SI20253A - Method and arrangement for adaptive control of electroerosion based working process - Google Patents

Method and arrangement for adaptive control of electroerosion based working process Download PDF

Info

Publication number
SI20253A
SI20253A SI9900078A SI9900078A SI20253A SI 20253 A SI20253 A SI 20253A SI 9900078 A SI9900078 A SI 9900078A SI 9900078 A SI9900078 A SI 9900078A SI 20253 A SI20253 A SI 20253A
Authority
SI
Slovenia
Prior art keywords
voltage
discharge
circuit
limit voltage
adaptive
Prior art date
Application number
SI9900078A
Other languages
Slovenian (sl)
Inventor
Vito Garbajs
Original Assignee
Garbajs Dr. Vito
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garbajs Dr. Vito filed Critical Garbajs Dr. Vito
Priority to SI9900078A priority Critical patent/SI20253A/en
Publication of SI20253A publication Critical patent/SI20253A/en

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

The automatic control of the electroerosion based processing according to the invention is performed in such a way that the process adapts to the model for such a process, which during processing concurrently adapts to the current situation, by adaptive learning. The upper and lower limit voltages for the area of the required voltage are progressing during the electroerosion process, depending on the time of the current discharg, are calculated for each individual discharge based on stored data on sampling the time based voltage progress of the active discharge processes. The current discharge is perceived as a non-standard discharge as soon as its voltage leaves the limited area by exceeding one of the two limit voltages. The automatic setting of limit voltages simplifies the control process and allows a higher automation level and at the same time eliminates the operator factor. In order to meet a required progress the adaptive process is reliable and features short reaction times. It allows precise processing providing high quality product surface.

Description

Postopek in priprava za adaptivno krmiljenje procesa elektroerozijskega obdelovanjaProcedure and preparation for adaptive control of the erosion treatment process

Predmet izuma sta postopek in priprava za adaptivno krmiljenje procesa elektroerozijskega obdelovanja, s katerim se potek tega procesa zaradi njegovega stalnega spreminjanja samodejno prilagaja željenemu poteku procesa glede na pogostost nenormalnih razelektritev kot merilo za kakovost procesa, tako da se po vsaki nenormalni razelektritvi izvede ustrezno dolgo trajajoči odklop tokovnih impulzov.The subject of the invention is a method and device for adaptive control of a process of erosion treatment, by which the process of this process, due to its constant modification, is automatically adjusted to the desired course of the process according to the frequency of abnormal discharges as a criterion for the quality of the process, so that, after each abnormal discharge, a sufficiently long duration is performed disconnection of current pulses.

Izum je po mednarodni klasifikaciji patentov uvrščen v razred B 23H 1/02.According to the international patent classification, the invention is classified in class B 23H 1/02.

Glede na pomanjkljivosti dosedaj znanih postopkov in priprav uvodoma navedene vrste za adaptivno krmiljenje procesa elektroerozijskega obdelovanja je tehnični problem izuma, izvesti popolnoma samodejno krmiljenje omenjenega procesa s prilagajanjem procesa na model za ta proces, ki naj se trenutnim razmeram med obdelovanjem sproti prilagaja s samoučenjem, in brez predhodnega nastavljanja za proces domnevno ustreznih mejnih vrednosti za področje delovnih napetosti.In view of the disadvantages of the known methods and preparations of the aforementioned type for adaptive control of the erosion treatment process, it is a technical problem of the invention to perform a fully automatic control of the said process by adapting the process to a model for this process, which should be adapted to the current conditions during the treatment by self-learning, and without pre-setting for the process the supposedly appropriate limit values for the operating voltage range.

Pri elektroerozijskem obdelovanju potekajo med elektrodo in obdelovancem praviloma po površini obdelovanca enakomerno razporejene željene delovne razelektritve, pogosto pa se pojavijo tudi neželjene, pretežno lokalizirane nenormalne razelektritve. Opredelitev nenormalnih razelektritev je v stroki poznana. Da se izboljša učinek elektroerozijskega obdelovanja, se le-to krmili tako, da se identificirajo nenormalne razelektritve, po zaznavi katerih se tokovni impulzi izklopijo in se podaljšujejo pavze med njimi ali pa se elektroda po določenem času odmakne od obdelovanca.In the case of electro-erosion treatment, the desired work discharge is uniformly distributed between the electrode and the workpiece, and often unwanted, mostly localized, abnormal discharge occurs. The definition of abnormal discharges is known in the art. In order to improve the effect of the erosion treatment, it is controlled by identifying abnormal discharges, upon detection of which the current pulses are switched off and the pauses between them are extended or the electrode moves away from the workpiece after a certain time.

V patentnih spisih CH 659 966 A5 in DE 33 00 552 C2, oba izhajata iz prioritetne patentne prijave YU 51/82, sta opisana postopek in priprava za adaptivno krmiljenje procesa elektroerozijskega obdelovanja. Za vsak tokovni impulz - generator impulzov električnega toka je krmiljen s signalom T ure, katerega perioda t je sestavljena iz delovne dobe t in dobe t pavze - se ugotovi, ali je povzročil delovno razelektritev ali pa nenormalno razelektritev. Kot delovna se identificira tista razelektritev, pri kateri se šele po preteku značilnega minimalnega časa td po sprožitvi tokovnega impulza napetost U razelektritve med elektrodo in obdelovancem od vžigne vrednosti Up spusti med predpisani mejni vrednosti UH’ in UL’ in tu ostane do konca delovne dobe t vsake periode pojavljanja tokovnih impulzov ter izkazuje značilno nihanje (sl. 1). Le krivulja Uc prikazuje delovno razelektritev, napetost razelektritve Ua je do konca delovne dobe ostala nad zgornjo mejno vrednostjo UH’, napetost razelektritev Ud in Ue je prehitro padla pod mejno vrednost UH’, medtem ko razelektritev Ub ne kaže značilnih nihanj napetosti. Ločeno se štejejo delovne in nenormalne razelektritve. Potek obdelovalnega procesa se zaradi narave razelektritev stalno spreminja, z opisanim postopkom pa se samodejno prilagaja željenemu poteku procesa glede na pogostost nenormalnih razelektritev, ki predstavlja merilo za kakovost procesa, in sicer tako da se po povečanju pogostosti nenormalnih razelektritev poseže v obdelovalni proces z ustrezno dolgo trajajočim odklopom tokovnih impulzov. Pri opisani znani rešitvi kot tudi pri drugih rešitvah po stanju tehnike je potrebno neprestano naravnavanje priprave na trenutno gostoto električnega toka, vsakič naravnanje na par elektroda - obdelovanec in še druga naravnavanja, naprimer na spremembe kapacitivnosti ali induktivnosti v sistemu tokovni impulzni generator - priključni kabel - elektroda - obdelovanec. Težave so še posebno očitne, kadar je delovna doba tokovnih impulzov krajša od 10 gs; tedaj se nenormalne razelektritve preprečujejo pretežno s periodičnim odmikanjem elektrode od obdelovanca, poskuša pa se tudi z ročnim nastavljanjem mejnih vrednosti napetosti oziroma značilnega minimalnega časa td.The patent documents CH 659 966 A5 and DE 33 00 552 C2, both derived from priority patent application YU 51/82, describe the process and preparation for adaptive control of the erosion treatment process. For each current pulse - the current pulse generator is controlled by a clock signal T whose period t consists of a duty period t and a break time t - it is determined whether it has caused a working discharge or an abnormal discharge. A discharge is identified as a discharge in which only after a typical minimum time t d has elapsed after the initiation of the current pulse, the voltage U of the discharge between the electrode and the workpiece drops from the firing value U p between the prescribed limit values U H 'and U L ' and remains here until the end of the service life t of each period of occurrence of current pulses and shows a characteristic oscillation (Fig. 1). Only the Uc curve shows the working discharge, the discharge voltage Ua remained above the upper limit U H 'until the end of the service life, the discharge voltage Ud and Ue dropped too fast below the limit U H ', while the discharge Ub does not show significant voltage fluctuations. Labor and abnormal discharges are considered separately. Due to the nature of the discharge process, the flow of the machining process is constantly changing, and with the described procedure it automatically adapts to the desired process flow according to the frequency of abnormal discharges, which is a criterion for the quality of the process, so that after increasing the frequency of abnormal discharges it engages in the processing process with a correspondingly long continuous disconnection of current pulses. The known solution as well as other solutions according to the state of the art require continuous adjustment of the current density, each time adjusting to a pair of electrodes - workpiece and other adjustments, such as changes in capacitance or inductance in the system current pulse generator - connecting cable - electrode - workpiece. Problems are particularly apparent when the operating time of current pulses is less than 10 gs; then abnormal charges are prevented mainly by periodically moving the electrode away from the workpiece, but also by manually adjusting the voltage limit values or a typical minimum time t d .

Navedeni tehnični problem je rešen s postopkom po izumu za adaptivno krmiljenje procesa elektroerozijskega obdelovanja, po katerem se potek tega procesa zaradi njegovega stalnega spreminjanja samodejno prilagaja željenemu poteku procesa glede na pogostost nenormalnih razelektritev med elektrodo in obdelovancem kot merilo za kakovost procesa, tako da se po zaznavi nenormalne razelektritve poseže v obdelovalni proces s pogostosti nenormalnih razelektritev ustrezno dolgo trajajočim odklopom tokovnih impulzov, pri čemer je postopek po izumu značilen po tem, da se kot spodnja meja zgornjega področja pojavljanja nenormalnih razelektritev in zgornja meja spodnjega področja pojavljanja nenormalnih razelektritev na osnovi shranjenih podatkov o vzorčenju časovnega poteka napetosti delovnih razelektritev v tem procesu za vsako tekočo razelektritev posebej izračunata od časa trajanja tekoče razelektritve odvisni zgornja mejna napetost oziroma spodnja mejna napetost za področje omenjenih željenih potekov tega procesa in da se kot nenormalna razelektritev zazna tekoča razelektritev takoj, ko njena napetost zapusti omenjeno področje željenih potekov procesa, s tem da prekorači eno od obeh mejnih napetosti.Said technical problem is solved by the method according to the invention for adaptive control of the erosion treatment process, according to which the process of this process is automatically adapted to the desired course of the process due to its constant variation according to the frequency of abnormal discharges between the electrode and the workpiece, so that detecting abnormal discharges interferes with the processing process with the frequency of abnormal discharges corresponding to the long-term disconnection of current pulses, the method according to the invention characterized in that the lower limit of the upper region of occurrence of abnormal discharges and the upper limit of the lower region of occurrence of abnormal discharges on the sampling time of the discharge currents in this process, for each liquid discharge separately, the upper boundary voltage or the lower boundary voltage for the field of remarks shall be calculated separately from the duration of the liquid discharge. of the desired course of the process, and that a current discharge is detected as an abnormal discharge as soon as its voltage leaves the said region of the desired course of the process by exceeding one of the two limit voltages.

Postopek po izumu je nadalje značilen po tem, da se časovno odvisni zgornja in spodnja mejna napetost v posameznem izmed vsaj štirih časovnih odsekov delovne dobe v vsaki periodi tokovnih impulzov izračunata s pomočjo v omenjenih časovnih odsekih s statistično obdelavo časovnega poteka napetosti predhodnih delovnih razelektritev pridobljenih njunih krivinskih polmerov v teh časovnih odsekih in da v primeru razdelitve delovne dobe na štiri časovne odseke prvi časovni odsek traja 2 gs, začenši od prehoda napetosti razelektritve pod zgornjo mejno napetost na samem začetku tokovnega impulza, in trajajo drugi časovni odsek nadaljnje 4 gs, tretji časovni odsek nadaljnjih 54 gs in zatem četrti časovni odsek do konca delovne dobe v tisti periodi tokovnih impulzov.The method according to the invention is further characterized in that the time-dependent upper and lower boundary voltages in each of at least four time segments of the service life in each period of current pulses are calculated by means of said time sections by statistical processing of the time course of the voltages of the previous operating discharges of their acquired of radius radii in these time sections and that in the case of dividing the service life into four time sections, the first time section lasts 2 gs, starting from the passage of the discharge voltage below the upper limit voltage at the outset of the current pulse, and the second time section a further 4 gs, the third time a further 54 gs section and then a fourth time section until the end of the service life during that period of current pulses.

Postopek po izumu je značilen tudi po tem, da se potek zgornje mejne napetosti ali potek spodnje mejne napetosti pospešeno prilagodi hitri spremembi v obdelovalnem procesu s pomočjo spodnjega oziroma zgornjega odločitvenega signala, ki sledi prehodu napetosti razelektritve preko spodnje mejne napetosti oziroma preko zgornje mejne napetosti, in s pomočjo prilagodilnega signala, ki pospešeno prilagodi eno od mejnih napetosti drugi mejni napetosti, če se le-ta spremeni hitro.The process according to the invention is also characterized in that the upper limit or lower limit voltage is rapidly adapted to a rapid change in the processing process by means of a lower or upper decision signal following the passage of the discharge voltage across the lower limit voltage or over the upper limit voltage, and by means of an adaptive signal that rapidly adjusts one of the limit voltages to the other limit voltage if it changes rapidly.

Navedeni tehnični problem je rešen s tudi s pripravo po izumu za adaptivno krmiljenje procesa elektroerozijskega obdelovanja, pri čemer ta priprava obstoji iz priprave za elektroerozijsko obdelovanje in iz adaptivnega vezja, na katerega prvi vhod se dovaja napetost razelektritve in s katerega izhoda se na krmilni vhod generatorja tokovnih impulzov dovaja odklopitveni signal, pri čemer je priprava po izumu značilna po tem, da se napetost razelektritve vodi tudi na vhod vezja za tvorjenje modela elektroerozijskega procesa in se v tem vezju s samoučenjem pridobljena signala zgornje in spodnje mejne napetosti za področje željenih razelektritev vodita na drugi in tretji vhod adaptivnega vezja.The aforementioned technical problem is also solved by the device according to the invention for adaptive control of the process of erosion treatment, in which this device consists of a device for electro-erosion treatment and an adaptive circuit, to which the first input is supplied by the discharge voltage and from which output is output to the control input of the generator The current impulses provide a disconnect signal, the device according to the invention characterized in that the discharge voltage is also directed to the input of the circuit for the formation of a model of the erosion process, and in this circuit the upper and lower boundary voltage signals obtained for self-learning are directed to the desired discharges. second and third adaptive circuit inputs.

Priprava po izumu je nadalje značilna po tem, da je vezje za tvorjenje modela elektroerozijskega procesa sestavljeno iz vezja za vzorčenje napetosti razelektritev in za računanje krivinskih polmerov poteka obeh mejnih napetosti v posameznih časovnih odsekih delovne dobe v vsaki periodi tokovnih impulzov in iz vezij za tvorjenje zgornje mejne napetosti oziroma spodnje mejne napetosti v omenjenih časovnih odsekih delovne dobe, in da je na prvi vhod teh treh vezij dovedena napetost razelektritve in se na njihov prvi in drugi krmilni vhod vodita signal ure za tvorjenje zaporedja tokovnih impulzov oziroma odklopitveni signal, in da je izhod vezja za vzorčenje napetosti razelektritev in za računanje krivinskih polmerov poteka obeh mejnih napetosti v posameznih časovnih odsekih delovne dobe v vsaki periodi tokovnih impulzov priključen na drugi vhod vezij za tvorjenje zgornje mejne napetosti oziroma spodnje mejne napetosti.The device according to the invention is further characterized in that the circuit for forming the model of the erosion process consists of a circuit for sampling the discharge voltages and for calculating the curvature radii of both limit voltages in individual time sections of the service life in each period of current pulses and of the circuits for the formation of the upper limit voltage and / or lower limit voltage in the aforementioned operating time segments, and that a discharge voltage is applied to the first input of these three circuits and that a clock signal is generated at their first and second control inputs to generate a sequence of current pulses or a disconnect signal, and that the output is circuits for sampling the voltages of charges and for calculating the radius of curvature of both limit voltages in each time section of the service life in each period of current pulses connected to the second input of the circuits for the formation of upper limit voltage or lower limit voltage.

Priprava po izumu je nadalje značilna po tem, da se z drugega in tretjega vhoda adaptivnega vezja vodita signala zgornje in spodnje mejne napetosti na prvi vhod prvega primerjalnika oziroma na prvi vhod drugega primerjalnika, ki sta vsebovana v identifikacijskem vezju adaptivnega vezja in na katerih drugi vhod se s prvega vhoda adaptivnega vezja dovaja napetost razelektritve in katerih izhodna signala se vodita na vhoda odločitvenega vezja, ki je vsebovano v adaptivnem vezju in ki je krmiljeno s signalom ure za tvorjenje zaporedja tokovnih impulzov in z odklopitvenim signalom in na katerega izhodih se vselej, kadar napetost razelektritve prestopi zgornjo mejno napetost oziroma spodnjo mejno napetost, pojavita prvi odločitveni signal oziroma drugi odločitveni signal, ki se vodita na modifikacijsko vezje, kije vsebovano v adaptivnem vezju in v katerem povzročita nastanek odklopitvenega signala, pri čemer se prvi odločitveni signal in drugi odločitveni signal vodita na tretji krmilni vhod vezja za tvorjenje spodnje mejne napetosti oziroma na tretji krmilni vhod vezja za tvorjenje zgornje mejne napetosti in sta vezji za tvorje5 nje zgornje mejne napetosti oziroma spodnje mejne napetosti medsebojno povezani s prilagodilnim signalom, ki pospešeno prilagodi eno od mejnih napetosti drugi, če se le-ta spremeni hitro.The device according to the invention is further characterized in that upper and lower boundary voltage signals are output from the second and third inputs of the adaptive circuit to the first input of the first comparator or to the first input of the second comparator, which are contained in the identification circuit of the adaptive circuit and to which the second input a discharge voltage is supplied from the first input of the adaptive circuit and whose output signals are directed to the inputs of the decision circuit contained in the adaptive circuit and which is controlled by a clock signal to generate a series of current pulses and a disconnect signal and at which outputs The discharge voltage crosses the upper limit voltage or lower limit voltage, the first decision signal or the second decision signal appear, which are directed to the modification circuit contained in the adaptive circuit and in which the disconnect signal is generated, the first decision signal and the second decision signal lead on the third feed the lower input of the circuit for the formation of the lower limit voltage, or the third control input of the circuit for the formation of the upper limit voltage, and the circuits for the formation of the upper limit voltage or the lower limit voltage are interconnected by an adaptive signal that rapidly adjusts one of the limit voltages to the other, if only - changes quickly.

S postopkom in pripravo po izumu za adaptivno krmiljenje elektroerozijskega obdelovanja je omogočeno, da ni več potrebno nastavljati zgornjo in spodnjo mejno napetost željenih razelektritev in številne druge parametre procesa, ampak se med obdelovalnim procesom vsakič na začetku delovne dobe za celo delovno dobo samodejno stvorita potekajočemu obdelovalnemu procesu prilagojeni krivulji zgornje in spodnje mejne napetosti za tekočo razelektritev. Zato se poenostavi krmiljenje in je omogočena višja stopnja avtomatizacije elektroerozijskega obdelovanja, izključen pa je vpliv operaterja. Adaptacija poteka zanesljivo in s kratkimi reakcijskimi časi reda velikosti 0,5 Za razliko od stanja tehnike rešitev po izumu omogoča zanesljivo fino obdelovanje, torej delovne dobe tokovnih impulzov pod 10 /xs. Prednost rešitve po izumu pa se pokaže tudi pri večji učinkovitosti obdelave, manjši obrabi elektrod in v kakovostni površini izdelkov.The process and preparation according to the invention for adaptive control of erosion treatment makes it possible to no longer need to adjust the upper and lower limit voltages of the desired discharges and many other process parameters, but are automatically created during the working process for the entire working life at the beginning of the working life. adjusted to the upper and lower boundary voltage curve for liquid discharge. Therefore, the control is simplified and a higher degree of automation of the erosion treatment is enabled, and the influence of the operator is excluded. Adaptation is carried out reliably and with short reaction times of the order of 0.5 Unlike the prior art, the solution according to the invention enables reliable fine processing, ie a working pulse life of less than 10 / xs. The advantage of the solution according to the invention is also shown by the higher processing efficiency, lower electrode wear and the quality surface of the products.

Izum bo v nadaljnjem podrobno obrazložen na osnovi opisa izvedbenega primera postopka in priprave po izumu za adaptivno krmiljenje elektroerozijskega obdelovanja in na osnovi pripadajočega načrta, ki na shematičen način prikazuje na sl. 2a in b potek napetosti razelektritve v procesu elektroerozijskega obdelovanja in potek po predlaganem postopku s samoučenjem pridobljenih zgornje ter spodnje mejne napetosti za področje željenih razelektritev v tem procesu oziroma potek napetosti pri dveh nenormalnih razelektritvah, sl. 3a in b potek napetosti prve razelektritve na začetku elektroerozijskega obdelovanja in potek omenjenih zgornje ter spodnje mejne napetosti, ko se je začelo samoučenje, oziroma značilnosti krivulj za omenjeni mejni napetosti in sl. 4 pripravo po izumu za izvajanje z izumom predlaganega postopka za adaptivno krmiljenje procesa elektroerozijskega obdelovanja.The invention will be further explained in detail on the basis of a description of an embodiment of the method and preparation according to the invention for adaptive control of electro-erosion treatment and on the basis of the corresponding plan, which shows in a schematic manner in FIG. 2a and b show the discharge current of the electrocution in the process of electro-erosion treatment and the flow according to the proposed procedure with self-learning of the obtained upper and lower boundary voltages for the area of desired discharges in this process, or the course of the voltage at two abnormal discharge, Fig. 3a and b show the voltage of the first discharge at the beginning of the erosion treatment and the course of the upper and lower boundary stresses when the self-learning began, or the characteristics of the curves for said boundary stresses, and FIG. 4 is a device according to the invention for carrying out the process of the invention for the adaptive control of the erosion treatment process.

Na sl. 4 je med drugim shematično prikazana priprava edmd za elektroerozijsko obdelovanje obdelovanca w. Sponki generatorja cpg impulzov električnega toka sta priključeni na elektrodo e in obdelovanec w, med katerima se nahaja tekoči dielektrik fd. Generator cpg impulzov električnega toka je krmiljen s signalom T ure, katerega perioda t je sestavljena iz delovne dobe tQ in dobe tno pavze (sl. 1 zgoraj), z odklopitvenim signalom CO z izhoda adaptivnega vezja ac, ki povzroči odklop tokovnih impulzov iz generatorja cpg, in tudi z osnovnim regulacijskim vezjem bcc, ki krmili tudi servomotor sm za premikanje elektrode e, ne zadeva pa predloženega izuma in zato ni podrobneje razloženo. Značilen parameter v procesu elektroerozijskega obdelovanja je napetost U razelektritve med elektrodo e in obdelovancem w, za krmiljenje obdelovalnega procesa pa se z napetostnega delilnika vd odvzema le del te napetosti, ki bo v nadaljnjem nastopal kot napetost U razelektritve.In FIG. 4 shows, among other things, a schematic representation of an edmd device for electro-erosion treatment of a workpiece w. The terminals of the cpg pulse generator are connected to the electrode e and the workpiece w, between which is the liquid dielectric fd. The cpg impulse generator of the current is controlled by a clock signal T whose period t consists of a duty period t Q and a period of no pause (Fig. 1 above), with a disconnect signal CO from the output of the adaptive circuit ac, which causes the disconnection of the current pulses from of the cpg generator, and also with the basic control circuit bcc, which also controls the servomotor sm to move electrode e, but does not relate to the present invention and is therefore not explained in more detail. A characteristic parameter in the erosion treatment process is the discharge voltage U between the electrode e and the workpiece w, and to control the machining process, only part of this voltage is removed from the voltage divider vd, which will subsequently act as the discharge voltage U.

Postopek po izumu za adaptivno krmiljenje procesa elektroerozijskega obdelovanja temelji na spoznanju, da v diagramu časovne odvisnosti napetosti razelektritev področje željenih, to se pravi delovnih, razelektritev leži med področjem visokonapetostnih nenormalnih razelektritev in področjem nizkonapetostnih nenormalnih razelektritev, in na zamisli, da se pri potekajoči razelektritvi uporabi rezultat samoučenja priprave po izumu na značilnostih predhodnjih razelektritev in se na tej osnovi za potrebo identifikacije tekoče razelektritve vsakič izračunata časovni potek zgornje mejne napetosti UH in časovni potek spodnje mejne napetosti UL kot mejnih krivulj področja željenih potekov procesa.The process according to the invention for adaptive control of the process of erosion treatment is based on the realization that in the time dependence diagram the discharge is the area of desired, that is, working, the discharge lies between the area of high-voltage abnormal discharge and the field of low-voltage discharge, and the idea use the result of the self-learning of the device according to the invention on the characteristics of the previous discharges, and on this basis, for the purpose of identifying the liquid discharge, the time course of the upper limit voltage U H and the time course of the lower limit voltage U L are calculated as the boundary curves of the desired course of the process.

Od začetka elektroerozijskega obdelovanja se shranjujejo podatki o vzorčenju časovnega poteka napetosti U delovnih razelektritev v tem procesu. Na osnovi statističnega vrednotenja teh podatkov se za vsako tekočo razelektritev posebej že takoj na začetku pripadajoče delovne dobe to izračunata zgornja mejna napetost UH(tg) oziroma spodnja mejna napetost UL(t) za področje željenih potekov procesa, in sicer v odvisnosti od časa t trajanja tekoče razelektritve (sl. 2a).From the beginning of the erosion treatment, the sampling time data of the U discharge currents in this process are stored. Based on the statistical evaluation of these data, the upper boundary voltage U H (t g ) and the lower boundary voltage U L (t) for the area of the desired process runs are calculated for each liquid discharge individually immediately at the beginning of the corresponding service life t o from time t of the duration of the liquid discharge (Fig. 2a).

V postopku po izumu se kot te = 0 za opis potekov napetosti razelektritev v modelu za ta proces jemlje trenutek, ko napetost U razelektritve v točki B na začetku delovne dobe to pade pod zgornjo napetostno mejo UH(tg). Odtlej in pa do konca delovne dobe poteka krivulja U(te) delovne razelektritve med krivuljama UH(te) in UL(te) za zgornjo oziroma spodnjo napetostno mejo področja delovnih razelektritev. Ostale podrobnosti na sl. 2a bodo pojasnjene pozneje.In the process according to the invention, the moment when the discharge voltage U at point B at the beginning of the service life t o falls below the upper voltage limit U H (t g ) is taken as t e = 0 to describe the discharge currents in the model. From now until the end of the service period, the U (t e ) curve of the discharge current is drawn between the U H (t e ) and U L (t e ) curves for the upper or lower voltage boundary of the discharge range, respectively. Further details in FIG. 2a will be explained later.

Na sl. 2b sta z napetostnima potekoma U’(te) in U”(t) prikazani razelektritvi, ki se izkažeta kot nenormalni, in sicer v trenutku t’ oziroma t”, ko njun napetostni potek preseka krivuljo zgornje mejne napetosti UH(t) oziroma spodnje mejne napetosti UL(te); tedaj odklopitveni signal CO v tokovnem impulznem generatorju cpg prekine električni tok. Prekinitev traja bodisi samo do konca delovne dobe v tekoči periodi bodisi celo za nekaj sledečih period v primeru večje verjetnosti pojavljanja nenormalnih razelektritev.In FIG. 2b, the voltage paths U '(t e ) and U ”(t) show discharges, which turn out to be abnormal, at the instant t' and t ', respectively, when their voltage path intersects the upper limit voltage curve U H (t) or lower boundary stresses U L (t e ); then the disconnect signal CO in the current pulse generator cpg interrupts the electrical current. The interruption only lasts until the end of his working life in the current period or even for a few subsequent periods in the event of an increased likelihood of abnormal discharge.

Za računanje poteka UH(te) in UL(te) za zgornjo oziroma spodnjo napetostno mejo področja delovnih razelektritev se uporabi naslednji aproksimativni postopek. Delovna doba se od prestopa napetosti U(te) tekoče razelektritve pod zgornjo mejno napetost UH(te) v točki B dalje, izračunano na osnovi podatkov od predhodnjih razelektritev, razdeli na prednostno vsaj štiri časovne odseke z naslednjimi trajanji (sl. 3b):The following approximate procedure is used to calculate the U H (t e ) and U L (t e ) runs for the upper or lower voltage limits of the discharge range, respectively. The working time is divided from the crossing of the voltage U (t e ) of the current discharge below the upper limit voltage U H (t e ) at point B onwards, calculated on the basis of data from the previous discharges, to preferably at least four time sections with the following durations (Fig. 3b ):

- prvi časovni odsek Δ3 traja do 2 jus,- the first time section Δ 3 lasts up to 2 jus,

- drugi časovni odsek Δ2 traja nadaljnje 4 /as,- the second time section Δ 2 takes a further 4 / ac,

- tretji časovni odsek Δ3 traja nadaljnjih vsaj 54 μ-s in zatem- the third time segment Δ 3 lasts a further at least 54 μ-s and thereafter

- četrti časovni odsek Δ. do konca delovne dobe t .- fourth time segment Δ. until the end of his working life t.

oo

Navedeno trajanje časovnih odsekov je bilo izbrano izkustveno. Približka za funkcijska poteka za UH(te) in UL(te) za tekočo razelektritev se izračunata s pomočjo v omenjenih časovnih odsekih ΔΓ ..., Δ4 s statističnim vrednotenjem poteka napetosti U(te) za predhodne delovne razelektritve pridobljenih krivinskih polmerov Rp R2, R3, R4. Dejansko vsak od teh simbolov za polmer predstavlja dvojico malo razlikujočih se polmerov, in sicer polmer za zgornjo in polmer za spodnjo napetostno mejo.The specified duration of the time segments was chosen empirically. Function approximations for U H (t e ) and U L (t e ) for liquid discharge are calculated using the aforementioned time sections Δ Γ ..., Δ 4 with the statistical evaluation of the voltage path U (t e ) for the previous working discharge of the obtained radius curves R p R 2 , R 3 , R 4 . In fact, each of these radius symbols represents two slightly different radii, namely the radius for the upper and the radius for the lower voltage limit.

Izvedba postopka po izumu s štirimi časovnimi odseki Δρ ..., Δ4 daje dobre rezultate, večje število časovnih odsekov pa bi zahtevalo obsežnejšo strojno opremo. Prvi časovni odsek Δ1 je pomemben za obvladovanje finega obdelovanja; še sta prisotna začetna ionizacija in njen razelektritveni kanal, napetost U(te) pa strmo pada. V drugem časovnem odseku Δ2 se je ionizacijski kanal že razvil in napetost U(te) pada manj strmo, se pa še vedno hitro spreminja pri veliki gostoti toka. V časovnem odseku Δ3 se plazmin kanal razvije dokončno in razelektritveni tok doseže nazivno vrednost, napetostni potek U(tg) se ustali. V časovnem odseku Δ4 pa pri t > 100 /us napetost U(tg) razelektritve še vedno rahlo pada pri večjih električnih tokovih, in sicer zaradi dobre električne prevodnosti razvitega plazminega kanala.Performing the process of the invention with four time sections Δ ρ ..., Δ 4 gives good results, and a larger number of time sections would require more extensive hardware. The first time section Δ 1 is important for mastering fine machining; the initial ionization and its discharge channel are still present, and the voltage U (t e ) drops sharply. In the second time section Δ 2 , the ionization channel has already evolved and the voltage U (t e ) drops less steeply, but still changes rapidly at high current density. In the time section Δ 3 , the plasmin channel develops definitively and the discharge current reaches a nominal value, and the voltage course U (t g ) stabilizes. In the time interval Δ 4, however, at t> 100 / us the discharge voltage U (t g ) of the discharge still drops slightly at higher electric currents, due to the good electrical conductivity of the developed plasma channel.

Delovna doba t tokovnega impulza se začne, ko signal T zavzame stanje logične enojke. V tem trenutku se krivulji UH(te) in UL(te) začneta v točkah Bj oziroma Ct in potekata z vodoravnima odsekoma do točk B’ oziroma C in se ob koncu delovne dobe končata v točkah B2 oziroma C2 (sl. 3b). Točka C je postavljena v trenutek prehoda napetosti U(tg) razelektritve skozi referenčno napetost U (vsaj okoli 2 % pod vžigno napetostjo U ) v točki A, točka B’ pa leži vsaj 2 gs za točko B.The operating time t of the current pulse starts when the signal T occupies the state of the logic unit. At this point, the curves U H (t e ) and U L (t e ) begin at points Bj and C t, respectively, and run in horizontal sections to points B 'and C respectively, and end at points B 2 and C 2 at the end of their working lives. (Fig. 3b). Point C is placed at the moment when the voltage U (t g ) passes through the reference voltage U (at least about 2% below the ignition voltage U) at point A, and point B 'lies at least 2 gs behind point B.

Ko se začne elektroerozijsko obdelovanje, se sproži spoznavanje njegovih lastnosti in samoučenje le-teh. Na sl. 2a sta nakazani dve značilnosti, ki se med samoučenjem na samem začetku obdelovalnega procesa ugotavljata pri preverjanju, ali gre za normalno, torej delovno razelektritev; od začetka tokovnega impulza pa do padca začetne napetosti Up električnega impulza pod omenjeno referenčno napetost U. mora preteči značilen minimalni čas td in pri delovni razelektritvi potek napetosti izkazuje nihanje. Po končanem začetnem samoučenju se tedve značilnosti več ne ugotavljata.When electro-erosion treatment begins, it becomes known and self-taught. In FIG. 2a, two characteristics are indicated which, during self-learning, are determined at the very beginning of the processing process in order to check whether it is a normal discharge, ie a work discharge; from the beginning of the current pulse to the drop of the initial voltage U p of the electrical pulse below the reference voltage U. a typical minimum time t d must elapse and, in the case of discharge, the voltage fluctuation shows. After the initial self-study is completed, the weekly characteristics are no longer identified.

Na samem začetku samoučenja se za omenjeni zgornjo in spodnjo mejno napetost UH(te) oziroma UL(te) vzameta izhodiščna približka, ki sta prikazana na sl. 3a. Zgornja mejna napetost je predstavljena s premico UH(tg) = UHmax, kjer je UHmax visoka vrednost napetosti pod vžigno napetostjo U , naprimer 60 V, medtem ko je v zadnjih dveh časovnih odsekih A3 in Δ4 spodnja mejna napetost predstavljena s konstantno vrednostjo UL(tg) = Ur min, ki se nato z vnaprej izbranima vrednostima R2,min in Rimin dvigne do točke C, pri čemer je ULmjn najnižja vrednost napetosti, naprimer 18 V. Obdelava pri navedeni začetni zgornji napetostni meji je bolj groba od zelo grobe obdelave s tokom do 500 A in delovno dobo do 2.000 gs, medtem ko je obdelava pri navedeni začetni spodnji napetostni meji je bolj fina od obdelave s tokom pod i A pri minimalni aktivni površini pod 1 mm2.At the very beginning of the self-study, the baseline approximations are taken for the above and lower boundary stresses U H (t e ) and U L (t e ), respectively, which are shown in Figs. 3a. The upper limit voltage is represented by the line U H (t g ) = U Hmax , where U Hmax is the high voltage value below the ignition voltage U, for example 60 V, while in the last two time sections A 3 and Δ 4 the lower limit voltage is represented with a constant value of U L (t g ) = U r min , which then rises to the point C with the pre-selected values of R 2, min and R imin , where U Lmjn is the lowest voltage value, for example 18 V. Treatment at the given initial the upper voltage limit is rougher than the very rough treatment with a current of up to 500 A and a working life of up to 2,000 gs, while the treatment at the indicated initial lower voltage limit is finer than the treatment with a current below i A with a minimum active surface of less than 1 mm 2 .

Na samem začetku obdelovalnega procesa se samoučenje začne z dvigovanjem UL(tg), s tem da se prilagaja najbolj pogostim delovnim razelektritvam U(tg); ta postopek traja do tri sekunde. Samoučenje se nadaljuje s spuščanjem UH(tg), s tem da se še naprej prilagaja najbolj pogostim delovnim razelektritvam U(tg); ta postopek traja do dve sekundi, seveda obakrat odvisno od pogostosti razelektitev. Med obema krivuljama UH(tg) in UL(t ) nastane področje oziroma okno željenih delovnih razelektritev. Po intenzivnem začetnem samoučenju in tvorjenju potekov mej9 nih napetosti UH(te) in UL(tg) se tekom celotnega procesa elektroerozijskega obdelovanja nadaljuje samoučenje in prilagajanje najbolj pogostim in medsebojno podobnim si potekom U(tg) pojavljajočih se razelektritev.At the very beginning of the machining process, self-learning begins by raising U L (t g ) by adapting to the most common working discharges U (t g ); this process takes up to three seconds. Self-teaching continues to lower U H (t g ) by continuing to adapt to the most common occupational discharges U (t g ); this process takes up to two seconds, of course, depending on the frequency of discharges. Between the two curves U H (t g ) and U L (t), the area or window of the desired discharge is formed. After intensive initial self-learning and the formation of boundary stresses U H (t e ) and U L (t g ), self-learning and adaptation to the most common and mutually similar occurrences of U (t g ) occurring discharges continue throughout the entire process of electro-erosion treatment.

Omenjeno okno se nikoli ne adaptira na prvi spremenjeni potek U(te) delovne razelektritve, saj je njena reprezentiranost zanemarljiva. Adaptacija okna na tak potek U(te) se izvrši šele, ko je prišlo do več podobnih razelektritev. Vrednost njihove napetosti se po omenjenih časovnih odsekih Δρ ..., Δ4 delovne dobe ovrednoti z ugotovljeno empirično verjetnostjo za posamezne razelektritve. Ovrednotenje poteka U(te) delovnih razelektritev se izvede, potem ko se je v približno eni sekundi nabralo dovolj podatkov, da se premakneta mejni krivulji UH(t) in UL(te) okna.This window never adapts to the first modified run of the U (t e ) work discharge, since its representation is negligible. Adaptation of the window to such a course U (t e ) is made only after several similar discharges have occurred. The value of their voltage is evaluated according to the mentioned time segments Δ ρ ..., Δ 4 of working life with the determined empirical probability for individual discharges. The evaluation of the U (t e ) discharge runs is made after enough data have been accumulated in about one second to move the boundary curves U H (t) and U L (t e ) of the window.

Potek mejne napetosti UH(te) ali UL(te) pa se pospešeno prilagodi hitri spremembi v obdelovalnem procesu s pomočjo odločitvenega signala L oziroma H, ki sledi prehodu napetosti U(tg) razelektritve preko spodnje mejne napetosti UL(tg) oziroma preko zgornje mejne napetosti UH(te). Pospešeno prilagajanje ene mejne napetosti drugi se doseže s pomočjo prilagodilnega signala HL neposredno med vezjema bH, bL za računanje mejnih napetosti UH(tg) oziroma UL(te) v vezju mdc za tvorjenje modela elektroerozijskega procesa.The limit voltage U H (t e ) or U L (t e ), however, is rapidly adapted to a rapid change in the machining process by means of the decision signal L and H, respectively, which follows the passage of the discharge voltage U (t g ) through the lower boundary voltage U L ( t g ) or across the upper limit voltage U H (t e ). Accelerated adaptation of one boundary voltage to another is achieved by means of an adaptation signal HL directly between circuits b H , b L to calculate the boundary stresses U H (t g ) and U L (t e ) in the mdc circuit to form a model of the erosion process.

Med delom naprimer nenadoma močno naraste tok razelektritve. Napetost U(tg) razelektritve se dvigne in preseže UH(tg). Odločitveno vezje dc zazna pogoste nenormalne razelektritve in oddaja signal H, ki v vezju bL povzroči pospešeno dvigovanje UL(te) in posledično preko prilagodilnega signala HL tudi pospešeno dvigovanje UH(tg); adaptacija obeh mejnih napetosti UH(tg) in UL(tg) se izvede hitreje kot v eni sekundi. Kadar pa pride med obdelovanjem do počasnejših in manjših sprememb U(tg), se adaptacija izvede manj intenzivno v času nekaj sekund.During work, for example, there is a sudden increase in the discharge current. The discharge voltage U (t g ) rises and exceeds U H (t g ). The decision circuit dc detects frequent abnormal discharges and emits a signal H, which in the circuit b L causes accelerated lifting U L (t e ) and consequently, via the adaptive signal HL, also accelerated lifting U H (t g ); the adaptation of both the limit stresses U H (t g ) and U L (t g ) is performed faster than in one second. However, when slower and smaller changes of U (t g ) occur during processing, the adaptation is performed less intensively over a period of several seconds.

S predlaganim postopkom se uspešno zaznavajo nenormalne razelektritve v širokem območju obdelovalnega procesa, pri čemer delovne dobe tovnih impulzov lahko ležijo med 0,5 pts in 2.000 gs, električni tok impulzov pa med 0,5 A in 500 A, obakrat neodvisno od nastopajočih materialov in velikosti obdelovane površine.The proposed process successfully detects abnormal discharges over a wide range of the machining process, with operating pulses of between 0.5 pts and 2,000 gs and pulse currents between 0.5 A and 500 A, both independently of the materials involved and the size of the cultivated area.

Priprava po izumu za izvajanje z izumom predlaganega postopka za adaptivno krmiljenje procesa elektroerozijskega obdelovanja je prikazana na sl. 4. Obstoji iz priprave edmd za elektroerozijsko obdelovanje, adaptivnega vezja ac in vezja mdc za tvorjenje modela procesa elektroerozijskega obdelovanja, potekajočega med elektrodo e in obdelovancem w. Od priprave edmd se na vhod vezja mdc za tvorjenje modela elektroerozijskega procesa tako kot tudi na prvi vhod adaptivnega vezja ac vodi le signal napetosti U razelektritve.The apparatus of the invention for carrying out the inventive method of adaptive control of the erosion treatment process is shown in FIG. 4. It consists of an edmd preparation for electro-erosion treatment, an adaptive ac circuit and an mdc circuit to form a model of the erosion treatment process taking place between the electrode e and the workpiece w. From the preparation of edmd, only the voltage of the U discharge signal is guided to the input of the mdc circuit to form the model of the erosion process, as well as to the first input of the adaptive circuit ac.

Adaptivno vezje ac sestavljajo identifikacijsko vezje ic, odločitveno vezje dc in modifikacijsko vezje mc. Na prvi vhod adaptivnega vezja ac - njegovi vhodi sovpadajo z vhodi identifikacijskega vezja ic - se dovaja napetost U razelektritve, na drugi in tretji vhod pa se z izhodov vezja mdc za tvorjenje modela elektroerozijskega procesa dovajata signala zgornje in spodnje mejne napetosti UH(t) oziroma UL(t). V vezju mdc nastaneta tadva signala s samoučenjem na osnovi vhodnega signala U(t) kot napetosti razelektritve.The adaptive circuit ac consists of the identification circuit ic, the decision circuit dc and the modification circuit mc. The first input of the adaptive circuit ac - its inputs coincide with the inputs of the identification circuit ic - the voltage U of discharge is supplied, and the second and third inputs of the upper and lower boundary voltage signals U H (t) are fed from the outputs of the mdc circuit to form a model of the erosion process. respectively U L (t). The mdc circuit produces two self-learning signals based on the input signal U (t) as the discharge voltage.

Vezje mdc za tvorjenje modela elektroerozijskega procesa je sestavljeno iz vezja a, ki vzorči napetost U(tg) razelektritev in pridobiva krivinske polmere napetostnega poteka zgornje in spodnje mejne napetostne krivulje v posameznih časovnih odsekih delovne dobe za vsako periodo tokovnih impulzov, in iz vezij bH, bL za tvorjenje zgornje mejne napetosti UH(te) oziroma spodnje mejne napetosti UL(t ) v omenjenih časovnih odsekih s pomočjo prej pridobljenih krivinskih polmerov.The mdc circuit for model formation of the erosion process consists of a circuit a, which samples the voltage U (t g ) of discharge and obtains the curved radii of the upper and lower boundary voltage curve in the individual time segments of the service life for each period of current pulses, and of circuits b H , b L to form the upper boundary stress U H (t e ) or the lower boundary stress U L (t) in the aforementioned time sections using the curves obtained previously.

Na prvi vhod vezij a, bR in bL se vodi napetost U(tg) razelektritve, na njihov prvi in drugi krmilni vhod pa se vodita signal T ure za tvorjenje zaporedja tokovnih impulzov oziroma odklopitveni signal CO. Izhod vezja a je priključen na drugi vhod vezij bHinbThe first input of circuits a, b R and b L is led by the voltage U (t g ) of the discharge, and their first and second control inputs are controlled by a clock signal T to generate a series of current pulses or a disconnect signal CO. The output of circuit a is connected to the second input of circuits b H inb L ·

V prvem primerjalniku cH in drugem primerjalniku cL, ki sta vsebovana v identifikacijskem vezju ic, se vrši zaznavanje nenormalnih razelektritev, s tem da se napetost U(tg) razelektritve tekoče primerja z zgornjo oziroma spodnjo mejno napetostjo UH(te), UL(te) za področje željenih razelektritev.In the first comparator c H and the second comparator c L contained in the identification circuit ic, the detection of abnormal discharges is made by comparing the voltage U (t g ) of the discharge with the upper or lower boundary voltage U H (t e ), respectively. , U L (t e ) for the area of desired discharges.

Izhodna signala omenjenih primerjalnikov cH, cL, torej identifikacijskega vezja ic, se vodita na vhoda odločitvenega vezja dc. Tudi le-to je krmiljeno s signalom T ure za tvorjenje zaporedja tokovnih impulzov in z odklopitvenim signalom CO. Na njegovih dveh izhodih se vselej, kadar napetost U(tg) izstopi iz področja delovnih razelektrietv, s tem da prestopi zgornjo mejno napetost UH(tg) ali spodnjo mejno na11 petost UL(te), pojavi odločitveni signal H oziroma L. Odločitvena signala H in L se vodita na modifikacijsko vezje mc, v katerem povzročita pogostosti nenormalnih razelektritev ustrezno dolg odklopitveni signal CO.The output signals of said comparators c H , c L , hence the identification circuit ic, are guided to the inputs of the decision circuit dc. It is also controlled by a T clock signal to generate a current pulse sequence and a CO disconnect signal. At its two outputs, whenever a voltage U (t g ) exits the range of operating discharges by crossing the upper limit voltage U H (t g ) or the lower boundary voltage 11 L U (t e ), the decision signal H or L. The decision signals H and L are guided to the modification circuit mc in which the frequency of abnormal discharges results in a correspondingly long disconnect signal CO.

Po drugi strani pa se odločitvena signala H in L vodita na tretji krmilni vhod vezja bL za tvorjenje spodnje mejne napetosti UL(tg) oziroma na tretji krmilni vhod vezja bH za tvorjenje zgornje mejne napetosti UH(te). Vezji bH, bL za tvorjenje zgornje mejne napetosti UH(te) oziroma spodnje mejne napetosti UL(t) sta medsebojno povezani z vodom za prilagodilni signal HL, ki pospešeno prilagodi eno od mejnih napetosti UH(te), UL(te) drugi, če se le-ta spremeni hitro.On the other hand, the decision signals H and L are directed to the third control input of the circuit b L for the formation of the lower limit voltage U L (t g ) or to the third control input of the circuit b H for the formation of the upper limit voltage U H (t e ). The circuit b H , b L for the formation of the upper limit voltage U H (t e ) or the lower limit voltage U L (t) are interconnected with the line for the adaptive signal HL, which rapidly adjusts one of the limit voltages U H (t e ), U L (t e ) the second if it changes rapidly.

Claims (8)

Patentni zahtevkiPatent claims 1. Postopek za adaptivno krmiljenje procesa elektroerozijskega obdelovanja, po katerem se potek tega procesa zaradi njegovega stalnega spreminjanja samodejno prilagaja željenemu poteku procesa glede na pogostost nenormalnih razelektritev med elektrodo (e) in obdelovancem (w) kot merilo za kakovost procesa, tako da se po zaznavi nenormalne razelektritve poseže v obdelovalni proces s pogostosti nenormalnih razelektritev ustrezno dolgo trajajočim odklopom tokovnih impulzov, označen s tem, da se kot spodnja meja zgornjega področja pojavljanja nenormalnih razelektritev in zgornja meja spodnjega področja pojavljanja nenormalnih razelektritev na osnovi shranjenih podatkov o vzorčenju časovnega poteka napetosti U delovnih razelektritev v tem procesu za vsako tekočo razelektritev posebej izračunata od časa trajanja tekoče razelektritve odvisni zgornja mejna napetost UH oziroma spodnja mejna napetost UL za področje omenjenih željenih potekov tega procesa in da se kot nenormalna razelektritev zazna tekoča razelektritev takoj, ko njena napetost U zapusti omenjeno področje željenih potekov procesa, s tem da prekorači eno od obeh mejnih napetosti UH, UL.1. A method for adaptively controlling an erosion treatment process, according to which the process of this process is automatically adjusted to the desired course of the process due to its constant variation, according to the frequency of abnormal discharges between the electrode (s) and the workpiece (w), so that detects abnormal discharges interferes with the processing process with the frequency of abnormal discharges corresponding to the long-term disconnection of current pulses, characterized in that, as a lower limit of the upper region of occurrence of abnormal discharges, and an upper limit of the lower region of occurrence of abnormal discharge based on stored data, of the operating discharge in this process, for each liquid discharge separately, the upper limit voltage U H or the lower limit voltage U L, respectively, are calculated from the duration of the current discharge, and that, as an abnormal r azelectricity detects a liquid discharge as soon as its voltage U leaves the said region of the desired course of the process by exceeding one of the two boundary voltages U H , U L. 2. Postopek po zahtevku 1, označen s tem, da se časovno odvisni mejni napetosti UH, UL v posameznem izmed vsaj štirih časovnih odsekov delovne dobe v vsaki periodi tokovnih impulzov izračunata s pomočjo v omenjenih časovnih odsekih s statistično obdelavo časovnega poteka napetosti U predhodnih delovnih razelektritev pridobljenih njunih krivinskih polmerov v teh časovnih odsekih.Method according to claim 1, characterized in that the time dependent voltage limits U H , U L in each of at least four time segments of the service life in each period of the current pulses are calculated by means of said time sections by statistical processing of the time course of the voltage U previous working discharges of their radius curves obtained over these time segments. 3. Postopek po zahtevku 2, označen s tem, da v primeru razdelitve delovne dobe v vsaki periodi tokovnih impulzov na štiri časovne odseke prvi časovni odsek traja do 2 ps, začenši od prehoda napetosti U razelektritve pod zgornjo mejno napetost UH na samem začetku tokovnega impulza, in trajajo drugi časovni odsek nadaljnje 4 μ$, tretji časovni odsek vsaj nadaljnjih 54 μ$ in zatem četrti časovni odsek do konca delovne dobe v tisti periodi tokovnih impulzov.Method according to claim 2, characterized in that in the case of dividing the service life in each period of the current pulses into four time sections, the first time section lasts up to 2 ps, starting from the passage of the discharge voltage U below the upper limit voltage U H at the very beginning of the current pulse, and lasting a second time section of a further $ 4 μ, a third time section of at least a further $ 54 μ, and then a fourth time section until the end of the service period in that period of current pulses. 4. Postopek po enem predhodnih zahtevkov, označen s tem, da se potek mejne napetosti UH ali UL pospešeno prilagodi pogosti hitri spremembi v obdelovalnem procesu s pomočjo spodnjega odločitvenega signala L oziroma zgornjega odločitvenega signala H, ki sledi prehodu napetosti U razelektritve preko spodnje mejne napetosti UL oziroma preko zgornje mejne napetosti UR, in s pomočjo prilagodilnega signala HL, ki pospešeno prilagodi eno od mejnih napetosti UH, UL drugi mejni napetosti, če se le-ta spremeni hitro.Method according to one of the preceding claims, characterized in that the limit voltage U H or U L is rapidly adapted to a frequent rapid change in the machining process by means of the lower decision signal L or the upper decision signal H following the passage of the discharge voltage U through the lower the limit voltage U L, or via the upper limit voltage U R , and with the help of an adaptive signal HL, which rapidly adjusts one of the limit voltages U H , U L to the other limit voltage, if it changes rapidly. 5. Priprava za izvajanje postopka za adaptivno krmiljenje procesa elektroerozijskega obdelovanja po enem izmed predhodnjih zahtevkov, obstoječa iz priprave (edmd) za elektroerozijsko obdelovanje in iz adaptivnega vezja (ac), na katerega prvi vhod se dovaja napetost U razelektritvi in s katerega izhoda se na krmilni vhod generatorja (cpg) tokovnih impulzov vodi odklopitveni signal CO, označena s tem, da se napetost U razelektritve vodi tudi na vhod vezja (mdc) za tvorjenje modela elektroerozijskega procesa in da se v tem vezju (mdc) s samoučenjem pridobljena signala zgornje in spodnje mejne napetosti UH oziroma UL za področje željenih razelektritev vodita na drugi in tretji vhod adaptivnega vezja (ac).5. A device for carrying out the process for adaptive control of the erosion treatment process according to one of the preceding claims, existing from the erosion treatment device (edmd) and from the adaptive circuit (ac), to which the first input is supplied by a voltage U of discharge and from which output the control input of the generator (cpg) of the current pulses is guided by the disconnect signal CO, characterized in that the voltage U of the discharge is also directed to the input of the circuit (mdc) to form a model of the erosion process, and that the above signal is obtained in this circuit (mdc) by self-learning. the lower limit voltages U H and U L, respectively, for the area of the desired discharge lead to the second and third inputs of the adaptive circuit (ac). 6. Priprava po zahtevku 5, označena s tem, daje vezje (mdc) za tvorjenje modela elektroerozijskega procesa sestavljeno iz vezja (a) za vzorčenje napetosti razelektritev in za računanje krivinskih polmerov poteka mejnih napetosti UH, UL v posameznih časovnih odsekih delovne dobe v vsaki periodi tokovnih impulzov in iz vezij (bH, bj za tvorjenje zgornje mejne napetosti UH oziroma spodnje mejne napetosti UL v omenjenih časovnih odsekih delovne dobe, da je na prvi vhod teh treh vezij dovedena napetost U razelektritve in se na njihov prvi in drugi krmilni vhod vodita signal T ure za tvorjenje zaporedja tokovnih impulzov oziroma odklopitveni signal CO, in da je izhod vezja (a) za vzorčenje napetosti razelektritev in za računanje krivinskih polmerov poteka mejnih napetosti UH, UL v posameznih časovnih odsekih delovne dobe v vsaki periodi tokovnih impulzov priključen na drugi vhod vezij (bH, bL) za tvorjenje zgornje mejne napetosti UH oziroma spodnje mejne napetosti UL.Device according to claim 5, characterized in that the circuit (mdc) for generating a model of the erosion process consists of a circuit (a) for sampling the discharge voltages and for calculating the curved radii of the limit stresses U H , U L in individual time sections of the service life in each period of current pulses and from circuits (b H , bj to form the upper limit voltage U H or the lower limit voltage U L in the mentioned time sections of the service life, so that the voltage U is discharged at the first input of these three circuits and at their first and the second control input control the clock signal T to generate a series of current pulses or a disconnect signal CO, and that the output of the circuit (a) is for sampling the discharge voltages and for calculating the curvature radii of the limit voltage U H , U L in individual time sections of service life in each period of current pulses connected to the second input of the circuits (b H , b L ) to form the upper limit voltage U H or the lower limit voltage U L . 7. Priprava po zahtevku 5 ali 6, označena s tem, da se z drugega in tretjega vhoda adaptivnega vezja (ac) vodita signala zgornje in spodnje mejne napetosti UH oziroma UL na prvi vhod prvega primerjalnika (cH) oziroma na prvi vhod drugega primerjalnika (cL), ki sta vsebovana v identifikacijskem vezju (ic) adaptivnega vezja (ac) in na katerih drugi vhod se s prvega vhoda adaptivnega vezja (ac) dovaja napetost U razelektritve in katerih izhodna signala se vodita na vhoda odločitvenega vezja (dc), ki je vsebovano v adaptivnem vezju (ac) in ki je krmiljeno s signalom T ure za tvorjenje zaporedja tokovnih impulzov in z odklopitvenim signalom CO in na katerega izhodih se vselej, kadar napetost U razelektritve prestopi zgornjo mejno napetost UH oziroma spodnjo mejno napetost UL, pojavi prvi odločitveni signal H oziroma drugi odločitveni signal L, ki se vodita na modifikacijsko vezje (mc), ki je vsebovano v adaptivnem vezju (ac) in v katerem povzročita nastanek odklopitvenega signala CO.Device according to claim 5 or 6, characterized in that the upper and lower boundary voltage signals U H and U L, respectively, are fed from the second and third inputs of the adaptive circuit (ac) to the first input of the first comparator (c H ) or to the first input the second comparator (c L ) contained in the identification circuit (ic) of the adaptive circuit (ac) and to which the second input is supplied from the first input of the adaptive circuit (ac) by a voltage U of discharge and whose output signals are directed to the inputs of the decision circuit ( dc) contained in an adaptive circuit (ac) and which is controlled by a clock signal T to generate a series of current pulses and a disconnecting signal CO and at which outputs always occur when the discharge voltage U exceeds the upper boundary voltage U H or the lower boundary voltage voltage U L , the first decision signal H or the second decision signal L occurs, which are guided to the modification circuit (mc) contained in the adaptive circuit (ac), in which the disconnect signal is generated. ala CO., LTD. 8. Priprava po enem izmed zahtevkov 5 do 7, označena s tem, da se prvi odločitveni signal H vodi na tretji krmilni vhod vezja (bL) za tvorjenje spodnje mejne napetosti UL in se drugi odločitveni signal L vodi na tretji krmilni vhod vezja (bH) za tvorjenje zgornje mejne napetosti UH in da sta vezji (bH, bL) za tvorjenje zgornje mejne napetosti UH oziroma spodnje mejne napetosti UL medsebojno povezani z vodom za prilagodilni signal HL, ki pospešeno prilagodi eno od mejnih napetosti UH, UL drugi mejni napetosti, če se le-ta spremeni hitro.Device according to one of Claims 5 to 7, characterized in that the first decision signal H is directed to the third control input of the circuit (b L ) to form the lower limit voltage U L and the second decision signal L is directed to the third control input of the circuit (b H ) for forming the upper limit voltage U H, and that the circuits (b H , b L ) for forming the upper limit voltage U H or the lower limit voltage U L are interconnected with the line for the adaptive signal HL, which rapidly adjusts one of the limit voltages U H , U L second limit voltage if it changes rapidly.
SI9900078A 1999-04-06 1999-04-06 Method and arrangement for adaptive control of electroerosion based working process SI20253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9900078A SI20253A (en) 1999-04-06 1999-04-06 Method and arrangement for adaptive control of electroerosion based working process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9900078A SI20253A (en) 1999-04-06 1999-04-06 Method and arrangement for adaptive control of electroerosion based working process

Publications (1)

Publication Number Publication Date
SI20253A true SI20253A (en) 2000-12-31

Family

ID=20432438

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9900078A SI20253A (en) 1999-04-06 1999-04-06 Method and arrangement for adaptive control of electroerosion based working process

Country Status (1)

Country Link
SI (1) SI20253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918054A1 (en) * 2006-11-06 2008-05-07 Agie Sa Method and device for electrical discharge machining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918054A1 (en) * 2006-11-06 2008-05-07 Agie Sa Method and device for electrical discharge machining
CN101176935B (en) * 2006-11-06 2010-06-16 阿奇公司 Method and device for electrical discharge machining
US8093528B2 (en) 2006-11-06 2012-01-10 Agie Charmilles Sa Method and device for electrical discharge machining

Similar Documents

Publication Publication Date Title
EP0133448A1 (en) Output control of short circuit welding power source
EP3406386B1 (en) Pulse arc welding control method and pulse arc welding device
KR100475516B1 (en) Pulse arc welding method and apparatus
CN106475646B (en) Make to process the constant wire electric discharge machine of clearance distance
US3875362A (en) Process and apparatus for electro-erosion machining by means of electrical discharges providing a high rate of material removal
EP0507560A3 (en) Electric discharge machines
SI25006A (en) Pulse generator with adjustable and controled upward impulse current
EP2078577B1 (en) Wire discharge processing apparatus
SI20253A (en) Method and arrangement for adaptive control of electroerosion based working process
ES8402740A1 (en) Method and apparatus for metal arc welding.
US3250894A (en) Method and apparatus for monitoring short circuits in electric arc welding
KR100242402B1 (en) Method and apparatus for impulse generator for electroerosive machining of workpieces
US5378866A (en) Electric discharge machining system having a secondary power supply including a controllable voltage source and impedance
EP0007968B1 (en) Improvements in methods and apparatus for electrical discharge machining
CA2888299A1 (en) Method and control unit for operating a plasma generation apparatus
US3454737A (en) Method and apparatus for controlling the flow of liquid through spark-machining gaps
US8278586B2 (en) Sinker electric discharge machining method, and sinker electric discharge machining apparatus
US4570050A (en) Arc welding control system
JP3015100B2 (en) Power supply for electrical discharge machining of metal workpieces with electrodes of liquid material or solid material
US7608795B2 (en) Device for machining by electroerosion
JPH01103228A (en) Controller for wire electric discharge machine
JPS63318210A (en) Control device for electric discharge machine
JP2001025921A (en) Electrical discharge machining method and device thereof
SU748579A1 (en) Device for detecting and eliminating short-circuiting in ready-made incandescent lamps
SU727388A1 (en) Apparatus for picking-up signals from erosion gap

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20060210