SI20274A - Novel polyketides, anthrone derivatives - Google Patents

Novel polyketides, anthrone derivatives Download PDF

Info

Publication number
SI20274A
SI20274A SI200000126A SI200000126A SI20274A SI 20274 A SI20274 A SI 20274A SI 200000126 A SI200000126 A SI 200000126A SI 200000126 A SI200000126 A SI 200000126A SI 20274 A SI20274 A SI 20274A
Authority
SI
Slovenia
Prior art keywords
polyketides
plasmid
gene
strain
dna
Prior art date
Application number
SI200000126A
Other languages
Slovenian (sl)
Inventor
Nataša PERIĆ
Branko BOROVIČKA
Anita BAGO-JOKSOVIĆ
Krešimir GOMERČIĆ
Daslav Hranueli
Peter G. Waterman
Iain S. HUNTER
Original Assignee
PLIVA, farmaceutska industrija, dioničko društvo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLIVA, farmaceutska industrija, dioničko društvo filed Critical PLIVA, farmaceutska industrija, dioničko društvo
Publication of SI20274A publication Critical patent/SI20274A/en

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to novel polyketides, anthrone derivative's of the general formula (I) wherein R1 represents -CH2-CONH2 or -CH3, R2 represents -OH or -OCH3, and to a process for the preparation thereof as well as to the use thereof in the preparation of novel biologically active compounds, having a potential therapeutic action.

Description

Področje izumaFIELD OF THE INVENTION

Predloženi izum se nanaša na poliketide, derivate antrona, in na postopek za njihovo pripravo, ki vključuje tehnike rekombinantne DNA in biosinteze na ta način dobljenih rekombinantov. Nove poliketide lahko uporabljamo same ali kot intermediate pri pripravi novih biološko aktivnih spojin, ki imajo potencialno terapevtsko učinkovitost.The present invention relates to polyketides, anthron derivatives, and to a process for their preparation that includes techniques for recombinant DNA and the biosynthesis of recombinants thus obtained. The novel polyketides can be used alone or as intermediates in the preparation of novel biologically active compounds that have potential therapeutic efficacy.

Stanje tehnikeThe state of the art

Znano je, da so poliketidi velika, strukturno različna družina naravnih spojin s številnimi biološkimi in farmakološkimi lastnostmi. Nekateri pomembni primeri vključujejo antibiotike, kot oksitetraciklin in eritromicin, protiglivična sredstva, kot amfotericin in nistatin, zdravila za zdravljenje raka, kot tetracenomicin in doksorubicin, imunosupresive, kot rapamicin in snov FK506, zdravila za zmanjševanje nivoja holesterola, kot mevinolin in lovastatin, antiparazitska sredstva avermektin in doramektin, pospeševalca živalske rasti monenzin in salinomicin, naravni insekticid daptomicin in mnoge druge. Poliketidi so sekundami metaboliti aktinomicet, ki vključujejo rodove Streptomyces, Actinomadura, Micromonospora, Saccharopolyspora in Nocardia. Ocenjuje se, daje bilo do leta 1985 okarakteriziranih okoli 4600 antibiotikov aktinomicetnega izvora, od katerih jih je 74 v klinični uporabi (npr. glej reference v: Hranueli, Prehrambeno-tehnol. biotehnol. rev., 27:163, 1989).Polyketides are known to be a large, structurally distinct family of natural compounds with many biological and pharmacological properties. Some important examples include antibiotics such as oxytetracycline and erythromycin, antifungal agents such as amphotericin and nystatin, cancer drugs such as tetracenomycin and doxorubicin, immunosuppressants such as rapamycin and substance FK506, cholesterol-lowering agents such as mevinolin and lovastatin avermectin and doramectin, the animal growth promoter monensin and salinomycin, the natural insecticide daptomycin and many others. Polyketides are the metabolites of actinomycetes, which include the genera Streptomyces, Actinomadura, Micromonospora, Saccharopolyspora and Nocardia. It has been estimated that by 1985, about 4,600 antibiotics of actinomycetic origin were characterized, of which 74 were in clinical use (eg see references in: Hranueli, Food Technology Biotechnology Rev. 27: 163, 1989).

V obdobju od leta 1988 do 1992 so opisali dodatnih 1100 metabolitov, od katerih je približno 40% s poliketidno strukturo (Barr et al., WO prijava 98/27203, 1998).An additional 1,100 metabolites, approximately 40% of which have a polyketide structure, have been described between 1988 and 1992 (Barr et al., WO application 98/27203, 1998).

Poliketide pripravijo s pomočjo encimskih kompleksov poliketid sintetaz (PKS) na biosintetski način, ki je podoben načinu maščobnih kislin, ki jih pripravijo s pomočjo encimskih kompleksov sintetaz maščobnih kislin (FAS). PKS sistemi katalizirajo kondenzacijo enostavnih karboksilnih kislin, aktiviranih s koencimom A, z dekarboksilacijsko kondenzacijo. Velika raznolikost struktur naravnih poliketidov je posledica razlike v dolžini verige, izbiri začetnih in podaljšanih enot in različnih redukcijskih ciklusov, kar vse pogojuje njihovo končno strukturo. Podobnosti v zaporedju skupin amino kislin (izvedenih iz sekvenc DNA) in mehanizmu delovanja med produkti gena PKS so privedle do njihove razdelitve na PKS sisteme tipa I in tipa II po klasifikacijskem sistemu, uporabljenem za FAS (Hopwood in Sherman, Annu. Rev. Genet. 24:37, 1990). PKS modularnega tipa I, odgovorne za biosintezo kompleksnih poliketidov, kot so eritromicin, avermektin in rapamicin, so multifunkcionalni encimi, ki vsebujejo številna enkratna aktivna mesta, organizirana v obliki modula. Za razliko od njih PKS tipa II, odgovorne za biosintezo aromatskih poliketidov, kot so aktinorodin, tetracenomicin, frenolicin, griseusin in pigment spor (produkt skupka whi gena, katerega strukturo je treba šele določiti) obstoji iz 4 do 6 mono- ali bifunkcionalnih proteinov, katerih aktivna mesta se uporabljajo zaporedno za zgodnjo sintezo in modifikacijo poliketidne verige. V kompleksnih poliketidih sta popolna skladnja aktivnih mest in struktura biosinteznih produktov modularnih PKS spodbudila racionalni model novih kompleksnih poliketidov s spreminjanjem genov PKS z genetskimi manipulacijami (npr. Kao et al., J. Am. Chem. Soc. 117:9105, 1995, in Pacey et al, J. Antibiot. 11:1029, 1998). Pristop k racionalnemu modelu novih enostavnih aromatskih poliketidov pa ne more biti tako direkten. Razlog za to je osnovna razlika v načinu, na katerega geni PKS, odgovorni za biosintezo aromatskih in kompleksnih poliketidov, kontrolirajo strukturo produkta. Za razliko od popolne skladnje med aktivnimi mesti in strukturo produktov genov PKS tipa I so geni PKS tipa II vsi strukturno zelo podobni. Zato na osnovi primarne strukture genov PKS tipa II ni mogoče predpostaviti poliketidne strukture njihovih produktov. Zaradi tega so skontruirali poseben sistem vektor-gostitelj za ekspresijo genetsko spremenjenih genovThe polyketides are prepared using enzyme complexes of polyketide synthetases (PKS) in a biosynthetic manner similar to the mode of fatty acids prepared using the enzyme complexes of fatty acid synthetases (FAS). PKS systems catalyze the condensation of simple carboxylic acids activated by coenzyme A with decarboxylation condensation. The great diversity of natural polyketide structures is due to the difference in chain length, choice of initial and extended units, and different reduction cycles, all of which determine their final structure. Similarities in the sequence of amino acid groups (derived from DNA sequences) and the mechanism of action between PKS gene products led to their division into type I and type II PKS by the classification system used for FAS (Hopwood and Sherman, Annu. Rev. Genet. 24:37, 1990). Modular type I PKSs responsible for the biosynthesis of complex polyketides, such as erythromycin, avermectin, and rapamycin, are multifunctional enzymes containing many unique active sites, organized in the form of a module. In contrast, type II PKSs responsible for biosynthesis of aromatic polyketides, such as actinorodin, tetracenomycin, phrenolicin, griseusin, and pigment spores (the product of a whi gene assembly whose structure has yet to be determined), consist of 4 to 6 mono- or bifunctional proteins, whose active sites are used sequentially for the early synthesis and modification of the polyketide chain. In complex polyketides, complete alignment of the active sites and structure of the biosynthetic products of modular PKS have promoted a rational model of novel complex polyketides by altering the PKS genes by genetic manipulation (e.g., Kao et al., J. Am. Chem. Soc. 117: 9105, 1995, and Pacey et al., J. Antibiot. 11: 1029, 1998). However, the approach to a rational model of novel simple aromatic polyketides cannot be so direct. This is due to a fundamental difference in the way in which PKS genes responsible for biosynthesis of aromatic and complex polyketides control the structure of the product. Unlike the complete alignment between the active sites and the structure of the PKS type I gene products, the PKS type II genes are all structurally very similar. Therefore, based on the primary structure of the PKS type II genes, the polyketide structure of their products cannot be assumed. As a result, they have designed a special vector host system for the expression of genetically modified genes

PKS tipa II. Obstoji iz plazmida pRM5 in seva Streptomyces coelicolor CH999, iz katerega so odstranili celoten skupek genov za biosintezo aktinorodina (geni act). Pri poskusih kombiniranja genov PKS, proizvajalcev različnih aromatskih poliketidov, so ta sistem uporabili za sintezo mnogih novih aromatskih poliketidnih snovi in za razvoj strategije za njihov racionalni model. Ti poskusi so pokazali, da je za dolžino ogljikove verige v aromatskih poliketidih odgovoren produkt gena clf (npr. glej reference v: Khosla et al., WO prij. 96/40968; US 5,935,340, 1996; Hopwood, Chem.Rev. 97:2465, 1997, in Barr et al., WO prij. 98/27203, 1998).Type II SCC. It consists of the plasmid pRM5 and the Streptomyces coelicolor CH999 strain, from which the entire set of actinrodine biosynthesis genes (act genes) have been removed. In attempts to combine the genes of PKS, producers of different aromatic polyketides, this system was used to synthesize many new aromatic polyketide substances and to develop a strategy for their rational model. These experiments have shown that the carbon chain length in aromatic polyketides is responsible for the product of the clf gene (e.g., see references in: Khosla et al., WO prij. 96/40968; US 5,935,340, 1996; Hopwood, Chem.Rev. 97: 2465, 1997, and Barr et al., WO at 98/27203, 1998).

Vrsta S. rimosus, proizvajalec antibiotika oksitetraciklina (OTC), je ena od genetsko najbolje opisanih bakterij izmed industrijsko važnih streptomicet. Izčrpno so preiskovali dva seva: M4018, ki so ga proučevali v Veliki Britaniji, in R6, ki so ga proučevali v Zagrebu. Skupek genov za biosintezo OTC (geni otc) so klonirali iz seva M15883, derivata seva M4018, in izdelali so njeno restrikcijsko mapo [Hunter in Hill, v Biotechnology of Antibiotics (2. izdaja), W.R. Strohl (ured.) Marcel Decker, New York, str. 21, 1997], Sekvenciranje DNA celega skupka je razkrilo funkcijo mnogih genov, za nekatere pa je treba funkcijo še določiti. Skupek genov otc seva R6 je bil prav tako kloniran. Njegova restrikcijska mapa se ne razlikuje od mape seva M15883 (Hranueli et al., Food Technol. Biotechnol. 37 (2): 1999, v tisku). Zaradi tega lahko podatke, dobljene za sev M15883 in sev R6, popolnoma primerjamo. Inaktivacija kromosomske kopije gena o/cDl (katerega produkt sodeluje v gubanju, ciklizaciji in aromatizaciji hipotetičnega nonaketidnega intermediata biosinteze OTC) seva 5. rimosus R6, je pripeljala do izuma, v katerem so opisani novi poliketidi, derivati piranona (Petkovič et al., hrvaška patentna prijava P960131 A, 1998). V nasprotju s tem produkt gena otcC hidroksilira nonaketidni intermediat biosinteze OTC mnogo stopenj po tem, ko so pripravili in nagubali poliketidno verigo [Hunter in Hill, v Biotechnology of Antibiotics (2. izdaja), W.R. Strohl (ured.) Marcel Decker, New York, str. 21, 1997],S. rimosus, the manufacturer of the antibiotic oxytetracycline (OTC), is one of the most genetically described bacteria among the industrially important streptomycetes. Two strains were studied extensively: M4018, studied in the UK, and R6, studied in Zagreb. A set of OTC biosynthesis genes (otc genes) were cloned from strain M15883, a derivative of strain M4018, and their restriction map was made [Hunter and Hill, in Biotechnology of Antibiotics (2nd Edition), W.R. Strohl (Ed.) Marcel Decker, New York, p. 21, 1997], DNA sequencing of the entire cluster has revealed the function of many genes, and for some, the function remains to be determined. The gene set of otc strain R6 was also cloned. Its restriction map is indistinguishable from that of strain M15883 (Hranueli et al., Food Technol. Biotechnol. 37 (2): 1999, in press). Therefore, the data obtained for strain M15883 and strain R6 can be completely compared. Inactivation of the chromosomal copy of the o / cDl gene (whose product participates in the folding, cyclization, and aromatization of the hypothetical nonacetide intermediate of OTC biosynthesis) of strain 5 rimosus R6 has led to an invention describing novel polyketides, pyranone derivatives (Petkovic et al., Croatia patent application P960131 A, 1998). In contrast, the otcC gene product hydroxylates the nonacetide intermediate of OTC biosynthesis many stages after the polyketide chain has been prepared and folded [Hunter and Hill, in Antibiotics Biotechnology (2nd Edition), W.R. Strohl (Ed.) Marcel Decker, New York, p. 21, 1997],

Bistvo izumaThe essence of the invention

Predloženi izum se nanaša na nove poliketide, derivate antrona s splošno formulo (I):The present invention relates to novel polyketides, anthrone derivatives of general formula (I):

I v kateriAnd in which

R1 predstavlja -CH2-CONH2 ali -CH3,R 1 represents -CH 2 -CONH 2 or -CH 3 ,

R2 predstavlja -OH ali -OCH3, ter na postopek za njihovo pripravo kot tudi na uporabo v pripravi novih biološko aktivnih spojin s potencialnim terapevtskim delovanjem.R 2 represents -OH or -OCH 3, and to a process for their preparation as well as for use in the preparation of novel biologically active compounds with potential therapeutic action.

Podroben opis izumaDETAILED DESCRIPTION OF THE INVENTION

Iz genetsko konstruiranega seva S. rimosus R6-ZGL1 (deponiran kot Streptomyces rimosus R6-ZGL1 (otcC::gmr) v zbirki NCAIM pod pristopno številko NCAIM(P) B 001282) (z inaktiviranim genom otcC) izoliramo nove poliketide, derivate antrona, s splošno formulo I, kjer R1 predstavlja -CH2-CONH2 ali -CH3, R2 pa predstavlja -OH ali -OCH3, ki jih dobimo s fermentacijo, ekstrakcijo, zgoščevanjem, čiščenjem na silikagelu in na koncu z gelno filtracijo na koloni Sephadex LH-20.From the genetically engineered strain of S. rimosus R6-ZGL1 (deposited as Streptomyces rimosus R6-ZGL1 (otcC :: gmr) in the NCAIM collection under accession number NCAIM (P) B 001282) (with the inactivated otcC gene), new polyketides, anthrone derivatives, are isolated. of the general formula I wherein R 1 represents -CH 2 -CONH 2 or -CH 3 and R 2 represents -OH or -OCH 3 obtained by fermentation, extraction, concentration, purification on silica gel and finally by gel filtration on Sephadex LH-20 columns.

Po dostopnih podatkih dobljene spojme do sedaj niso bile opisane. Novi derivati antrona so okarakterizirani s tem, da vsi v strukturi vsebujejo karboksilno skupino in različne dolžine ogljikovih verig, čeprav v genetsko konstruiranem sevu (R6-ZGL1) gen clf, odgovoren za dolžino ogljikove verige, ni spremenjen (glej reference v:Khosla et al., WO prijava 96/40968; US 5,935,340, 1996).According to available data, the compounds obtained so far have not been described. The new anthron derivatives are characterized by the fact that they all contain a carboxyl group and different carbon chain lengths in the structure, although in the genetically engineered strain (R6-ZGL1) the gene clf responsible for the carbon chain length is unchanged (see references in: Khosla et al ., WO Application 96/40968; US 5,935,340, 1996).

Bakterijski sevi, plazmidi in pogoji gojenjaBacterial strains, plasmids and growing conditions

Sev S. rimosus R6 (Hranueli et al., J. Gen. Microbiol. 114:295, 1979) uporabimo za inaktivacijo gena otcC. Genetska konstrukcija seva S. rimosus R6-ZGL1 (otcC::gmr) je opisana v nadaljevanju. Vsa kloniranja smo izvedli v celicah bakterije Escherichia coli TG1 (Gibson, doktorska disertacija, Univerza v Cambridgeu, Velika Britanija, 1984). Plazmidno DNA dvojnega vektorja pGLW75 smo uvedli v celice ceva E. coli NM544 (deni), iz katerega smo izolirali nemetilirano DNA tega plazmida pred transformacijo celic vrste S. rimosus (Marinus in Palmer, Gene 143:1. 1994).The S. rimosus R6 strain (Hranueli et al., J. Gen. Microbiol. 114: 295, 1979) was used to inactivate the otcC gene. The genetic construction of S. rimosus R6-ZGL1 strain (otcC :: gmr) is described below. All cloning was performed in Escherichia coli TG1 cells (Gibson, PhD thesis, University of Cambridge, UK, 1984). PGLW75 double vector plasmid DNA was introduced into E. coli NM544 (deni) tube cells from which unmethylated DNA of this plasmid was isolated before transformation of S. rimosus cells (Marinus and Palmer, Gene 143: 1. 1994).

Kot vir gena otcC in sosednjih delov otc DNA smo uporabili plazmid pPFZ46 (Butler et al., Mol. Gen. Genet. 215:231, 1989). Položaj gena v skupku otc gena smo določili s t.i. povratnim genetskim pristopom, z uporabo degeneriranega oligonukleotida, ki je bil modeliran na osnovi amino-terminalne peptidne sekvence očiščenega encima ATC-oksigenaze (Binnie et al., J. Bacteriol. 171:887. 1989). Za inaktivacijo gena otcC z insercijo gena gmr v njegovo strukturo smo uporabili plazmid pIBI24 bakterije E. coli (Dente et al., Nucl. Acids Res. JU: 1645, 1983). Gen gmr, ki je produkt, odgovoren za odpornost proti antibiotiku gentamicinu (Skeggs et al., J. Gen. Microbiol 133:915, 1987), smo dobili iz plazmida p504 bakterije E. coli (Garven, doktorska disertacija, Univerza v Glasgowu, Velika Britanija, 1995). (Slika 1). Plazmid vrste rodu Streptomyces, pIJ486 (Ward et al., Mol. Gen. Genet. 203:468. 1986), ki vsebuje genetski marker tsr, ki je produkt, odgovoren za odpornost proti antibiotiku tiostreptonu, smo uporabili za konstrukcijo dvojnega vektorja, ki se lahko razmnožuje v celicah bakterije E. coli kot tudi v celicah vrste rodu Streptomyces. Konstrukcija vseh plazmidov je opisana v nadaljevanju.The plasmid pPFZ46 was used as the source of the otcC gene and adjacent parts of the otc DNA (Butler et al., Mol. Gen. Genet. 215: 231, 1989). The position of the gene in the otc gene set was determined by i.e. reverse genetic approaches using a degenerate oligonucleotide modeled on the amino-terminal peptide sequence of the purified ATC oxygenase enzyme (Binnie et al. J. Bacteriol. 171: 887. 1989). The plasmid pIBI24 of E. coli was used to inactivate the otcC gene by inserting the gmr gene into its structure (Dente et al., Nucl. Acids Res. JU: 1645, 1983). The gmr gene, which is the product responsible for antibiotic resistance gentamicin (Skeggs et al., J. Gen. Microbiol 133: 915, 1987), was obtained from plasmid p504 of E. coli (Garven, PhD, University of Glasgow, Great Britain, 1995). (Figure 1). A plasmid of the Streptomyces genus, pIJ486 (Ward et al., Mol. Gen. Genet. 203: 468. 1986), which contains the genetic marker tsr, which is the product responsible for antibiotic resistance to thiostrepton, was used to construct a double vector that can reproduce in cells of E. coli as well as in cells of the genus Streptomyces. The construction of all plasmids is described below.

Seve vrste E. coli smo vzgajali in vzdrževali ob standardnih pogojih (Sambrook et al., Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989). Kompletni tekoči (LM) in trden (CM) hranilni medij za vzgajanje in vzdrževanje celic vrste S. rimosus in fermentacij ski medij (FM) za biosintezo poliketidov so že bili opisani (Hranueli et al., J. Gen. Microbiol 114:295. 1979, in Vešligaj et El., Appl. Environ. Microbiol. 41:986. 1981).E. coli strains were grown and maintained under standard conditions (Sambrook et al., Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989). Complete liquid (LM) and solid (CM) nutrient media for the cultivation and maintenance of S. rimosus cells and fermentation media (FM) for polyketide biosynthesis have already been described (Hranueli et al., J. Gen. Microbiol 114: 295). 1979, and Vešligaj et El., Appl. Environ. Microbiol. 41: 986. 1981).

Rokovanje z DNA in z mikroorganizmiHandling DNA and microorganisms

Metode za izolacijo in čiščenje kromosomskih in plazmidnih DNA, digeriranje DNA z restrikcij skimi endonukleazami, elektroforezo v gelu agaroze, prenos DNA na membrano, markiranje DNA z digoksigeninom ter hibridizacijo in detekcijo so opisali Sambrook et al. (Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).Methods for the isolation and purification of chromosomal and plasmid DNA, DNA digestion with restriction endonucleases, agarose gel electrophoresis, transfer of DNA to the membrane, DNA labeling with digoxigenin, and hybridization and detection have been described by Sambrook et al. (Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

Celice bakterije E. coli smo transformiran s pomočjo DNA plazmida z uporabo aparature za elektroporacijo (Bio-Rad Pulsing aparat) v skladu z navodili proizvajalca, medtem ko smo celice seva 5. rimosus R6 transformirali z uporabo istega aparata po metodi, opisani v Pigac in Schrempf (Appl. Environ. Microbiol. 61:352, 1995).E. coli cells were transformed using a DNA plasmid using an electroporation apparatus (Bio-Rad Pulsing apparatus) according to the manufacturer's instructions, while cells of strain 5. rimosus R6 were transformed using the same apparatus by the method described in Pigac and Schrempf (Appl. Environ. Microbiol. 61: 352, 1995).

Konstrukcija plazmidov pGLW75, ki vsebujejo inaktivirani gen otcCConstruction of pGLW75 plasmids containing the inactivated otcC gene

Plazmid p508x smo dobili iz plazmida p508 (Garven, doktorska disertacija, Univerza v Glasgowu, Velika Britanija, 1995). Ta plazmid (ki temelji na vektorju pIBI24, ki je v celicah bakterije E. coli prisoten v velikem številu kopij) vsebuje del skupka gena otc od restrikcij skega mesta Pstlyj do restrikcij skega mesta 5flcl2i. Segment DNA med restrikcijskima mestoma Kpnl^ in Kpn(.]9 smo zamenjali z DNA linkerjem, ki vsebuje enkratno restrikcijsko mesto encima Xbal (spajanje topih koncev). Iz plazmida p504 smo klonirali del DNA, ki vsebuje gen gmr, v enkratno restrikcijsko mesto Xbal plazmida p508x, da dobimo plazmid pGLW72. V paralelni konstrukciji smo fragment skupka gena otc z 2,3 kb (od restrikcij skega mesta S/P/2I14 do restrikcij skega mesta Ρό’/Ιπ) klonirali iz plazmida pPFZ46 (Butler et al., Mol. Gen. Genet. 215:231, 1989) v plazmid PIBI24, da dobimo plazmid pGLW73. V ta plazmid smo nato subklonirali Pst\-Sac[ fragment DNA s 3,9 kb iz plazmida pGLW72, ki je vseboval gmr marker. To insercijo smo izvedli z delnim digeriranjem DNA plazmida pGLW72. Delno digeriran fragment DNA smo nato očistili iz gela agaroze, digerirali z endonukleazo Sac\ in povezali s plazmidnim vektorjem pGLW73. Dobljeni plazmid smo imenovali pGLW74 (sl. 1). Plazmid pGLW74 vsebuje genetični marker gmr kloniran znotraj gena otcC in omejen s fragmenti DNA iz seva S. rimosus R6, to je 2,7 kb navzdol inPlasmid p508x was obtained from plasmid p508 (Garven, PhD Thesis, University of Glasgow, UK, 1995). This plasmid (based on the pIBI24 vector, which is present in a large number of copies in E. coli cells) contains a portion of the otc gene assembly from the Pstlyj restriction site to the 5flcl 2 i restriction site. The DNA segment between the restriction sites Kpnl ^ and Kpn (. ] 9 was replaced by a DNA linker containing the unique restriction site of the enzyme Xbal (junction of the blunt ends). plasmid p508x to obtain plasmid pGLW72 In a parallel construct, a 2.3 kb fragment of the otc gene cluster (from restriction site S / P / 2I14 to restriction site Ρό '/ Ιπ) was cloned from plasmid pPFZ46 (Butler et al. Mol Gen. Genet 215: 231, 1989) to PIBI24 plasmid to obtain plasmid pGLW73.This plasmid was then subcloned with Pst \ -Sac [a 3.9 kb DNA fragment from pGLW72 plasmid containing the gmr marker. the insertion was performed by partially digesting the DNA of plasmid pGLW72. The partially digested DNA fragment was then purified from agarose gel, digested with Sac \ endonuclease and linked to plasmid vector pGLW73. The resulting plasmid was named pGLW74 (Fig. 1) The plasmid pGLW74 contains the gmr genetic marker cloned within the otc gene C and bounded by DNA fragments from S. rimosus R6 strain, i.e. 2.7 kb down and

1,8 kb navzgor od gena otcC. Vse do sedaj opisane plazmide smo konstruirali z uporabo vektorjev, ki vsebujejo izvor za replikacijo DNA v bakteriji E. coli.1.8 kb upstream of the otcC gene. The plasmids described so far have been constructed using vectors containing the origin for DNA replication in E. coli.

Končni del DNA v konstrukciji dvojnega vektorja je bil nestabilen plazmid pIJ486, ki vsebuje izvor za replikacijo DNA v vrsto rodu Streptomyces. Plazmid pGLW74 vsebuje enkratno restrikcijsko mesto za encim Sad, uporabljeno za njegovo linearizacijo. Linearizirani plazmid smo nato ligirali s plazmidom pIJ486, digeriranim znotraj njegovega enkratnega restrikcijskega mesta za encim Sad. Dobljen dvojni vektor smo poimenovali pGLW75, ki vsebuje inaktivirani gen otcC (sl. 1).The final DNA strand in the double vector construct was the unstable plasmid pIJ486, which contains a source for DNA replication into a Streptomyces genus. Plasmid pGLW74 contains a unique restriction site for the Sad enzyme used to linearize it. The linearized plasmid was then ligated with plasmid pIJ486 digested within its unique restriction site for the Sad enzyme. The resulting double vector was named pGLW75 containing the inactivated otcC gene (Fig. 1).

Konstrukcija seva X rimosus R6-ZGL1Construction of strain X rimosus R6-ZGL1

Inaktivirano kopijo gena (otcC::gmr, prisotna na plazmidu pGLW75) smo uvedli v celice seva S. rimosus R6 z elektroporacijo. Plazmid pGLW75 je vseboval genetska markerja gmr in tsr. Dobljene transformante smo selekcionirali na odpornost proti antibiotiku tiostreptonu. Odpornost proti antibiotiku tiostreptonu smo uporabili za primarno selekcijo transformantov, medtem ko smo lahko odpornost proti antibiotiku gentamicinu v vrste S. rimosus uporabili samo za sekundarno selekcijo. Naknadna nasaditev transformantov na medij CM, ki vsebuje gentamicin, je potrdila prisotnost celovitega genetskega markerja gmr v njihovih celicah. Po rasti celic transformantov seva S. rimosus R6 v mediju LM v neselektivnih pogojih (v odsotnosti antibiotikov) v času, za katerega predpostavljamo, da je prišlo do rekombinacije med DNA plazmidom in DNA kromosomom bakterije S. rimosus, smo celice transformantov nasadili na medij CM, ki prav tako ne vsebuje antibiotikov. V takem sistemu se plazmid pogosto izgubi med deljenjem celic [segregacijska nestabilnost plazmida pIJ486 v odsotnosti selekcije je dobro opisana (Ward et al., Mol. Gen. Genet. 203:468, 1986)]. Inaktivacijo gena za hidroksilazo (gena otcC) izvedemo znotraj kromosoma seva S. rimosus R6. Do inaktivacije gena v kromosomu pride, kadar kopija gena otcC:.gmr zamenja izvirni gen otcC v kromosomu ob izgubi vektorja pIJ486 in pridruženih delov DNA. Da bi potrdili verodostojnost inaktivacije, smo kromosomsko DNA izolirali iz izbranih kolonij transformantov (ki so odporne proti gentamicinu, občutljive pa proti tiostreptonu), digerirali z restrikcijskimi endonukleazami FcoRI in Sad, prenesli na membrano (Sambrook et al., Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989) in hibridizirali s sondo, ki je vsebovala gen otcC (ali del DNA od Kpnl]9 do Sph[2o)· Na ta način smo konstruirali sev S. rimosus R6-ZGL1.An inactivated gene copy (otcC :: gmr present on plasmid pGLW75) was introduced into S. rimosus R6 strain cells by electroporation. Plasmid pGLW75 contained the genetic markers gmr and tsr. The transformants obtained were selected for antibiotic resistance thiostrepton. Antibiotic resistance with thiostrepton was used for primary selection of transformants, whereas antibiotic resistance with gentamicin in S. rimosus species was only used for secondary selection. Subsequent transplantation of the transformants to the gentamicin-containing CM medium confirmed the presence of a complete gmr genetic marker in their cells. Following the growth of S. rimosus R6 strain transformant cells in LM medium under non-selective conditions (in the absence of antibiotics) at the time when recombination between the DNA plasmid and the DNA chromosome of S. rimosus was assumed, the transformant cells were planted on CM medium , which also contains no antibiotics. In such a system, the plasmid is often lost during cell division [segregation instability of plasmid pIJ486 in the absence of selection is well described (Ward et al., Mol. Gen. Genet. 203: 468, 1986)]. Inactivation of the hydroxylase gene (otcC gene) is performed within the chromosome of S. rimosus R6 strain. Chromosome gene inactivation occurs when a copy of the otcC: .gmr gene replaces the original otcC gene in the chromosome upon loss of the pIJ486 vector and associated DNA strands. To confirm the inactivation plausibility, chromosomal DNA was isolated from selected colonies of transformants (gentamicin resistant and thiostreptone sensitive), digested with FcoRI and Sad restriction endonucleases, transferred to the membrane (Sambrook et al., Molecular Cloning, a Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989) and hybridized with a probe containing the otcC gene (or a portion of DNA from Kpnl ] 9 to Sph [ 2 o) · We constructed the S. rimosus strain in this way R6-ZGL1.

Biosinteza novih poliketidovBiosynthesis of novel polyketides

Sev S. rimosus R6-ZGL1 (otcC::gmr), shranjen v 40% glicerolu pri temperaturi -70 °C, smo presadili na trden medij CM v petrijevke z vsebnostjo gentamicina (500 pg/mL) [CM medij vsebuje: 10,0 g ekstrakta slada, 4,0 g kvasnega ekstrakta, 4,0 g glukoze, 2% agarja (m/v), destilirana voda do 1,0 1; pH naravnamo na 7,2 z 10%-nim NaOH; sterilizacija 40 minut pri 110 °C]. Petrijevke smo inkubirali v termostatu 5 do 7 dni (pri 25 - 30 °C), nakar so zrasle posamezne kolonije streptomicet. Z eno kolonijo streptomicet smo nasadili 50 ml tekočega medija LM, ki vsebuje gentamicin (500 pg/ml) [LM medij vsebuje: 40,0 g dekstrina, 16,0 g CSL (com steep liquor; približno 50% trdne snovi), 7,0 g CaCO3, 2,0 g (NH^SO^ destilirana voda do 1,0 1; pH smo naravnali na 7,2 z 10%-nim NaOH; sterilizacija 30 minut pri 120 °C] in dobljeno suspenzijo smo inkubirali na rotacijskem stresalniku (150 - 300 obr/min) 48 do 72 ur pri temperaturi od 25 do 30 °C. Medij FM za biosintezo poliketidov, ki vsebuje gentamicin (500 pg/ml), [FM medij vsebuje: 55 g koruznega škroba, 7,5 g CSS (com steep solid), 7,0 g CaCO3, 8,5 g (NH^SO^ 2,0 g N^Cl, 0,14 g COC12 x 6H2O, 10,0 g sojinega olja, vodovodna voda do 1,0 1; naravni pH; sterilizacija 40 minut pri 120 °C], smo nasadili z 10% biomase streptomicet iz medija LM. Biosintezo (fermentacijo) smo izvedli na rotacijskem stresalniku (150 - 300 obr/min) v času 5 do 7 dni pri temperaturi od 25 do 30 °C.The S. rimosus R6-ZGL1 strain (otcC :: gmr) stored in 40% glycerol at -70 ° C was transplanted onto solid CM media in petri dishes containing gentamicin (500 pg / mL) [CM medium contains: 10. 0 g malt extract, 4.0 g yeast extract, 4.0 g glucose, 2% agar (w / v), distilled water up to 1.0 1; The pH was adjusted to 7.2 with 10% NaOH; sterilization for 40 minutes at 110 ° C]. Petri dishes were incubated in a thermostat for 5 to 7 days (at 25 - 30 ° C), after which individual streptomycin colonies grew. One colony of streptomycetes was seeded with 50 ml of gentamicin-containing LM liquid medium (500 pg / ml) [LM-medium containing: 40.0 g of dextrin, 16.0 g of CSL (com steep liquor; about 50% solids), 7 , 0 g CaCO 3 , 2.0 g (NH 4 SO ^ distilled water to 1.0 l; pH was adjusted to 7.2 with 10% NaOH; sterilization for 30 minutes at 120 ° C] and the resulting suspension was incubated on a rotary shaker (150 - 300 rpm) for 48 to 72 hours at 25 to 30 ° C. FM medium for biosynthesis of polyketide containing gentamicin (500 pg / ml), [FM medium contains: 55 g of corn starch, 7.5 g CSS (com steep solid), 7.0 g CaCO 3 , 8.5 g (NH ^ SO ^ 2.0 g N ^ Cl, 0.14 g COC1 2 x 6H 2 O, 10.0 g soybean oil, tap water up to 1.0 l; natural pH; sterilization for 40 minutes at 120 ° C] was seeded with 10% streptomycet biomass from LM medium. Biosynthesis (fermentation) was performed on a rotary shaker (150 - 300 rpm ) for 5 to 7 days at a temperature of 25 to 30 ° C.

Ekstrakcija, zgoščevanje in čiščenje novih poliketidnih snoviExtraction, thickening and purification of new polyketide substances

Fermentacijsko lužnico (2,0 1) seva 5. rimosus R6-ZGL1 smo nasitili z dodatkom anorganske soli, npr. z natrijevim dihidrogenfosfatom, in ekstrahirali z organskim topilom, ki se slabo meša z vodo, npr. z n-butanolom, n-oktanolom, kloroformom, etilacetatom, metil-izo-butilketonom, itd., prednostno pa z etil-acetatom. Topilo smo uparili pri znižanem tlaku in temperaturi od 35 do 50 °C. Različne snovi, prisotne v dobljeni trdni snovi, smo razdelili v frakcije s kromatografijo na koloni silikagela z eluiranjem z dvema sistemoma topil (A: kloroform-metanol, B: n-heksan-etil-acetat). Frakcije, eluirane s sistemom A (8-16% metanola) smo združili in topilo uparili pod zmanjšanim tlakom. Z razdelitvijo smo nadaljevali s filtracijo na koloni Sephadex LH20 in s ponovnim eluiranjem s sistemom topil A. Frakcije, eluirane s sistemom A (6% metanola), so vsebovale snov 1 (35 mg). Frakcije, eluirane s sistemom B (30-45% etilacetata), smo združili in topilo uparili pod zmanjšanim tlakom. Dobljeno trdno snov smo raztopili v 2 ml metanola in ohladili na + 4 °C. Po 20 urah se je oborila snov 3 (7 mg) kot rumena oborina. Frakcije, eluirane s sistemom B (65-80% etil acetata), smo prav tako združili in topilo uparili pod zmanjšanim tlakom. Dobljeno trdno snov smo raztopili v 2 ml metanola in ohladili na + 4 °C. Snov 2(11 mg) se je oborila kot svetlo rumena oborina po 24 urah.The fermentation liquor (2.0 L) of strain 5. rimosus R6-ZGL1 was saturated with the addition of an inorganic salt, e.g. with sodium dihydrogen phosphate, and extracted with a water miscible organic solvent, e.g. with n-butanol, n-octanol, chloroform, ethyl acetate, methyl iso-butyl ketone, etc., preferably ethyl acetate. The solvent was evaporated under reduced pressure and temperature from 35 to 50 ° C. The various substances present in the resulting solid were separated into silica gel column chromatography eluting with two solvent systems (A: chloroform-methanol, B: n-hexane-ethyl acetate). The fractions eluted with System A (8-16% methanol) were combined and the solvent was evaporated under reduced pressure. Separation was continued by filtration on a Sephadex LH20 column and eluted again with solvent system A. The fractions eluted with system A (6% methanol) contained substance 1 (35 mg). The fractions eluted with System B (30-45% ethyl acetate) were combined and the solvent was evaporated under reduced pressure. The resulting solid was dissolved in 2 ml of methanol and cooled to + 4 ° C. After 20 hours, substance 3 (7 mg) precipitated as a yellow precipitate. The fractions eluted with System B (65-80% ethyl acetate) were also combined and the solvent was evaporated under reduced pressure. The resulting solid was dissolved in 2 ml of methanol and cooled to + 4 ° C. Substance 2 (11 mg) precipitated as a light yellow precipitate after 24 hours.

Ekstrakcijo, zgoščevanje in čiščenje poliketidov od 1 do 3 smo spremljali s tenkoslojno kromatografijo (TLC) na silikagelnih ploščah (Merck, kat. št. 15684) z uporabo zmesi topil kloroform - metanol - voda (9 : 4 : 0,1) kot mobilne faze.Extraction, concentration, and purification of polyketides 1 to 3 were monitored by thin layer chromatography (TLC) on silica gel plates (Merck, cat. No. 15684) using a solvent mixture of chloroform-methanol-water (9: 4: 0,1) as mobile phase.

Kemijska karakterizacija novih poliketidovChemical characterization of new polyketides

Kemijsko strukturo dobljenih poliketidov smo določili na osnovi 2D homonukleamih in heteronukleamih študij ob uporabi COSY-45 tehnike za neposredno določevanje H-H pripajanja (Williams in Fleming, Methods in Organic Chemistry, 5. izdaja, McGraw-Hill Publishing Co, London, Velika Britanija, 1997), HC-COBI tehnike za določevanje H-C interakcije preko ene vezi (!J) (Sanders in Hunter, Modem NMR Sprectroscopy: A Guide for Chemists, Oxford University Press, Velika Britanija, 1987) in HMBC tehnike za določevanje H-C interakcije preko dveh (2J) in treh vezi (J) (Williams in Fleming, Methods in Organic Chemistry, 5. izdaja, McGraw-Hill Publishing Co, London, Velika Britanija, 1997).The chemical structure of the obtained polyketides was determined on the basis of 2D homonuclei and heteronuclei studies using the COSY-45 technique for the direct determination of HH coupling (Williams and Fleming, Methods and Organic Chemistry, 5th edition, McGraw-Hill Publishing Co, London, UK, 1997 ), HC-COBI techniques for determining single-bond HC interaction ( ! J) (Sanders and Hunter, Modem NMR Sprectroscopy: A Guide for Chemists, Oxford University Press, UK, 1987), and HMBC techniques for determining single-bond HC interaction ( 2 J) and three bonds (J) (Williams and Fleming, Methods in Organic Chemistry, 5th edition, McGraw-Hill Publishing Co, London, UK, 1997).

IR spekter je odkril številne absorpcijske trakove med 1675 in 1615 cm'1, kar kaže na prisotnost karbonilov, lastnih poliketidom.The IR spectrum detected a number of absorption bands between 1675 and 1615 cm < -1 >, indicating the presence of polyketide-specific carbonyls.

Priprava novih derivatov antrona je prikazana s sledečimi primeri, ki v nobenem primeru niso omejevalni dejavnik za izum.The preparation of new anthrone derivatives is illustrated by the following examples, which are by no means a limiting factor for the invention.

Primer 1Example 1

-karbamoilmetil-1,8,10-trihidroksi-10-metil-9-okso-9,10-dihidroantracen-2karboksilna kislina (1) ali-carbamoylmethyl-1,8,10-trihydroxy-10-methyl-9-oxo-9,10-dihydroanthracene-2carboxylic acid (1), or

3-karbamoilmetil-l,8,10-trihidroksi“10-metil-antron-2-karboksilna kislina (1)3-Carbamoylmethyl-1,8,10-trihydroxy 10-methyl-anthrone-2-carboxylic acid (1)

Z eno kolonijo seva S. rimosus R6-ZGL1 (otcC::gmr) nasadimo 50 ml medija LM, ki vsebuje gentamicin (500 pg/ml). Dobljeno mikrobno suspenzijo gojimo na rotacijskem stresalniku (200 obr/min) 72 ur pri 28 °C. Medij za biosintezo poliketidov (FM), ki vsebuje gentamicin (500 pg/ml), nasadimo z 10% mikrobne biomase iz medija LM. Biosintezo (fermentacijo) izvedemo na rotacijskem stresalniku (200 obr/min) v času 7 dni pri temperaturi 28 °C. Fermentacijsko juho (2,0 1) nasitimo z dodatkom natrijevega dihidrogenfosfata (1,2 kg) in jo trikrat ekstrahiramo z enakim volumnom (2,0 1) etil acetata. Organske sloje združimo in uparimo pod zmanjšanim tlakom pri 40 °C do suhega ostanka. Suhi ostanek (2,0 g) razdelimo s kromatografijo na stolpcu silikagela z eluiranjem s sistemom topil A (kloroform-metanol). Frakcije, eluirane s sistemom A (8-16% metanola), združimo in koncentriramo z upaijenjem pod zmanjšanim tlakom. Z nadaljnjo razdelitvijo nadaljujemo na koloni Sephadex LH-20 s ponovnim eluiranjem s kloroformom-metanolom (6% metanola).One colony of S. rimosus R6-ZGL1 strain (otcC :: gmr) was seeded with 50 ml of gentamicin-containing LM medium (500 pg / ml). The resulting microbial suspension was grown on a rotary shaker (200 rpm) for 72 hours at 28 ° C. Gentamicin-containing polyketide (FM) biosynthesis medium (FM) (500 pg / ml) is seeded with 10% microbial biomass from LM medium. Biosynthesis (fermentation) was performed on a rotary shaker (200 rpm) for 7 days at 28 ° C. The fermentation broth (2.0 L) was saturated with the addition of sodium dihydrogen phosphate (1.2 kg) and extracted three times with the same volume (2.0 L) of ethyl acetate. The organic layers were combined and evaporated under reduced pressure at 40 ° C to dry residue. The dry residue (2.0 g) was partitioned by silica gel column chromatography eluting with solvent system A (chloroform-methanol). The fractions eluted with System A (8-16% methanol) were combined and concentrated by evaporation under reduced pressure. Continue the separation on a Sephadex LH-20 column by eluting again with chloroform-methanol (6% methanol).

Frakcije, za katere je TLC pokazala, da vsebujejo spojino 1, zberemo in koncentriramo z uparjenjem pod zmanjšanim tlakom, pri Čemer dobimo 35 mg spojine I v obliki rumenega prahu.The fractions for which TLC was shown to contain compound 1 were collected and concentrated by evaporation under reduced pressure to give 35 mg of compound I as a yellow powder.

'H NMR: (400MHz, DMSO-d6); 12,41 (2H, br. s, NH2), 11,97 (IH, s, 2-COOH), 7,77 (IH, s, 8-OH), 7,64 (IH, s, 1-OH), 7,69 (IH, t, J = 8,0 Hz, H-6), 7,42 (IH, dd,≪ 1 > H NMR: (400MHz, DMSO-d6); 12.41 (2H, br. S, NH 2 ), 11.97 (1H, s, 2-COOH), 7.77 (1H, s, 8-OH), 7.64 (1H, s, 1- OH), 7.69 (1H, t, J = 8.0 Hz, H-6), 7.42 (1H, dd;

J = 7,6 Hz, H-5), 7,40 (IH, s, H-4), 6,95 (IH, d, J = 8,4 Hz, H-7), 6,29 (IH, s, 10OH), 3,72 (2H, ABq, J = 16 Hz, 3-CH2-), 1,51 (3H, s, 10-CH3).J = 7.6 Hz, H-5), 7.40 (1H, s, H-4), 6.95 (1H, d, J = 8.4 Hz, H-7), 6.29 (1H , s, 10OH), 3.72 (2H, ABq, J = 16 Hz, 3-CH 2 -), 1.51 (3H, s, 10-CH 3 ).

13C NMR: (100MHz, DMSO-d6); 191,5 (C-9), 171,1 (3-CH2-CO-NH2), 166,9 (2COOH), 161,5 (C-8), 158,3 (C-l), 152,0 (C-lOa), 151,5 (C-4a), 141,8 (C-3), 137,4 (C-6), 126,2 (C-2),119,1 (C-4), 117,1 (C-5), 116,0 (C-7), 113,0 (C-8a), 111,6 (C-9a), 13 C NMR: (100MHz, DMSO-d6); 191.5 (C-9), 171.1 (3-CH2-CO-NH 2 ), 166.9 (2COOH), 161.5 (C-8), 158.3 (Cl), 152.0 ( C-10a), 151.5 (C-4a), 141.8 (C-3), 137.4 (C-6), 126.2 (C-2), 119.1 (C-4), 117.1 (C-5), 116.0 (C-7), 113.0 (C-8a), 111.6 (C-9a),

69,4 (3-CH?-CO-NH?), 38,7 (IO-CH3).69.4 (3-CH ? -CO-NH ? ), 38.7 (IO-CH3).

Primer 2Example 2

1.8.10- trihidroksi-3,10-dimetil-9-okso-9,10-dihidroantracen-2-karboksilna kislina (2) ali1.8.10- trihydroxy-3,10-dimethyl-9-oxo-9,10-dihydroanthracene-2-carboxylic acid (2) or

1.8.10- trihidroksi-3,10-dimetil-antron-2-karboksilna kislina (2)1.8.10- Trihydroxy-3,10-dimethyl-anthrone-2-carboxylic acid (2)

Po fermentaciji in izolaciji, opisani v primeru 1, izvedemo ločenje suhega ostanka s kromatografijo na koloni silikagela z eluiranjem s sistemom topil B (n-heksan-etil acetat). Frakcije, eluirane s sistemom B (65-80% etil acetata), združimo in koncentriramo z uparjenjem pod zmanjšanim tlakom. Dobljeno trdno snov raztopimo v 2 ml metanola in ohladimo na + 4 °C. Po 24 urah se obori snov 2(11 mg) kot svetlo rumena oborina.After fermentation and isolation as described in Example 1, the separation of the dry residue is carried out by chromatography on a silica gel column, eluting with solvent system B (n-hexane-ethyl acetate). The fractions eluted with System B (65-80% ethyl acetate) were combined and concentrated by evaporation under reduced pressure. The resulting solid was dissolved in 2 ml of methanol and cooled to + 4 ° C. After 24 hours, substance 2 (11 mg) precipitated as a light yellow precipitate.

Ή NMR: (400MHz, DMSO-d6); 12,00 (IH, br. s, 2-COOH), 7,81 (IH, s, 8-OH), 7,53 (IH, s, 1-OH), 7,68 (IH, ζ J = 8,0 Hz, H-6), 7,42 (IH, dd, J = 7,6 Hz, H-5), 7,28 (IH, s, H-4), 6,93 (IH, d, J = 8,2 Hz, H-7), 6,23 (IH, s, 10-OH), 2,37 (3H, s, 3-CH3), 1,50 (3H, s, 10-CH3).Ή NMR: (400MHz, DMSO-d6); 12.00 (1H, br. S, 2-COOH), 7.81 (1H, s, 8-OH), 7.53 (1H, s, 1-OH), 7.68 (1H, ζ J = 8.0 Hz, H-6), 7.42 (1H, dd, J = 7.6 Hz, H-5), 7.28 (1H, s, H-4), 6.93 (1H, d , J = 8.2 Hz, H-7), 6.23 (1H, s, 10-OH), 2.37 (3H, s, 3-CH 3 ), 1.50 (3H, s, 10- CH 3 ).

13C NMR: (100MHz, DMSO-d6): 191,4 (C-9), 167,4 (2-COOH), 161,5 (C-8 in C-l), 152,0 (C-lOa), 151,3 (C-4a), 144,8 (C-3), 137,3 (C-6), 126,5 (C-2), 118,4 (C-4), 117,5, 116,0 (C-5 in C-7), 113,0 (C-8a), 110,9 (C-9a), 38,7 (10-CH3), 20,0 (3-CH3). 13 C NMR: (100MHz, DMSO-d6): 191.4 (C-9), 167.4 (2-COOH), 161.5 (C-8 and Cl), 152.0 (C-10a). 151.3 (C-4a), 144.8 (C-3), 137.3 (C-6), 126.5 (C-2), 118.4 (C-4), 117.5, 116 , 0 (C-5 and C-7), 113.0 (C-8a), 110.9 (C-9a), 38.7 (10-CH 3 ), 20.0 (3-CH 3 ).

Primer 3Example 3

3-karbamoilmetil-1,8-dihidroksi-10-metoksi-10-metil-9-okso9,10-dihidroantracen-2-karboksilna kislina (3) ali3-Carbamoylmethyl-1,8-dihydroxy-10-methoxy-10-methyl-9-oxo9,10-dihydroanthracene-2-carboxylic acid (3) or

3-karbamoilmetil- 1,8-dihidroksi-10-metoksi- 10-metilantron-2-karboksilna kislina (3)3-Carbamoylmethyl-1,8-dihydroxy-10-methoxy-10-methylantrone-2-carboxylic acid (3)

Po fermentaciji in izolaciji, opisani v primeru 1, dobimo snov 3 (7 mg) z ločenjem suhega ostanka s kromatografijo na koloni silikagela z eluiranjem s sistemom topil B (30-45% n-heksan-etil acetat). Kot v primeru 2 frakcije, ki vsebujejo snov 3, združimo in koncentriramo z uparjenjem pod zmanjšanim tlakom in prav tako raztopimo v 2 ml metanola. Raztopino ohladimo na +4 °C. Po 20 urah se obori snov 3 kot rumena oborina.After fermentation and isolation as described in Example 1, substance 3 (7 mg) was obtained by separating the dry residue by chromatography on a silica gel column eluting with solvent system B (30-45% n-hexane-ethyl acetate). As in Example 2, the fractions containing substance 3 were combined and concentrated by evaporation under reduced pressure and also dissolved in 2 ml of methanol. The solution was cooled to +4 ° C. After 20 hours, substance 3 precipitates as a yellow precipitate.

'H NMR: (400MHz, DMSO-d6); 12,41 (2H, br. s, NH2), 11,94 (IH, s, 2-COOH), 7,76 (IH, s, 8-OH), 7,60 (IH, s, 1-OH), 7,69 (IH, t, J = 8,0 Hz, H-6), 7,42 (IH, dd, J = 7,6 Hz, H-5), 7,39 (IH, s, H-4), 6,95 (IH, d, J = 8,4 Hz, H-7), 3,81 (2H, ABq, J = 16 Hz, 3-CH2-), 3,61 (3H, s, 10-OCH3), 1,51 (3H, s, 10-CH3).≪ 1 > H NMR: (400MHz, DMSO-d6); 12.41 (2H, br. S, NH 2 ), 11.94 (1H, s, 2-COOH), 7.76 (1H, s, 8-OH), 7.60 (1H, s, 1- OH), 7.69 (1H, t, J = 8.0 Hz, H-6), 7.42 (1H, dd, J = 7.6 Hz, H-5), 7.39 (1H, s , H-4), 6.95 (1H, d, J = 8.4 Hz, H-7), 3.81 (2H, ABq, J = 16 Hz, 3-CH2-), 3.61 (3H , s, 10-OCH 3 ), 1.51 (3H, s, 10-CH 3 ).

13C NMR: (100MHz, DMSO-d6): 191,5 (C-9), 170,2 (3-CH2-CO-NH2) 166,8 (2COOH), 161,6 (C-8) 158,3 (C-l), 152,0 (C-lOa), 151,7 (C-4a), 141,1 (C-3), 137,6 (C-6), 126,2 (C-2), 119,2 (C-4), 117,2 (C-5), 116,1 (C-7), 113,0 (C-8a), 111,9 (C-9a), 13 C NMR: (100MHz, DMSO-d6): 191.5 (C-9), 170.2 (3-CH 2 -CO-NH 2 ) 166.8 (2COOH), 161.6 (C-8) 158.3 (Cl), 152.0 (C-10a), 151.7 (C-4a), 141.1 (C-3), 137.6 (C-6), 126.2 (C-2) ), 119.2 (C-4), 117.2 (C-5), 116.1 (C-7), 113.0 (C-8a), 111.9 (C-9a),

69,4 (3-CH2-CO-NH2), 51,8 (10-O-CH3), 38,7 (IO-CH3).69.4 (3-CH 2 -CO-NH 2 ), 51.8 (10-O-CH 3 ), 38.7 (IO-CH 3).

Claims (6)

Patentni zahtevkiPatent claims 1. Novi poliketidi, derivati antrona, s splošno formulo I1. New polyketides, anthron derivatives, of general formula I I v kateriAnd in which R1 predstavlja -CH2-CONH2 ali -CH3,R 1 represents -CH 2 -CONH 2 or -CH 3, R2 predstavlja -OH ali -OCH3.R 2 represents -OH or -OCH 3 . 2. Nova spojina po zahtevku 1, označena s tem, da R1 predstavlja -CH2-CONH2,A new compound according to claim 1, wherein R 1 represents -CH 2 -CONH 2, R2 predstavlja -OH.R 2 represents -OH. 3. Nova spojina po zahtevku 1, označena s tem, da R predstavlja -CH3, R pa predstavlja -OH.A new compound according to claim 1, wherein R represents -CH 3 and R represents -OH. 1 o1 o 4. Nova spojina po zahtevku 1, označena s tem, da R predstavlja -CH2-CONH2, R pa predstavlja -OCH3.The new compound of claim 1, wherein R represents -CH 2 -CONH 2 and R represents -OCH 3 . 5. Postopek za pripravo novih poliketidov, derivatov antrona, po zahtevku 1, označen s tem, da konstruiramo sev S. rimosus R6-ZGL1 s pomočjo plazmidov pPFZ46, pIBI24, p504, p508x in pIJ486, nakar izvajamo fermentacijo 5 do 7 dni pri temperaturi 25 do 30 °C na rotacijskem stresalniku, nato izolacijo z ekstrakcijo z organskim topilom, ki se slabo meša z vodo, in z njihovim ločenjem s pomočjo kromatografije na koloni silikagela ob uporabi dveh običajnih sistemov topil, kot kloroforma-metanola ali n-heksana-etil acetata, čemur sledi ločenje na koloni Sephadex LH-20 z eluiranjem z zmesjo preje omenjenih topil ali z obarjanjem v metanolu.Process for the preparation of new polyketides, anthrone derivatives according to claim 1, characterized in that the S. rimosus R6-ZGL1 strain is constructed using plasmids pPFZ46, pIBI24, p504, p508x and pIJ486, and then fermented for 5 to 7 days at a temperature 25 to 30 ° C on a rotary shaker, then isolation by extraction with a water miscible organic solvent and their separation by silica gel column chromatography using two conventional solvent systems, such as chloroform-methanol or n-hexane- ethyl acetate, followed by separation on a Sephadex LH-20 column by elution with a mixture of the yarns of said solvents or by precipitation in methanol. 6. Novi poliketidi, derivati antrona, za uporabo kot biološko aktivne spojine ali kot intermediati pri pripravi novih biološko aktivnih spojin, ki imajo potencialno terapevtsko učinkovitost.6. New polyketides, anthrone derivatives, for use as biologically active compounds or as intermediates in the preparation of novel biologically active compounds that have potential therapeutic efficacy.
SI200000126A 1999-05-20 2000-05-19 Novel polyketides, anthrone derivatives SI20274A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR990153A HRP990153A2 (en) 1999-05-20 1999-05-20 Novel polyketides, antrone derivatives

Publications (1)

Publication Number Publication Date
SI20274A true SI20274A (en) 2000-12-31

Family

ID=10946930

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200000126A SI20274A (en) 1999-05-20 2000-05-19 Novel polyketides, anthrone derivatives

Country Status (2)

Country Link
HR (1) HRP990153A2 (en)
SI (1) SI20274A (en)

Also Published As

Publication number Publication date
HRP990153A2 (en) 2001-06-30

Similar Documents

Publication Publication Date Title
EP0910633B1 (en) Hybrid polyketide synthase I gene
US6271255B1 (en) Erythromycins and process for their preparation
US10047363B2 (en) NRPS-PKS gene cluster and its manipulation and utility
Stutzman-Engwall et al. Multigene families for anthracycline antibiotic production in Streptomyces peucetius.
JP2000515390A (en) Novel polyketide derivative and recombinant method for producing the same
US20090286291A1 (en) Borrelidin-producing polyketide synthase and its use
US20080287483A1 (en) Polyketides and Their Synthesis and Use
CZ20004912A3 (en) Polyketides and their synthesis
EP2615168B1 (en) Process for producing reveromycin a or a synthetic intermediate thereof, process for producing compounds containing a spiroketal ring and novel antineoplastics, fungicides and therapeutic agents for bone disorders
KR101542243B1 (en) Genetically engineered strain wsj-ia for producing isovaleryl spiramycin i
Maharjan et al. Identification and functional characterization of an afsR homolog regulatory gene from Streptomyces venezuelae ATCC 15439
Yang et al. New secondary metabolites from an engineering mutant of endophytic Streptomyces sp. CS
US7807418B2 (en) Method for producing hybrid polyketide synthases
AU2019101637A4 (en) Streptovaricin derivative, and preparation method and use thereof
SI20274A (en) Novel polyketides, anthrone derivatives
SI20073A (en) Novel polyketides, pyranone derivatives
CN101545000A (en) Method for improving yield of ECO-0501 produced by fermenting Amycolatopsis orientalis
Arakawa Characterization of the Biosynthetic Gene Clusters Located on the Streptomyces Linear Plasmid
Linton An Investigation of the Molecular Genetics of Tetronasin Biosynthesis and Resistance in Streptomyces longisporoflavus
He Molecular analysis of the aureothin biosynthesis gene cluster from streptomyces thioluteus HKI-227: new insights into polyketide assemply
Sydor Elucidation of the prodiginine biosynthetic pathway in Streptomyces coelicolor A3 (2)
Chen Molecular mechanism for the biosynthesis of antifungal HASF and antibacterial WAP-8294A2
JP2009219493A (en) Polyketides and synthesis thereof
JP2003174884A (en) rhoG GENE AND USE THEREOF