinhrono fazo delovnega toka ωί in fazo merilnega toka ω'ί. Torej velja:This second current is out of sync with the rotor position, so the phase delay 7 of the measuring current is constantly changing. This phase shift is the difference between the synchronous phase of the workflow ωί and the phase of the measurement flow ω'ί. So the following applies:
= 70 - (ω' - (2) kjer je:= 70 - (ω '- (2) where:
• ω je sinhrona krožna frekvenca delovnega toka ki je definirana:• ω is the synchronous circular frequency of a workflow defined by:
_ d_ d
Kr * o. Fm Ot kjer je mehanski kot rotorja in Kr število polov (zobcev) na rotorju.Kr * o. Fm Ot where is the mechanical angle of the rotor and K r the number of poles (teeth) on the rotor.
• ω' je krožna frekvenca merilnega toka • t je čas in • 70 je fazni zamik pri času t = 0.• ω 'is the circular frequency of the measuring current • t is time and • 70 is the phase shift at time t = 0.
Ko združimo enačbi (1) in (2) dobimo majhno spremembo magnetnega pretoka, ki je posledica delovanja merilnega toka - zato je Io zdaj amplituda merilnega toka:When we combine equations (1) and (2), we get a small change in magnetic flux due to the action of the measuring current - so Io is now the amplitude of the measuring current:
Δ,φ = -KIo sin[(u/ — u/)f - 70] (3)Δ, φ = -KIo sin [(u / - u /) f - 70] (3)
-7To je magnetni pretok skozi permanentni magnet (4), zato gre tudi skozi merilno tuljavo (1). Ta isti pretok gre skozi statorske pole vseh treh faz (U, V, W), torej vsebuje informacijo o vseh fazah. Inducirana napetost U, v merilni tuljavi (1) je po zakonu magnetne indukcije in po enačbah (1), (2) in (3):-7This is a magnetic flux through a permanent magnet (4), so it also passes through the measuring coil (1). This same flow goes through the stator poles of all three phases (U, V, W), so it contains information about all phases. The induced voltage U in the measuring coil (1) is, according to the law of magnetic induction and according to equations (1), (2) and (3):
oo
Ui = Ν'—Δψ = -KN' Io (o/ - ω) · cos[(w' - ω)ί - γ0] (4)Ui = Ν'— Δψ = -KN 'I o (o / - ω) · cos [(w' - ω) ί - γ 0 ] (4)
Tu smo uporabili naslednje oznake:We used the following tags here:
• U, je inducirana napetost v merilni tuljavi • N' je število ovojev v merilni tuljavi • Io je amplituda merilnega toka v vsaki od treh faz • vse ostalo ima isti pomen kot prej• U is the induced voltage in the measuring coil • N 'is the number of wrappers in the measuring coil • I o is the amplitude of the measuring current in each of the three phases • everything else has the same meaning as before
Električno fazo inducirane napetosti Ut v merilni tuljavi označimo φ' in je po enačbi (4):The electrical phase of the induced voltage U t in the measuring coil is denoted by φ 'and is given by equation (4):
ψ' = [(ω' - Ji ~ 7ο] (5)ψ '= [( ω ' - Ji ~ 7ο] (5)
Fazni zamik med merilnim tokom v delovni tuljavi (6) in inducrano napetostjo v merilni tuljavi (1) je:The phase lag between the measuring current in the working coil (6) and the induced voltage in the measuring coil (1) is:
= ω'ί — [(u/ — ω)ί — 7ο] — [ut + 70] (6)= ω'ί - [(u / - ω) ί - 7ο] - [ut + 70] (6)
Seveda je faza merilnega toka odvisna od tega, s katero od treh faz U,V,W jo primerjamo. Torej je fazni zamik 70 prav tako odvisen od tega, s katero od treh faz ga primerjamo. V smislu teoretične argumentacije privzemimo, da imamo neskončno število faz, ali pa vsaj veliko več kot tri ali pet. Potem lahko vedno najdemo tak segment navitja, ki ustreza določeni fazi motorja in v katerem dobimo 70 = 0. Imenujmo ta izbrani segment navitja ničelni segment. To je na primer segment, ki ustreza navitju v fazi U. Torej je fazni zamik med merilnim tokom v tem ničelnem segmentu in inducirano napetostjo v merilni tuljavi:Of course, the phase of the measuring current depends on which of the three phases U, V, W is compared. So the phase shift 70 also depends on which of the three phases we compare it with. In terms of theoretical argument, assume that we have an infinite number of stages, or at least many more than three or five. Then we can always find such a winding segment that corresponds to a particular phase of the motor and in which we get 70 = 0. Let's call this selected winding segment a zero segment. For example, this is the segment corresponding to the winding in phase U. So the phase lag between the measuring current in this zero segment and the induced voltage in the measuring coil is:
Δ92 = uit (7)Δ92 = uit (7)
Splošneje je ω časovno odvisen (ω(ί)), torej moramo produkt (ut) nadomestiti z integralom:More generally, ω is time dependent (ω (ί)), so the product (ut) must be replaced by the integral:
Δφ = /Δφ = /
Če združimo enačbi (5) in (6), dobimo:Combining Equations (5) and (6), we get:
Δ92 = ω'ί — φ' (8)Δ92 = ω'ί - φ '(8)
Zdaj se spomnimo, da je ut iz enačbe (7) sinhrona električna faza v idealnem primeru, ko je sinhronizacija popolna. V času, ko se rotor zavrti za en rotorski pol, delovni tok opiše en celotni električni cikel. V tem času sinhrona faza ut naraste točno za polni električni kot 2π. To pa pomeni, da je ut tudi produkt mehanskega kota rotorja in števila rotorskih polov:Now, remember that ut from equation (7) is a synchronous electrical phase, ideally when the synchronization is complete. At a time when the rotor rotates by one rotor pole, the operating current describes one complete electrical cycle. During this time, the synchronous phase ut rises exactly by the full electric angle 2π. This means that ut is also a product of the mechanical angle of the rotor and the number of rotor poles:
Δφ = ut = Kr pm (9) kjer je tpm mehanski kot rotorja. Enačba (9) implicira linearno relacijo med mehansko fazo φη in faznim zamikom Δ</?.Δφ = ut = K r p m (9) where tp m is the mechanical angle of the rotor. Equation (9) implies a linear relationship between the mechanical phase φ η and the phase delay Δ </ ?.
Informacijo o položaju rotorja torej nosi faza Δ</?. Med enim ciklom motorja fazni zamik Δφ linearno naraste od 0 do 2π. To pa je istočasno tudi faza polifaznega delovnega toka, ki prav tako linearno naraste od 0 to 2π in napaja polifazno navitje v zaporedju U, V, W. Enačba (8) podaja algoritem, po katerem elektronika izračuna to fazo.The rotor position information is therefore carried by the phase Δ </?. During one engine cycle, the phase shift Δφ increases linearly from 0 to 2π. This is also the phase of the polyphase workflow, which also increases linearly from 0 to 2π and supplies the polyphase winding in the sequence U, V, W. Equation (8) provides the algorithm by which the electronics calculate this phase.
Matematična analiza motorja tipa Mukade pokaže, da je amplituda inducirane napetosti Ui v naslednjem odnosu z amplitudo tiste napetosti, ki se inducira v delovnem navitju zaradi merilnega toka:Mathematical analysis of a Mukade-type motor shows that the amplitude of the induced voltage Ui is in the following relation with the amplitude of that voltage induced in the work winding due to the measuring current:
Upo N 8α \ ω' (10) kjer je:Up N 8α \ ω '(10) where:
• Uio je amplituda napetosti, ki se inducira v merilni tuljavi • Upo je amplituda napetosti, ki se zaradi merilnega toka inducira v delovni tuljavi • N' je število ovojev v merilni tuljavi • N je število ovojev v enem segmentu motorja tipa Mukade • je koeficient določen z geometrijo rotorskih in statorskih polov ter širino zračne reže; tipična vrednost je 0.033 • ω je krožna frekvenca sinhronega delovnega toka • ω1 je krožna frekvenca merilnega toka• U io is the voltage amplitude induced in the measuring coil • U po is the voltage amplitude induced by the working coil due to the measuring current • N 'is the number of wrappers in the measuring coil • N is the number of wraps in one segment of a Mukade-type motor • the coefficient is determined by the geometry of the rotor and stator poles and the width of the air gap; a typical value is 0.033 • ω is the circular frequency of the synchronous workflow • ω 1 is the circular frequency of the measuring current
Integralni del patenta je tudi metoda s pomočjo katere en sam inverter istočasno generira polifazni delovni tok (tipično trofazni) in polifazni merilni tok (tipično spet trofazni). Navadno sinusni signal delovnega toka konstruiramo iz PWM pulzov določene pulzne frekvence. Na primer, če je ta frekvenca 17 kHz, potem je ena perioda pulznega vlaka približno 60 mikrosekund. PWM pulzi v navitju, ki pripada fazi U, predstavljajo prvi vlak pulzov. Po izumu so PWM pulzi v navitju, ki pripada fazi V, glede na pulze faze U fazno zamaknjeni za eno tretjino periode, kar je v našem primeru 20 mikrosekund. Podobno velja za fazo W, kjer so pulzi fazno zamaknjeniAn integral part of the patent is also the method by which a single inverter generates a polyphase workflow (typically three-phase) and a polyphase measurement current (typically three-phase again) at the same time. Typically, a workflow sine signal is constructed from PWM pulses of a specific pulse frequency. For example, if this frequency is 17 kHz, then one pulse train period is about 60 microseconds. The PWM pulses in the coil belonging to phase U represent the first train of pulses. According to the invention, the PWM pulses in the phase V winding are phase shifted by one third of the period relative to phase U pulses, which in our case is 20 microseconds. The same is true for phase W, where the pulses are phase-shifted
-1010 za dve tretjini periode glede na fazo U (v našem primeru je to 40 mikrosekund). Časovne vzorce PWM pulzov v vseh treh navitjih (U, V, W) trofaznega sinhronega motorja po izumu prikazuje slika 3 (PWM phase modulation).-1010 for two thirds of the phase U period (40 microseconds in our case). The time patterns of PWM pulses in all three windings (U, V, W) of the three-phase synchronous motor according to the invention are shown in Figure 3 (PWM phase modulation).
Opisana metoda zamika centrov PWM pulzov, posebej v vsaki fazi, vodi k generiranju novega vrtilnega magnetnega polja v statorskem navitju (6) motorja, s krožno frekvenco ω'.The described method of displacement of the PWM pulse centers, separately at each stage, leads to the generation of a new rotating magnetic field in the stator winding (6) of the motor, with a circular frequency ω '.
M vsaki fazi (U, V, W) imamo sinusni delovni tok s sinhrono krožno frekvenco ω. Ta delovni tok je sestavljen iz PWM pulzov, katerih centri so razmaknjeni s krožno frekvenco ω'. V zgornjem primeru je ω' = 2vr · 17 kHz = 1.07 · 105.s _1.In each phase (U, V, W), we have a sine workflow with a synchronous circular frequency ω. This workflow consists of PWM pulses whose centers are spaced at a circular frequency ω '. In the example above, ω '= 2vr · 17 kHz = 1.07 · 10 5 .s _1 .
Zgornji opis je bil podan za trofazni sistem. Splošneje definiramo to metodo za katerikoli polifazni sistem. Definirajmo n-fazni sistem z n delovnimi tokovi /j, kjer je j = 0 ... (n — 1). Vsak tok Ij je generiran s pomočjo PWM generatorja, ki lahko fazno zamakne centre PWM pulzov za določeno fazo posebej. Definirajmo fazni zamik centra PWM pulza Cj, ki pripada fazi j, glede na neko referenčno lego, ki je poljubna. Po izumu velja naslednje:The above description was given for the three-phase system. We define this method more generally for any polyphase system. Define an n-phase system with n workflows / j, where j = 0 ... (n - 1). Each Ij current is generated by a PWM generator that can phase shift the PWM pulse centers for a particular phase individually. Define the phase offset of the center PWM of the pulse Cj belonging to phase j with respect to any reference position, which is arbitrary. According to the invention, the following applies:
kjer je k = 0 ... (n — 1). Relacija med mehansko fazo in fazo inducirane napetosti v merilni tuljavi je linearna v posebnem primeru, ko velja:where k = 0 ... (n - 1). The relationship between the mechanical phase and the induced voltage phase in the measuring coil is linear in the special case where:
kar smo privzeli v zgoraj opisanem primeru trofaznega motorja.which is the default for the three-phase motor described above.
V zadosti kratkem časovnem intervalu so zaporedni pulzi približno enaki, zato lahko pulzni vlak aproksimiramo s periodično funkcijo, ki ima krožno frekvenco ω'. To periodično funkcijo izrazimo s Fourier-jevim razvojem. Krožna frekvenca ω' potem natanko ustreza krožni frekvenci prve harmonske komponente v tem razvoju. Torej soIn a sufficiently short time interval, the successive pulses are approximately the same, so the pulse train can be approximated by a periodic function having a circular frequency ω '. This periodic function is expressed by Fourier's evolution. The circular frequency ω 'then corresponds exactly to the circular frequency of the first harmonic component in this development. So there they are
-1111 v fazah U,V in W te prve harmonske komponente medsebojno fazno zamaknjene za eno tretjino periode. Glede na prvo harmonsko komponento v fazi U je prva harmosnka komponenta v fazi V fazno zamaknjena za eno tretjino periode (20 mikrosekund v našem primeru) in prva harmonska komponenta v fazi V je fazno zamaknjena za dve tretjini periode (40 mikrosekund). To pa je to natanko tisto, kar je potrebno za trofazni tokovni sistem. Na ta način lahko proizvajamo trofazni merilni tok in trofazni delovni tok z enim samim inverterjem. Trofazni merilni tok je natanko prva harmonska komponenta pulznih vlakov v fazah U, V in W.-1111 in phases U, V and W, these first harmonic components are phase shifted by one third of the period. With respect to the first harmonic component in phase U, the first harmonic component in phase V is phase shifted by one third of the period (20 microseconds in our case) and the first harmonic component in phase V is phase shifted by two thirds of the period (40 microseconds). This, however, is exactly what is needed for a three-phase current system. In this way, we can produce three-phase measuring current and three-phase working current with a single inverter. The three-phase measuring current is exactly the first harmonic component of pulse trains in phases U, V and W.
Blokovna shema takega inverterja za trofazni sistem je prikazana na sliki 4. Ura proizvaja nosilno krožno frekvenco ω' PWM signala, kar je enako 2π/ρω^. Ta ura krmili tri ločene PWM generatorje skozi vhod dock. Od zunaj so PWM bloki sinhronizirani skozi vhode phase. Spremenljivi parameter value pa določa trenutno širino PWM pulzov vsake faze posebej in tako napravi sinhroni delovni tok.The block diagram of such an inverter for a three-phase system is shown in Figure 4. The clock produces a carrier circular frequency ω 'of the PWM signal, which is equal to 2π / ρω ^. This clock controls three separate PWM generators through the dock input. From the outside, PWM blocks are synchronized through phase inputs. The variable value parameter determines the current PWM pulse width of each phase individually, thus creating a synchronous workflow.
PWM pulze lahko predstavimo kot vsoto prve harmonske komponente s krožno frekvenco ω' in višjih harmonskih komponent, pa tudi nizke krožne frekvence ω delovnega toka. Relativne vrednosti višjih harmonskih komponent lahko izračunamo s Fourier-jevo analizo. V praksi te višje harmonske komponente vplivajo na natančnost opisane merilne metode.PWM pulses can be represented as the sum of the first harmonic component with a circular frequency ω 'and higher harmonic components, as well as the low circular frequency ω of the workflow. The relative values of the higher harmonic components can be calculated by Fourier analysis. In practice, these higher harmonic components affect the accuracy of the measurement method described.
Pravkar smo videli, da prva harmonska komponenta ustreza pravilom trofaznih tokov. Nadaljna analiza pokaže, da četrta, sedma, ... harmonska komponenta tudi prispeva trofazne tokove, seveda s frekvenco višjih harmonskih komponent. Druga, peta, ... harmonska komponenta prispeva trofazne tokove, toda z obrnjenem zaporedjem faz, namreč W,V,U namesto U,V,W. Tretja, šesta, ... harmonska komponenta sploh ne prispeva trofaznega toka, ampak simultane oscilacije v vseh treh fazah, ki se v priležnih segmentih delovnih tuljav določene faze medsebojno skoraj izničijo.We just saw that the first harmonic component meets the rules of three-phase currents. Further analysis shows that the fourth, seventh, ... harmonic component also contributes three-phase currents, of course with the frequency of higher harmonic components. The second, fifth, ... harmonic component contributes three-phase currents, but with an inverted sequence of phases, namely W, V, U instead of U, V, W. The third, sixth, ... harmonic component does not contribute at all to the three-phase current, but simultaneous oscillations in all three phases, which almost cancel each other out in the adjacent segments of the working coils.
-1212-1212
Naslednja tabela prikazuje obnašanje višjih harmonskih komponent. Za vsako harmonsko komponento lahko vidimo, kakšno vrsto oscilacij prispeva k trofaznemu sistemu:The following table shows the behavior of the higher harmonic components. For each harmonic component, we can see what kind of oscillations contribute to the three-phase system:
Primerna metoda, s pomočjo katere lahko zmanjšamo vplive nezaželnih harmonskih komponent, je uporaba ozko-pasovnega filtra s centralno krožno frekvenco približno ω' in s pasovno širino približno 2ω.An appropriate method of reducing the effects of unwanted harmonic components is to use a narrow band filter with a central circular frequency of about ω 'and a bandwidth of about 2ω.
Slika 5 prikazuje blokovno shemo dekoderja pozicije. Napetost iz merilne tuljave {Ui) najprej vodimo skozi ozko-pasovni filter (band-pass filter). Ker smo uporabili ozko-pasovni filter, so signali s krožno frekvenco ω in višje harmonske komponente krožne frekvence ω' zadušeni, in v digitalni fazni detektorje prepuščena le prva harmonska komponenta ω'. Detektor primerja fazo prve harmonske komponente z referenčno fazo /j, kjer je j poljuben (za trofazne sisteme lahko ustreza fazi U,V ali W).Figure 5 shows the block diagram of the position decoder. The voltage from the measuring coil {Ui) is first run through a band-pass filter. Because a narrow band filter was used, signals with a circular frequency ω and higher harmonic components of the circular frequency ω 'are suppressed, and only the first harmonic component ω' is left in the digital phase detectors. The detector compares the phase of the first harmonic component with the reference phase / j, where j is arbitrary (for three-phase systems it may correspond to phase U, V or W).
Glavna prednost takšnega integriranega sistema je majhna masa motorja s senzorjem in visoka ločljivost položaja rotorja. Pomembna prednost pričujočega izuma je tudi ta, da podaja absolutno pozicijo znotraj ene polove delitve rotorja. To pomeni, da lahko motor deluje s polno močjo in s polno točnostjo takoj po vklopu.The main advantage of such an integrated system is the low mass of the motor with the sensor and the high resolution of the rotor position. An important advantage of the present invention is that it gives an absolute position within one half of the rotor division. This means that the engine can run at full power and with full accuracy immediately after starting.
Claims (3)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200100179A SI21003B (en) | 2001-07-03 | 2001-07-03 | Integrated position resolver for hybrid synchronous power drives |
AU2002314701A AU2002314701A1 (en) | 2001-07-03 | 2002-07-02 | An integrated position resolver for hybrid synchronous electric motors |
JP2003511380A JP2004534498A (en) | 2001-07-03 | 2002-07-02 | Integrated position resolver for compound synchronous electric motor |
DE10297002T DE10297002T5 (en) | 2001-07-03 | 2002-07-02 | Integrated position resolver for hybrid synchronous electric motors |
PCT/SI2002/000017 WO2003005530A2 (en) | 2001-07-03 | 2002-07-02 | An integrated position resolver for hybrid synchronous electric motors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200100179A SI21003B (en) | 2001-07-03 | 2001-07-03 | Integrated position resolver for hybrid synchronous power drives |
Publications (2)
Publication Number | Publication Date |
---|---|
SI21003A true SI21003A (en) | 2003-02-28 |
SI21003B SI21003B (en) | 2010-11-30 |
Family
ID=20432934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200100179A SI21003B (en) | 2001-07-03 | 2001-07-03 | Integrated position resolver for hybrid synchronous power drives |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2004534498A (en) |
AU (1) | AU2002314701A1 (en) |
DE (1) | DE10297002T5 (en) |
SI (1) | SI21003B (en) |
WO (1) | WO2003005530A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1850461B1 (en) * | 2006-04-27 | 2016-04-27 | Labriola, Donald P. | Integrated resolver for high pole count motors |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772815A (en) * | 1987-09-15 | 1988-09-20 | Eastern Air Devices, Inc. | Variable refluctance position transducer |
US5327069A (en) * | 1992-06-19 | 1994-07-05 | General Electric Company | Switched reluctance machine including permanent magnet stator poles |
DE4434577A1 (en) * | 1994-09-28 | 1996-04-04 | Pm Dm Gmbh | Stepper motor with step-angle monitoring |
-
2001
- 2001-07-03 SI SI200100179A patent/SI21003B/en not_active IP Right Cessation
-
2002
- 2002-07-02 AU AU2002314701A patent/AU2002314701A1/en not_active Abandoned
- 2002-07-02 JP JP2003511380A patent/JP2004534498A/en active Pending
- 2002-07-02 WO PCT/SI2002/000017 patent/WO2003005530A2/en active Application Filing
- 2002-07-02 DE DE10297002T patent/DE10297002T5/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
DE10297002T5 (en) | 2004-11-04 |
JP2004534498A (en) | 2004-11-11 |
AU2002314701A1 (en) | 2003-01-21 |
WO2003005530A3 (en) | 2003-10-23 |
WO2003005530A2 (en) | 2003-01-16 |
SI21003B (en) | 2010-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11876477B2 (en) | Position observer for electrical machines | |
Juliet et al. | Sensorless acquisition of the rotor position angle for induction motors with arbitrary stator windings | |
US4481440A (en) | Permanent magnet brushless d-c motor with isolated sensor winding means | |
CN100370218C (en) | Variable reluctance type angle detector | |
EP2232695B1 (en) | Control of electrical machines | |
EP1498699B1 (en) | Rotational angle sensor and rotary electric machine comprising it | |
US20160056743A1 (en) | Motor drive control apparatus and motor drive control method | |
EP2853861B1 (en) | Position detection device | |
CN100370690C (en) | Brushless motor without sensor | |
US5160886A (en) | Permanent magnet resolver for producing a resolver-to-digital converter compatible output | |
JP4814858B2 (en) | Resolver | |
JP3256134B2 (en) | Rotor position detection device for synchronous motor | |
SI21003A (en) | Integrated position resolver for hybrid synchronous power drives | |
CN111313637A (en) | Pole slot matching method for reluctance type rotary transformer | |
JPS5917781B2 (en) | Rotation speed detection method using multipolar resolver | |
Farhadi-Beiranvand et al. | Selection of Excitation Signal Waveform for Improved Performance of Wound-Rotor Resolver | |
JPS60162920A (en) | Resolver device using magnetism sensing element | |
SU1358047A1 (en) | A.c.tachogenerator as analog transmitter | |
RU2778654C1 (en) | Electric motor with permanent magnets on the rotor | |
Danko et al. | Resolver interface comparison | |
Wolbank et al. | Impact of the point of operation on sensorless control of induction motors based on the INFORM method | |
SU1739446A1 (en) | Valve-type inductor motor | |
JP2001147101A (en) | Induction type thrust displacement sensor | |
CN118661375A (en) | Magnetic gap length estimation device, rotating electric machine driving device, rotating electric machine system, and magnetic gap length estimation method | |
JPH07104178B2 (en) | Rotation angle detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the event date | ||
OU02 | Decision according to article 73(2) ipa 1992, publication of decision on partial fulfilment of the invention and change of patent claims |
Effective date: 20101007 |
|
KO00 | Lapse of patent |
Effective date: 20130213 |