SI25006A - Pulse generator with adjustable and controled upward impulse current - Google Patents

Pulse generator with adjustable and controled upward impulse current Download PDF

Info

Publication number
SI25006A
SI25006A SI201500148A SI201500148A SI25006A SI 25006 A SI25006 A SI 25006A SI 201500148 A SI201500148 A SI 201500148A SI 201500148 A SI201500148 A SI 201500148A SI 25006 A SI25006 A SI 25006A
Authority
SI
Slovenia
Prior art keywords
current
voltage
generator
circuit
impulse
Prior art date
Application number
SI201500148A
Other languages
Slovenian (sl)
Inventor
Marjan Dobovšek
Original Assignee
Marjan Dobovšek
Hass Ruediger
Risto Matthias
Dobovšek Jure
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marjan Dobovšek, Hass Ruediger, Risto Matthias, Dobovšek Jure filed Critical Marjan Dobovšek
Priority to SI201500148A priority Critical patent/SI25006A/en
Priority to PCT/SI2016/000017 priority patent/WO2016204699A2/en
Publication of SI25006A publication Critical patent/SI25006A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Predmet izuma je impulzni generator za potopno elektroerozijsko obdelavo, ki ima vžigni del in močnostni del v katerem hitrost naraščanja toka nastavljena z napetostjo napajanja jakostnega dela generatorja uj. Ta napetost je seštevek povprečne napetosti razelektritev uep in izbrane razlike v napetosti med napetostjo napajanja jakostnega dela generatorja in napetostjo razelektritve dueji. V vezju (d) so te vrednosti seštete in poslan je signal za krmiljenje napetosti uj. V vezju (e) je kontrolirana hitrostnaraščanja toka diej/dt z meritvami impulznega toka iejn iz senzorja (h) in časom potrebnim za naraščanje toka do izbranih vrednosti iejni. V primeru, da je čas naraščanja toka trn manjši od izbrane vrednosti trni s signalom iz vezja (e), impulz prekinemo. Energetska učinkovitost generatorja je povečana z izklopom upora v jakostnem delu generatorja Rj dokler tok ne doseže izbrane največje vrednosti iejmi. Vpliv upora Rj in dodatne induktivnosti L na hitrost naraščanja toka diej/dt je izključen, ker je uporRj ali dodatna induktivnost L vklopljena šele takrat, ko tok iej doseže izbrano vrednost iejmi. Izkoristek generatorja je povečan tudi tako, da so stranske razelektritve z manjšo dovedeno energijo prekinjene in je po izbrani pavzi t0 vklopljen naslednji impulz.The object of the invention is a pulsed generator for submerged electroerosive treatment having a ignition part and a power section in which the rate of increasing the current is set with the voltage supply of the power section of the generator uj. This voltage is the sum of the average voltage of the uep discharges and the chosen voltage difference between the voltage of the power supply of the generator and the discharge voltage due. In the circuit (d) these values are summed up and the signal for voltage control uj is sent. In the circuit (e), the flow rate of the diej / dt is controlled with the impulse current measurement from the sensor (h) and the time required to increase the current to the selected values. In case the torque rise time is less than the selected value of the spindle with the signal from the circuit (e), the pulse is interrupted. The energy efficiency of the generator is increased by turning off the resistance in the strong part of the generator Rj until the current reaches the selected maximum value of the shells. The influence of the resistor Rj and the additional inductance L on the rate of increase of the diej / dt current is excluded because the resistance or additional inductance L is switched on only when the current reaches the selected value of the elements. The efficiency of the generator is also increased in such a way that the side discharges with less energy input are interrupted and the following pulse is switched on after the selected pause t0.

Description

IMPULNI GENERATOR Z NASTAVLJIVIM IN KONTROLIRANIM NARAŠČANJEM IMPULZNEGA TOKAPULSE GENERATOR WITH ADJUSTABLE AND CONTROLLED PULSE FLOW

Predmet izuma je impulzni generator namenjen za potopno elektroerzijsko obdelavo, ki omogoča nastavitev in kontrolo naraščanja impulznega toka ie(t) v času razelektritve med elektrodo in obdelovancem v dielektrični tekočini. Izum spada v razred B 23H 7/26 mednarodne patentne klasifikacije.The subject of the invention is a pulse generator intended for submersible electric treatment, which allows the setting and control of the increase of the impulse current IU (t) at the time of discharge between the electrode and the workpiece in a dielectric fluid. The invention belongs to class B 23H 7/26 of the international patent classification.

Tehnični problemi, ki jih vezje (d) (Slikal) rešuje, je nastavitev hitrosti naraščanja povprečnega impulznega toka ie(t), ki je izbrana za posamezne kombinacije materiala elektrode in obdelovanca in režime obdelave. Pri jakostnem delu generatorja je za naraščanje toka pomembna razlika med napetostjo izvira za jakostni del generatorja uj in napetostjo razelektritev ue: duej = uj - ue.The technical problems that the circuit (d) (Painted) solves is the setting of the rate of increase of the average impulse current IU (t) selected for individual combinations of electrode material and workpiece material and machining modes. For the generator part, the difference between the source voltage for the unit uj generator voltage and the discharge voltage ue is important for increasing the current: duej = uj - ue.

Konstantna vrednost izbrane napetosti dueji je pomembna za stabilnost tehnologije izbranega režima. Sprememba napetosti jakostnega dela generatorja uj je možna brez prekinitve procesa in je lahko brezstopenjska.The constant value of the selected dueji voltage is important for the stability of the selected mode technology. Changing the voltage of the uj generator power is possible without interruption of the process and can be continuous.

Pri vžignem delu generatorja je za naraščanje toka pomembna razlika med napetostjo izvira za vžigni del generatorja uv in napetostjo razelektritev ue: duev = uv - ue.For the ignition part of the generator, the difference between the source voltage for the ignition part of the uv generator and the discharge voltage ue is important for increasing the current: duev = uv - ue.

• ·• ·

Za vsak režim obdelave je predhodno izbrana napetost napajanja jakostnega dela generatorja ujt, ki je v nekaterih primerih obdelave ne spreminjamo in prilagajamo napetosti razelektritev ue. Tak je primer obdelave, ko ne želimo višje napetosti napajanja jakostnega dela generatorja uj zaradi višje napetosti razelektritev ue n. pr. pri prvih grobih stopnjah obdelave.For each treatment mode, the supply voltage of the power section of the ujt generator is pre-selected, which in some cases of processing is not altered and the discharge voltage ue is adjusted. Such is the case of processing when we do not want a higher supply voltage of the power portion of the uj generator due to the higher discharge voltage ue n. BC at the first rough processing stages.

Naslednji problem, ki ga rešuje vezje (e), je prekinitev slabih impulzov, ki jih prepoznamo po prehitrem naraščanjem toka. Če je čas naraščanja toka za izbrano razliko toka iejn trn manjši od izbranega, je impulz prekinjen.Another problem solved by the circuit (s) is the interruption of bad impulses, which are recognized by too fast a rise in current. If the current rise time for the selected current difference iejn thorn is less than the selected one, the pulse is interrupted.

Pri prepogostem pojavu prekinjenih impulzov dobimo iz vezja (e) signal Sod, ki preko CNC povzroči na stroju odmike in poskrbi za dovod svežega dielektrika v delovno režo.In the event of intermittent pulses occurring, a Sod signal is obtained from the circuit (e), which, through the CNC, causes breaks in the machine and ensures the supply of fresh dielectric to the working slot.

Problem, ki nastane pri generatorjih z uporom Rj je, da se vrednost upora spreminja v odvisnosti od toka izbranega s tehnologijo iejml. To vpliva na hitrost naraščanja toka in ima za posledico tudi toplotne izgube. Svojo funkcijo začne upor Rj opravljati šele takrat, ko je dosežena izbrana vrednost toka iejmi. Problem je rešen s tranzistorjem TRRj, ki je vezan paralelno uporu Rj. Ko je tranzistor TRRj vklopljen je upornost v tokokrogu jakostnega dela generatorja zmanjšana, praktično na upornost trazistorja TRRj. Ko tok jakostnega dela generatorja iej naraste do vrednosti iejmi vezja (e) pošlje signal, ki tranzistor TRRj izklopi in ves tok steče skozi uporThe problem with generators with resistor Rj is that the value of the resistor varies depending on the current selected by iejml technology. This affects the rate of increase of the current and also results in heat losses. The resistor Rj begins to perform its function only when the selected value of the current ijmi is reached. The problem is solved with the transistor TRRj, which is connected in parallel to the resistor Rj. When the TRRj transistor is switched on, the resistance in the generator power circuit is reduced, practically to the resistance of the TRRj transistor. When the current of the IJ generator strength rises to the IJm value of the circuit (s), it sends a signal that turns off the TRRj transistor and flows through the resistor

Rj. V veliko primerih tok razelektritve iej ne doseže vrednosti toka iejmi. V teh primerih je tranzistor TRRj ves čas vklopljen.Rj. In many cases, the IJ discharge current does not reach the IJmi current value. In these cases, the TRRj transistor is switched on at all times.

Pri generatorjih brez upora Rj je regulacija toka iejm izvedena tako, da se tranzitor TRj, ko tok iej doseže izbrano vrednost iejmi izklopi. Ko tok pade za izbrano vrednost diejmi, se tranzistor TRj ponovno vklopi dokler ni ponovno dosežena vrednost toka iejmi (Slika 4). To se ponavlja do konca impulza. Da bi imeli ustrezno frekvenco vklopov in izklopov impulzov mora imeti tokokrog jakostnega dela generatorja ustrezno induktivnost. Če seštevek induktivnosti kabla Lk in generatorja Lj ne zadošča, je potrebno induktivnost povečati z zaporedno vezano dodatno induktivnostjo L. Ta induktivnost začne opravljati svojo funkcijo šele takrat, ko tok jakostnega dela generatorja iej doseže izbrano vrednost iejmi. Če induktivnost L vklopljena ves čas impulza lahko zmanjša hitrost naraščanja toka. Ta problem je rešen tako, da je paralelno induktivnosti L vklopljen tranzistor TRL. Ko je ta vklopljen, je vpliv induktivnosti L praktično izničen. Zato vezje (e) pošlje v vezje (j) v primeru ko doseže impulzni tok iej vrednost iejmi signal, ki tranzistor TRL izklopi in zato ves tok steče skozi induktivnost L.In the case of generators without resistor Rj, the regulation of the iJ current is such that the transistor TRj is switched off when the iJ current reaches the selected iJmi value. When the current drops by the selected die value, the transistor TRj is switched on again until the iJmi current value is reached again (Figure 4). This is repeated until the end of the impulse. In order to have an adequate frequency of pulses on and off, the generator circuit must have adequate inductance. If the sum of the inductance of the cable Lk and the generator Lj is not sufficient, the inductance must be increased by the series-coupled additional inductance L. This inductance begins to perform its function only when the current of the IJ generator strength reaches the selected Ijmi value. If the inductance L is switched on throughout the pulse, it can reduce the rate of increase of current. This problem is solved by switching the TRL transistor in parallel with the inductance L. When this is turned on, the effect of the inductance L is virtually nullified. Therefore, the circuit (s) is sent to the circuit (j) when the pulse current reaches the I / E value, ie the I / O signal which switches off the TRL transistor and therefore flows through the inductance L.

Pri elektroerozijski obdelavi pride do pojava stranskih razelektritev z večjo napetostjo razelektritve ue. Ta pojav je opisan v patentu EP 2 848 349 A1. V primeru, da je napetost razelektritve večja ue od napetosti napajanja jakostnega dela uj, tok jakostnega dela iej ne steče in razelektritev poteka le z vžignim tokom iev. Ko napetost razelektritve ue pade pod vrednost napetosti uj, steče tudi tok iz jakostnega dela generatorja iej (Slika 5). V teh impulzih je dovedena manjša energija z manjšim odvzemom materiala. Poleg tega potekajo te razelektritve na stranski površini elektrode in povečuje stransko režo. To predvsem pri grobih stopnjah obdelave ni zaželjeno in je take impulze boljše prekiniti in po pavzi tO izbrani v tehnologiji začeti z novim impulzom.Electro-erosion treatment gives rise to side charges with higher discharge voltage ue. This phenomenon is described in EP 2 848 349 A1. In the event that the discharge voltage is greater than the supply voltage of the uj strength part, the current of the ij strength part does not drain and the discharge takes place only with the ignition current iev. When the discharge voltage ue drops below the value uj, the current from the output part of the iej generator also flows (Figure 5). These impulses produce less energy with less material withdrawal. In addition, these discharges take place on the side surface of the electrode and increase the side gap. This is especially not desirable at rough processing rates and it is better to interrupt such impulses and, after a pause, select those selected in technology to start a new impulse.

Večina sodobnih elektroerzijskih naprav omogoča spremembo napetosti jakostnega dela generatorja v več stopnjah. Ne omogočajo pa spremembo teh napetosti zvezno in v odvisnosti od poteka elektroerozijskega procesa. Generator izdelan po patentu Sl 20254 A omogoča stopenjsko spreminjanje napetosti jakostnega dela, ne omogoča pa prilagajanja teh napetosti poteku elektroerozijskega procesa med obdelavo. Generator po patentu Sl 22476 A sicer omogoča spreminjanje napetosti jakostnega dela med obdelavo vendar z namenom spreminjanja hitrosti naraščanja in velikosti toka razelektritve zaradi stabilizacije elektroerozijskega procesa in ne stabilnosti tehnologije izbranega režima.Most modern electric power plants make it possible to change the voltage of the generator part in several stages. However, they do not allow changing these voltages continuously and depending on the course of the erosion process. The generator made according to the patent Sl 20254 A allows for a stepwise change in the voltage of the power section, but does not allow for the adjustment of these voltages to the course of the electro-erosion process during processing. Generator according to the patent Sl 22476 A, although it is possible to change the voltage of the power part during processing, but in order to change the rate of increase and the magnitude of the discharge current due to the stabilization of the erosion process and not the stability of the technology of the selected mode.

Impulzni generator po izumu bomo obrazložili na osnovi izvedbenega primera in pripadajočih slik, od katerih kaže:The impulse generator of the invention will be explained on the basis of an embodiment and the accompanying drawings, of which:

Slika 1: Shema generatorja za elektroerozijsko obdelavo.Figure 1: Schematic of a generator for erosion treatment.

Slika 2: Parametre razelektritve pri elektroerozijski obdelavi.Figure 2: Discharge parameters for erosion treatment.

Slika 3: Vpliv impedance delovne reže na napetost razelektritve ue in naraščanje toka rezelektritve iej.Figure 3: Impact of the working gap impedance on the discharge voltage ue and the increase in the discharge current ij.

Slika 4: Naraščanja toka pri generatorju brez upora Rj in dodano • · induktivnostjo L.Figure 4: Current increments at generator without resistance Rj and added • inductance L.

Slika 5: Prekinjen impulz zaradi prevelike zakasnitve vklopa jakostnega dela generatorja dtrO.Figure 5: Pulse interruption due to too much delay in turning on the dtrO generator power section.

Impulzni generator po izumu sestavlja (Slika 1) jakostni del generatorja z izvorom napajanja (b), tranzistor TRj, upor Rj, diode D, povezav v generatorju z induktivnostjo Lj in dodano induktivnostjo L. Jakostni del generatorja ima svojo kapacitivnost Cj. V senzorju napetosti (c) je izmerjena napetost razelektritve ue in v tokovnem senzorju (h) tok razelektritve iej.The impulse generator of the invention consists (Figure 1) of the generator power section with power source (b), transistor TRj, resistor Rj, diodes D, connections in the generator with inductance Lj and added inductance L. The generator power part has its capacitance Cj. In the voltage sensor (c), the discharge voltage ue is measured and in the current sensor (h) the discharge current ij.

V vezje (d) je doveden signal napetosti razelektritve ue v zadnji tretjini normalnih razelektritev, ko je napetost razelektritve najnižja. Za krmiljenje napetosti jakostnega dela generatorja uj je potrebno izračunati povprečno napetost razelektritve uep, ki je izračunana tako, da v vezje (d) s senzorjem (c) dovedena napetost izmerjena v zadnji tretjini razelektritve ue in je v vezju (d) izračunana povprečna napetost uep za izbrano število impulzov n iz enote (f). Tej vrednosti je prišteta izbrana vrednost razlike v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve dueji in tako je s seštevkom uj = uep + dueji iz vezja (d) krmiljena napetost napajanja jakostnega dela generatorja (b).The discharge voltage signal ue is supplied to the circuit (d) in the last third of the normal discharge when the discharge voltage is lowest. To control the voltage of the uj generator power, it is necessary to calculate the average uep charge voltage, which is calculated by measuring the voltage supplied in the last third of the discharge ue into the circuit (d) by the sensor u (c) and calculating the average uep voltage in the circuit (d). for the selected number of pulses n from unit (f). This value is added to the selected value of the difference in voltage between the voltage of the originating source and the voltage dueji due to the sum uj = uep + dueji from the circuit (d) controlling the supply voltage of the generator part (b).

Na napetost razelektritve ue vpliva velikost reže in njena prevodnost (Slika 3.). Na velikost reže vpliva nastavitev servosistema. V zahtevnih pogojih poteka obdelava zaradi boljšega izpiranja z večjo režo. To ima za • · • · posledico večjo napetost razelektritve ue in posledično manjšo razliko napetosti duej. Povprečni tok razelektritev iej je manjši. Enaka vrednost duej je došežena z povečanjem napetosti napajanja jakostnega dela generatorja uj. Seveda je sprememba napetosti uj možna s hitrostjo, ki jo omogoča napajanje jakostnega dela generatorja. Ti časi so od nekaj ms do nekaj 10 do 100 ms.The charge voltage ue is influenced by the size of the gap and its conductivity (Figure 3). The size of the slot is influenced by the setting of the servosystem. In demanding conditions, machining is carried out for better rinsing with a larger slot. This results in a higher discharge voltage ue and, consequently, a smaller voltage difference duej. The average discharge current of the IJ is smaller. Duej is achieved by increasing the supply voltage of the uj generator. Of course, a change in the voltage uj is possible at a rate that is enabled by the power supply to the generator part. These times are from a few ms to a few 10 to 100 ms.

Vžigni del generatorja sestavlja izvor napajanja (a), tranzistor TRv, upor Rv, kabli z induktivnostjo Lv in svojo kapacitivnostjo Cv. V enoti (g) izberemo vžigno napetost izvora uv, ki je med obdelavo z izbranim režimom ne spreminjamo.The ignition part of the generator consists of the power source (a), the transistor TRv, the resistor Rv, the cables with Lv inductance and its capacitance Cv. In unit (g), select the ignition voltage of the uv source, which is not changed during treatment with the selected mode.

Oba dela generatorja sta s kabli z induktivnostjo Lk in kapacitivnostjo Ck povezana z elektrodo in obdelovancem. Večina generatorjev ima paralelno reži vezane še dodatne kondenzatorje z različno kapacitivnostjo C, ki so vklopljeni ali izklopljeni s stikalom Sc. Kapacitivnost v tokokrogu vžignega in jakostnega generatorja ima največji vpliv pri finih obdelavah. Pri elektrodah z veliko delovno površino ima velik vpliv tudi kapacitivnost reže med elektrodo in obdelovancem Ceo. Ta je lahko tako velika, da omejuje doseganje majhne hrapavosti, ker prihaja do kapacitivnih razelektritev z energijo odvisno od velikosti kapacitivnost! Ceo.Both parts of the generator are connected to the electrode and the workpiece by cables with inductance Lk and capacitance Ck. Most generators have in parallel slots connected by additional capacitors of different capacitance C, which are switched on or off by switch Sc. Capacitance in the ignition and power generator circuits has the greatest influence in fine machining. For electrodes with a large work surface, the capacitance of the gap between the electrode and the Ceo workpiece is also greatly influenced. This may be so large that it limits the attainment of low roughness because capacitive discharges with energy occur depending on the size of the capacitance! All over.

V vezje (e) je doveden signal toka razelektritve iz senzorja (h) iej. Iz enote (f) so vnešene izbrane vrednosti toka razelektritve iejni, ki so potrebne za merjenje časa naraščanja toka trn, posamezne stopnje toka dieji, izbrana tehnološka vrednost napetosti napajanja jakostnega dela generatorja ujt, izbrana vrednost najmanjšega časa naraščanja na izbrano vrednost impulznega toka trni in izbrana vrednost najmanjšega časa naraščanja za izbrano vrednost stopnje impulznega toka dtrni. Iz vezja (d) je dovedena povprečna vrednost razelektritev uep in iz napetostnega senzorja (c) signal začetka razelektritve jakostnega dela generatorja trO. V vezju (e) je določeno kdaj pride do prekinitve razelektritve zaradi prehitrega naraščanja toka. Signal je doveden v oscilator (i), ki krmili tranzistorja TRj in TRv.A discharge current signal from the sensor (h) IU is fed into the circuit (s). From unit (f) the selected values of the current of discharge of the current are required to measure the time of rising of the current of the thorn, the individual stages of the current dieji, the selected technological value of the supply voltage of the power part of the generator ujt, the selected value of the minimum time of rising to the selected value of the impulse current of the spikes, and selected value of minimum rise time for selected value of impulse flow rate dtrni. From the circuit (d) the average discharge value uep and from the voltage sensor (c) the signal of the start of the discharge of the strength of the trO generator is deduced. The circuit (s) specifies when the discharge is interrupted due to a too rapid rise in current. The signal is fed into the oscillator (s) that controls the transistors TRj and TRv.

Napetost razelektritve v točki tj ue(tj) (Slika 2) je odvisna od kombinacije materiala elektrode in obdelovanca in upornosti delovna reže Re(tj). Na upornost delovne reže vpliva lokalno onesnaženje delovne reže in velikost delovne reže. Na lokalno onesnaženost delovne reže vpliva oblika elektrode in odvajanje produktov erozije iz delovne reže. Na velikost delovne reže vpliva smer gibanja elektrode glede na površino obdelave in nastavitev servosistema. Reža v smeri gibanja servosistema - čelna reža je vedno manjša od stranske reže. S servosistemom vplivamo na velikost čelne reže.The discharge voltage at the point tj ue (tj) (Figure 2) depends on the combination of the electrode material and the workpiece and the resistance of the working slot Re (ie). The resistance of the working slot is influenced by the local contamination of the working slot and the size of the working slot. The local contamination of the working gap is influenced by the shape of the electrode and the separation of erosion products from the working slot. The size of the working slot is influenced by the direction of the electrode's movement with respect to the machining surface and the setting of the servosystem. Slot in the direction of movement of the servosystem - the frontal slot is always smaller than the side slot. With the servosystem we influence the size of the frontal slot.

Tok razelektrirve v točki tj ie(tj) je seštevek toka vžignega dela generatorja iev(tj) in jakostnega dela generatorja iej(tj) (slika 2):The discharge current at the point ie ie (ie) is the sum of the current of the ignition part of the generator iev (ie) and the strength of the generator iej (ie) (Figure 2):

ie(tj) = iev(tj) + iej(tj).ie (tj) = iev (tj) + iej (tj).

Upornosti delovne reže med impulzom Re(tj) ne moremo izmeriti, lahko pa iz napetosti in impulznega tok v izbrani točki tj izračunamo upor tokokroga.The resistance of the working gap between the impulse Re (ie) cannot be measured, but from the voltage and impulse current at the selected point, ie, the resistance of the circuit can be calculated.

• · · * ·• · ·

Za hitrost naraščanja toka jakostnega dela generatorja je pomembna impedanca tokokroga, ki je vezana na ta del generatorja Ztj(tj) in napetost napajanja jakostnega dela generatorja uj.The impedance of the circuit connected to this part of the generator Ztj (ie) and the supply voltage of the power section of the generator uj are important for the rate of increase of the current of the generator part.

Ztj(tj) = uj/iej(tj).Ztj (tj) = uj / iej (tj).

Pri znanih konstantnih upornostih v tokokrogu jakostnega dela generatorja je upornost tokokroga Rgj seštevek konstantnega upora Rj, upora kablov za dovod energije jakostnega dela generatorja Rkj, upora diode RD in upora tranzistorja v točki tj Rtrj(tj) v jakostnem delu generatorja:For known constant resistances in the generator circuit, the resistance Rgj is the sum of the constant resistance Rj, the resistance of the power supply cables of the generator part Rkj, the diode resistance RD and the transistor resistor at the point ie Rtrj (ie) in the generator section:

Rgj(tj) = Rj + Rkj + Rtrj(tj) +RD.Rgj (tj) = Rj + Rkj + Rtrj (tj) + RD.

Paralelno uporu Rj je vezan tranzistor TRRj. Ko je tranzistor TRRj vklopljen je upornost v tokokrogu jakostnega dela generatorja zmanjšana, praktično na upornost trazistorja TRRj Rtrrj, ki je veliko manjša od upornosti Rj (Rj » Rtrrj). Ko tok jakostnega dela generatorja iej naraste do vrednosti iejmi pride iz vezja (e) signal, ki tranzistor TRRj izklopi in ves tok steče skozi upor Rj. V veliko primerih tok razelektritve iej ne doseže vrednosti toka iejmi. V teh primerih je tranzistor TRRj ves čas vklopljen. V primeru, ko je tranzistor TRRj vklopljen, je upornost v jakostnem delu generatorja:A transistor TRRj is connected in parallel to the resistor Rj. When the TRRj transistor is on, the resistance in the generator circuit is reduced, practically to the resistance of the TRRj transistor Rtrrj, which is much smaller than the resistance Rj (Rj »Rtrrj). As the current of the IJ generator power rises to the IJM value, a signal is output from the circuit (s) that turns off the transistor TRRj and flows through the resistor Rj. In many cases, the IJ discharge current does not reach the IJmi current value. In these cases, the TRRj transistor is switched on at all times. When the TRRj transistor is on, the resistance in the generator part is:

Rgj(tj) ~ Rtrrj + Rkj + Rtrj(tj) +RD.Rgj (tj) ~ Rtrr j + Rk j + Rtrj (tj) + RD.

Upornost reže vezane na jakostni del generatorja Rej(tj) je razlika med Ztj(tj) in Rgj(tj).The resistance of the gap connected to the power section of the generator Rej (tj) is the difference between Ztj (tj) and Rgj (tj).

Rej(tj) = Ztj(tj) - Rgj(tj).Ray (tj) = Ztj (tj) - Rgj (tj).

• ·• ·

Tok, ki teče skozi tokokrog jakostnega dela generatorja v točki tj iej(tj) je odvisen od napetostjo izvora uj in impedance tokokroga za jakostni del generatorja Ztj(tj).The current flowing through the circuit of the generator part at the point tj iej (ie) depends on the voltage uj and the impedance of the circuit for the generator section Ztj (tj).

iej(tj) = uj/Ztj(tj).iej (tj) = uj / Ztj (tj).

S časom razelektritve fe se upornost reže in s tem vrednost impedance tokokroga Ztj(t) zmanjšuje in temu ustrezno narašča tok razelektritve iej(t). Velikost toka iej(t) je pri isti vrednosti impedance Ztj(t) odvisna od velikosti napetosti jakostnega dela generatorja uj.With the discharge time fe, the resistance is cut and the impedance value of the circuit Ztj (t) decreases and the discharge current iej (t) increases accordingly. The magnitude of the current iej (t) at the same impedance value Ztj (t) depends on the magnitude of the voltage of the power section of the generator uj.

Za hitrost naraščanja toka vžignega dela generatorja je pomemben del impedance tokokroga, ki je vezan na ta del generatorja Ztv(tj) in napetost napajanja vžignega dela generatorja uv.For the rate of increase of the current of the ignition part of the generator, an important part of the impedance of the circuit that is connected to this part of the generator Ztv (ie) and the supply voltage of the ignition part of the generator uv.

Ztv(tj) = uv/ iev(tj).Ztv (tj) = uv / iev (tj).

Upornost reže vezane na vžigni del generatorja Rev(tj) in je razlika med impedanco Ztv(tj) in upornostjo vžignega dela generatorja Rgv(tj).The resistance of the gap is connected to the ignition part of the generator Rev (tj) and is the difference between the impedance Ztv (tj) and the resistance of the ignition part of the generator Rgv (tj).

Rev(tj) = Ztv(tj) - Rgv(tj).Rev (tj) = Ztv (tj) - Rgv (tj).

Pri znanih konstantnih upornostih v tokokrogu vžignega dela generatorja je upornost vžignega dela generatorja Rgv seštevek konstantnega upora Rv, upora kablov za dovod energije Rkv in upora tranzistorja v točki tj Rtvj(tj) v vžignem delu generatorja:For known constant resistances in the generator ignition circuit, the resistance of the ignition part of the generator Rgv is the sum of the constant resistance Rv, the resistance of the power supply cables Rkv and the resistor of the transistor at the point ie Rtvj (ie) in the ignition part of the generator:

Rgv(tj) = Rv + Rkv + Rtvj(tj).Rgv (tj) = Rv + Rkv + Rtvj (tj).

Tok, ki teče skozi tokokrog vžignega dela generatorja v točki tj iev(tj) je odvisen od napetostjo izvora uv in impedance tokokroga vžignega dela generatorja Ztvtj).The current flowing through the ignition part of the generator at the point tj iev (ie) depends on the voltage of the origin uv and the impedance of the ignition circuit of the generator Ztvtj).

• · iev(tj) = uv/Ztv(tj).• · iev (tj) = uv / Ztv (tj).

S časom razelektritve se upornost reže in s tem vrednost impedance tokokroga Ztv(t) zmanjšuje in temu ustrezno narašča tok razelektritve iev(t). Ker je napetost napajanja vžignega dela uv v primerjavi z napetostjo napajanja jakostnega dela uj velika, je tudi hitrost naraščanja toka iz vžignega generatorja velika (slika 2).With the discharge time, the resistance is cut, and thus the impedance value of the circuit Ztv (t) decreases and the discharge current iev (t) increases accordingly. Since the supply voltage of the ignition part uv is large compared to the supply voltage of the uj power part, the rate of increase of current from the ignition generator is also high (Figure 2).

Na impedanco in s tem na hitrost naraščanja toka iz jakostnega dela generatorja diej/dt ima vpliv še induktivnost tokokroga jakostnega dela generatorja Lj z induktivnostjo skupnega kabla Lk ter dodano induktivnostjo L in razliko med napetostjo jakostnega dela generatorja uj in napetostjo razelektritve ue duej:The impedance and thus the rate of increase of current from the power part of the generator diej / dt is also influenced by the inductance of the circuit of the power part of the generator Lj with the inductance of the common cable Lk and the added inductance L and the difference between the voltage of the power part of the generator uj and the discharge voltage ue duej:

diej/dt = duej /( Lj + Lk + L) .diej / dt = duej / (Lj + Lk + L).

Na impedanco in s tem na hitrost naraščanja toka iz vžignega dela generatorja diev/dt ima vpliv še induktivnost tokokroga vžignega dela generatorja Lv z induktivnostjo skupnega kabla Lk in razliko med napetostjo vžignega dela generatorja uv in napetostjo razelektritve ue duev:The impedance and thus the rate of increase of the current from the ignition part of the generator diev / dt is influenced by the inductance of the ignition circuit of the generator Lv with the inductance of the common cable Lk and the difference between the voltage of the ignition part of the generator uv and the discharge voltage ue duev:

diev/dt = duev/( Lv + Lk) .diev / dt = duev / (Lv + Lk).

Pri normalnih razelektritvah je naraščanje pri toku iz jakostnega kakor tudi vžignega dela generatorja manjša, kot ga dovoljuje induktivnost jakostnega tokokroga generatorja (Lj + LK) in induktivnost (Lv + LK) vžignega tokokroga generatorja. Če induktivnost L vklopljena ves čas • · impulza lahko zmanjša hitrost naraščanja toka. Nekateri proizvajalci elektroerozijskih naprav dobijo na ta način trapezno obliko toka.In normal discharges, the increase in current from both the output and the ignition part of the generator is less than is allowed by the inductance of the generator power circuit (Lj + LK) and the inductance (Lv + LK) of the generator ignition circuit. If the inductance L is switched on all the time, the impulse may reduce the rate of increase of current. Some manufacturers of erosion devices get trapezoidal current in this way.

Da bi eliminirali vpliv induktivnosti L, je paralelno induktivnosti L vklopljen tranzistor TRL. Ko je ta vklopljen, je vpliv induktivnosti L praktično izničen. Zato vezje (e) pošlje v vezje (j) v primeru ko doseže impulzni tok iej vrednost iejmi signal, ki tranzistor TRL izklopi in zato ves tok steče skozi induktivnost L. V veliko primerih iej ne doseže iejmi. V teh primerih ostane tranzistor TRL vklopljen in je vpliv induktivnosti L eliminiran (Slika 4).To eliminate the effect of inductance L, the TRL transistor is switched on in parallel with the inductance L. When this is turned on, the effect of the inductance L is virtually nullified. Therefore, the circuit (s) is sent to the circuit (j) when the pulse current reaches the IJ value, a IJ signal that switches off the TRL transistor and therefore the whole current flows through the inductance L. In many cases, the IJ does not reach IJ. In these cases, the TRL transistor remains switched on and the inductance effect of L is eliminated (Figure 4).

Pojav stranskih razelektritev je zaznan s povišano napetostjo razelektritve ue. Začetek razelektritve tdO zazna vezje (d) s padcem napetosti v reži pod izbrano vrednostjo utd iz enote (f). V vezju (e) je izmerjena zakasnitev vklopa jakostnega dela generatorja dtrO. Jakostni tok iej steče, ko napetost razelektritve pade pod napetost napajanja jakostnega dela generatorja uj in ga zaznamo v senzorju (h) . V vezju (e) primerjamo dtrO z izbrano vrednostjo iz enote (f). Če je dtrO večji od izbrane vrednosti dtrOi (Slika 5), se impulz prekine in po izbrani pavzi tO nadaljuje naslednji impulz.The occurrence of lateral discharges is detected by the increased discharge voltage ue. The onset of tdO discharge is detected by the circuit (d) with a voltage drop in the gap below the selected utd value from unit (f). The circuit (e) measures the delay of the power on the dtrO generator. The IJ current flows when the discharge voltage drops below the supply voltage of the uj generator power section and is detected in the sensor (h). In circuit (e), compare dtrO with the selected value from unit (f). If dtrO is greater than the selected dtrOi value (Figure 5), the pulse is interrupted and the next pulse resumes after the selected pause tO.

Za uspešno uporabo elektroerozijske obdelave je potreben generator, ki zagotavlja konstantnost optimalno izbrane tehnologije in preprečuje pojav škodljivih impulzov v elektroerozijskem procesu. Pri tem mora biti energetsko učinkovit brez nepotrebnih energetskih izgub. Poleg tega mora • ·Successful use of erosion treatment requires a generator that ensures the consistency of optimally selected technology and prevents the appearance of harmful impulses in the erosion process. It must be energy efficient without unnecessary energy losses. In addition, • ·

biti vpliv parametrov s konstantnimi vrednostmi (n.pr. Rj in L) na naraščanje toka zmanjšan na najmanjšo možno mero. Le v tem primeru bo imel na potek naraščanja toka v elektroerozijskem procesu največji vpliv potek procesa predvsem s spreminjanjem impedance delovne reže.the influence of parameters with constant values (eg Rj and L) on the increase of current should be minimized. Only in this case will the process of increasing the flow in the erosion process have the greatest influence on the course of the process, especially by changing the impedance of the working gap.

Pomemben parameter, ki nam zagotavlja konstantnost izbrane tehnologije je hitrost naraščanja toka predvsem skozi jakostni del generatorja diej/dt. Ta je odvisna od razlike med izbrano napetostjo jakostnega dela generatorja uj in napetostjo razelektritve ue: duej = uj ue. Ker je napetost razelektritve ue odvisna od poteka elektroerozijskega procesa (Slika 3), je potrebno napetost napajanja jakostnega dela prilagoditi uj tako, da je razlika duej konstantna.An important parameter that guarantees us the constancy of the technology chosen is the rate of increase of current mainly through the strength of the die / dt generator. This depends on the difference between the selected voltage of the generator part uj and the discharge voltage ue: duej = uj ue. Since the discharge voltage ue depends on the course of the erosion process (Figure 3), it is necessary to adjust the supply voltage of the power section uj so that the difference duej is constant.

Impulzni generator po izumu omogoča, da iz izmerjene napetosti razelektritve v zadnji tretjini normalnih razelektritev ue iz senzorja (c), v vezju (d) izračuna povprečna napetosti uep za izbrano število normalnih razelektritev n. Zato je potreben tudi signal iz oscilatorja (i). Vrednosti uep je prišteta izbrana vrednost dueji (d) in tako je izračunana napetost za krmiljenje jakostnega dela uj·.The impulse generator according to the invention allows to calculate the average uep voltages for the selected number of normal discharge n from the measured discharge voltage in the last third of the normal discharge ue from the sensor (c) in the circuit (d). Therefore, signal from oscillator (i) is also required. Uep value is added to the selected dueji (d) value, so that the voltage to control the strength uj · is calculated.

uj = uep + duej.uj = uep + duej.

Hitrost naraščanja toka jakostnega dela generatorja diej/dt je odvisna od upornosti delovne reže. Ta se spreminja od impulza do impulza (Slika 3). Z manjšanjem upornosti se poveča tok razelektritve iej. Pri prehitrem zmanjševanjem upornosti tok hitreje narašča, se pa zmanjša gostota dovedene energije. Manjša gostota dovedene energije ima za posledico slabše pregrevanje materiala v bodočem kraterju na mestu razelektritve in s tem manjši odvzem materiala. Pri premajhni gostoti energije ne pride več do odvzema materiala, dovedena energija pa je dovolj velika, da povzroči dodatno onesnaženje delovne reže zaradi razpada dielektrika. Dovod energije moramo pri takih impulzih prekiniti, saj škodi normalnemu poteku elektroerozijske obdelave. Zato so taki impulzi s signalom iz vezja (e) prekinjeni (Slika 1). Najprej je potrebno zaznati začetek razelektritve trO s tokom iz jakostnega dela generatorja. Ta je določen tako, da je z napetostnim senzorjem (c) zaznan padec napetosti na jakostnem delu izvora energije. S tokovnim senzorjem (h) je izmerjen impulzni tok iej. V vezju (e) je izmerjen čas naraščanja toka tr med začetkom razelektritve trO in izbrano vrednostjo impulznega toka iejn. V primeru, da je čas naraščanja toka trn manjši od izbranega časa naraščanja toka trn < trni, je s signalom iz vezja (e) impulz prekinjen.The rate of increase of the current of the power part of the diej / dt generator depends on the resistance of the working gap. This changes from impulse to impulse (Figure 3). As the resistance decreases, the discharge current of the IJ increases. With too fast a decrease in resistance, the current increases more rapidly, but the density of the supplied energy decreases. The lower energy density results in a worse overheating of the material in the future crater at the discharge site and thus a lower material withdrawal. With insufficient energy density, material is no longer taken away, and the energy input is large enough to cause additional contamination of the working gap due to the dielectric decay. Such impulses must be interrupted with the supply of energy, as this damages the normal course of erosion treatment. Therefore, such pulses with the signal from the circuit (e) are interrupted (Figure 1). It is first necessary to detect the start of the discharge of trO with the current from the generator part. This is determined so that the voltage sensor (c) detects a voltage drop on the power section of the power source. The current sensor (h) measures the impulse current iej. In circuit (e), the rise time tr is measured between the start of the discharge trO and the selected pulse current value iejn. In the event that the rise time of the thorn current is less than the selected rise time of the thorn current <thorn, the pulse is interrupted by the signal from the circuit (e).

Druga možnost je, da je tokovni impulz razdeljen v več stopenj z enako razliko v toku diej. Meritve časa naraščanja toka se prične pri trO in izmerjen je čas naraščanja do iej1, ki je enak diej.Alternatively, the current pulse is divided into several stages with the same difference in die flow. Flow rise time measurements are started at trO and the rise time to iej1 is equal to diej.

iej1 - diej.iej1 - diej.

Naslednji tok iej2 je seštevek toka iej1 in diej. iej2 - iej1 + diej.The next flow of iej2 is the sum of the flow of iej1 and die. iej2 - iej1 + diej.

Seštevanje toka se nadaljuje, dokler ni dosežen največji impulzni toka iejm (Slika 2):The summation of the current continues until the maximum impulse current is reached (Fig. 2):

iejm = iej(n-1) + diej.iejm = iej (n-1) + diej.

Za vsako stopnjo naraščanja toka za diej je izmerjen čas naraščanja toka dtr. Če je čaš naraščanja toka dtr manjši od izbrane vrednosti dtr < dtri, je impulz prekinjen.For each die rise rate, the dtr rise time was measured. If the beaker of rising current dtr is less than the selected value dtr <dtri, the pulse is interrupted.

Pri uporovnih generatorjih ima na energetski izkoristek jakostnega dela generatorja vpliv konstantni upor generatorja Rj. Vrednost tega se spreminja v odvisnosti od izbranega toka iejmi. Ta upor vpliva tudi na hitrost naraščanja toka. Oba vpliva sta v fazi naraščanja toka razelektritve iej izničena, ko je upor Rj izklopljen. Zato vezje (j) upor Rj vklopi šele takrat, ko tok razelektritve doseže vrednost iejmi. V primeru, da do konca impulza tok razelektritve jakostnega dela generatorja iej ne doseže vrednosti iejmi, ne pride do vklopa dodatne upora Rj (Slika 3).For resistor generators, the energy efficiency of the generator part is influenced by the constant resistance of the generator Rj. The value of this varies depending on the current iJmi flow. This resistance also affects the rate of increase of current. Both influences are extinguished at the rising stage of the discharge current iej when the resistance Rj is switched off. Therefore, the circuit (j) reacts Rj only when the discharge current reaches the value of ijmi. In the case that by the end of the pulse the discharge current of the power part of the IJ generator does not reach the IJM value, then no additional resistor Rj is activated (Figure 3).

Pri generatorjih brez upora v jakostnem tokokrogu generatorja potrebna določena induktivnost, ki omogoča regulacijo toka med impulzom. V tokokrogu generatorja je prisotna induktivnost kabla Lk, induktivnost jakostnega dela generatorja Lj in dodatna induktivnost L. Ta je v tokokrog jakostnega dela generatorja vključena v primeru, ko je seštevek induktivnosti kabla Lk in jakostnega dela generatorja Lj premajhna. Če je dodatna induktivnost L stalno vključena, lahko omeji hitrost naraščanja toka diej/dt na manjšo vrednost, kot jo dopušča potek elektroerozijskega procesa zaradi spremembe impedance delovna raže. Če vezje (j) induktivnost L vklopi šele takrat, ko ta doseže vrednost iejmi, je vpliv dodatne induktivnosti L izničen. V primeru, da do konca impulza tok razelektritve jakostnega dela generatorja iej ne doseže vrednosti iejmi, ne pride do vklopa dodatne induktivnosti L (Slika 4).For generators without resistance in the generator circuit, a certain inductance is required which allows the regulation of the current during the pulse. In the generator circuit, the inductance of the cable Lk, the inductance of the generator part Lj and additional inductance L. are present. This is included in the generator circuit when the sum of the inductance of the Lk cable and the generator part Lj is too small. If the additional inductance L is continuously switched on, it can limit the rate of increase of the die / dt current to a lower value than is allowed by the course of the erosion process due to the impedance change of the working rye. If the circuit (j) turns on the inductance L only when it reaches the iUmi value, the effect of the additional inductance L is eliminated. In the event that by the end of the pulse, the discharge current of the IJ generator power does not reach the IJmi value, then no additional inductance L is activated (Figure 4).

Efektivnost generatorja je povečana tudi tako, da so prekinjene stranske razelektritve, ki imajo manjšo energijo. Prekinitvi po izbrani pavzi med impulzi tO sledi naslednji impulz (Slika 5). Pojav stranskih razelektritev je zaznan s povišano napetostjo razelektritve ue. Dokler ta ne pade pod napetost izvora jakostnega dela uj, tok iz jakostnega dela generatorja iej ne steče. Če je čas od začetka razelektritve, do trenutka, ko napetost razelektritve ue pade pod napetost izvora jakostnega dela uj dtrO večji od izbrane vrednosti dtrOi, pride do prekinitve impulza in po izbrani pavzi tO do naslednjega impulza.The efficiency of the generator is also increased by interrupting lateral discharges that have less energy. The interruption after the selected pause between pulses tO is followed by the following pulse (Figure 5). The occurrence of lateral discharges is detected by the increased discharge voltage ue. Until the voltage drops from the source of the uj power section, the current from the ij generator power section does not drain. If the time from the start of the discharge until the moment when the discharge voltage ue drops below the source voltage uj dtrO is greater than the selected value dtrOi, then the pulse is interrupted and after the selected pause tO until the next pulse.

Claims (9)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Impulzni generator za potopno elektroerozijsko obdelavo označen s tem, da ga sestavlja vžigni del generatorja z izvorom napetosti (a), enota za izbiro vžigne napetost (g), tranzistorjem vžignega dela TRv, uporom vžignega dela Rv in jakostni del generatorja z izvorom napetosti (b) tranzistorjem jakostnega dela TRj, uporom jakostnega dela Rj, diode D, dodatne induktivnosti L, vezja (d), v katerem je izbrana napetost jakostnega dela generatorja uj in vezja (e), ki pri pojavu slabih razelektritev prekine impulz v oscilatorju (i), vezja G) za vklop in izklop upora Rj ali dodatne induktivnosti L.1. Impulse generator for submersible electro-erosion treatment, characterized in that it consists of the ignition part of the generator with a voltage source (a), the select unit ignites a voltage (g), the transistor of the ignition part TRv, the resistance of the ignition part Rv and the strength part of the generator with a source of voltage (b) transistors of TRj strength, resistor Rj, diode D, additional inductance L, circuit (d), which selects the voltage of the generator unit uj and circuit (e), which interrupts the impulse in the oscillator (bad) i), circuits G) for switching on and off the resistor Rj or additional inductance L. 2. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1 označen s tem, da je v vezje (d) s senzorjem (c) dovedena izmerjena napetost v zadnji tretjini razelektritve ue in v vezju (d) izračunana povprečno napetost uep za izbrano število impulzov n, ki ji je prišteta izbrano vrednost razlike v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve dueji in je tako s seštevkom uj = uep + dueji iz vezja (d) krmiljena napetost napajanja jakostnega dela generatorja (b).Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that the measured voltage in the last third of the discharge ue is introduced into the circuit (d) by the sensor (c) and the average uep voltage for the selected number of impulses n is calculated in the circuit (d) , which is added to the selected value of the difference in voltage between the voltage of the originating source and the voltage dueji due to the sum of uj = uep + dueji from the circuit (d) to control the supply voltage of the generator part (b). 3. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v vezje (e) doveden s tokovnim senzorjem (h) izmerjen impulzni tok iej in iz enote (f) izbrana vrednost toka iejmi izbranega režim obdelave in ko iej doseže vrednost iejmi pride iz vezja (e) signal v vezje (j) signal, ki tranzistor TRRj izklopi in skozi upor Rj steče celotni tok.Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that the impulse current Ie is fed to the circuit (e) by a current sensor (h) and the current treatment mode is selected from unit (f) and when i reaches the value ijmi comes from the circuit (e) signal to the circuit (j) the signal that transistor TRRj switches off and flows through the resistor Rj. 4. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v vezje (e) doveden s tokovnim senzorjem (h) izmerjen impulzni tok iej in iz enote (f) izbrana vrednost toka iejmi izbranega režim obdelave in ko iej doseže vrednost iejmi pride iz vezja e signal v vezje (j) signal, ki tranzistor TRL izklopi in skozi induktivnost L steče celotni tok.Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that the impulse current Ie is fed to the circuit (e) by a current sensor (h) and the current treatment mode is selected from unit (f) and when i reaches the value ijmi comes from the circuit e signal to the circuit (j) a signal that switches the TRL transistor off and flows the entire current through the inductance L. 5. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v vezje (e) doveden s tokovnim senzorjem (h) izmerjen impulzni tok iejn in iz enote (f) izbrana vrednost toka iejni od začetka dovajanja toka iz jakostnega dela trO, v vezju (e) je izmerjen čas potreben za naraščanje toka trn, ki je primerjan z izbrano vrednostjo dovoljenega časa naraščanja toka trni, ki je odvisna od izbrane vrednosti razlike v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve dueji in je v primeru, da je trn < trni, impulz prekinjen.5. Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that the impulse current ijn is measured in the circuit (e) by the current sensor (h), and the current value from the unit (f) is selected from the start of supplying the current from the amperage of circuit trO, in circuit (e) the measured time required for the increase of the current of the thorn is comparable with the selected value of the allowed time of increase of the current of the thorn, which depends on the selected value of the difference in voltage between the voltage of the source and the discharge voltage due and , that thorn <thorn, impulse interrupted. 6. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v primeru, ko napetosti izvora jakostnega dela generatorja ostane nespremenjena in enaka izbrani vrednosti ujt, v vezju (e) izračunana razliko v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve duej, v vezje (e) je doveden s tokovnim senzorjem (h) izmerjen impulzni tok iej in iz enote (f) izbrano vrednost toka iejni od začetka dovajanja toka iz jakostnega dela trO, v vezju (e) je izmerjen čas potreben za naraščanje toka trn, ki je primerjan z izbrano vrednostjo dovoljenega časa naraščanja toka trni, ki je odvisna od izračunane vrednosti razlike v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve duej in je v primeru, da je trn < trni, impulz prekinjen.6. Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that in the case where the source voltage of the generator part remains constant and is equal to the selected value ujt, the difference in voltage between the voltage of the source and the voltage is calculated in the circuit (e) duej discharge, to the circuit (e) is supplied by a current sensor (h) the measured impulse current ij and from the unit (f) the selected value of the current ijni from the start of supplying current from the power section trO, in the circuit (e) the measured time is required for increasing current of the spike, which is compared with the selected value of the allowed rise time of the spike current, which depends on the calculated value of the difference in voltage between the voltage of the origin and the discharge voltage duej, and if the spike <spikes, the pulse is interrupted. 7. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v vezje (e) doveden s tokovnim senzorjem (h) izmerjen impulzni tok iej in iz enote (f) izbrana vrednost stopnjevanja toka dieji od začetka dovajanja toka iz jakostnega dela trO do največjega impulznega toka iejn, v vezju (e) je izmerjen čas potreben za naraščanje toka dtr za posamezne stopnje toka dieji, ki je primerjan z izbrano vrednostjo dovoljenega časa naraščanja toka dtri, ki je odvisna od izbrane vrednosti razlike v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve duej in je v primeru, da je dtr < dtri, impulz prekinjen.7. Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that the impulse current Ie is fed to the circuit (e) by the current sensor (h) and the value of the intensification of the current is selected from unit (f) from the start of supplying current from of the trO strength to the maximum impulse current iejn, in the circuit (e) the time required to increase the dtr current for the individual stages of the dieji current is measured, which is comparable to the selected value of the allowed rise time dtri, which depends on the selected value of the difference in voltage between the voltage of the origin and the discharge voltage duej and the pulse is interrupted if dtr <dtri. 8. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v primeru, ko napetost izvora jakostnega dela generatorja ostane nespremenjena in enaka izbrani vrednosti ujt, v vezje (e) doveden s tokovnim senzorjem (h) izmerjen impulzni tok iej in iz enote (f) izbrano vrednost stopnjevanja toka dieji od začetka dovajanja toka iz jakostnega dela trO do največjega impulznega toka iejn, v vezju (e) je izmerjen čas potreben za naraščanje toka dtr za posamezne stopnje toka dieji in je po primerjavi z izbrano vrednostjo dovoljenega časa naraščanja toka dtri, ki je odvisna od izmerjene vrednosti razlike v napetosti med napetostjo jakostnega izvora in napetostjo razelektritve duej v primeru, da je dtr < dtri, impulz prekinjen.8. Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that when the source voltage of the generator part remains constant and is equal to the selected value ujt, the impulse current measured (h) is fed to the circuit (e) by the current sensor (h). ie, and from unit (f) the value of the intensification of the dieji current from the start of supplying the current from the trO output to the maximum impulse current iejn, in the circuit (e) the measured time required to increase the dtr current for the individual stages of the dieji current and after the value of the allowed rise time of the current dtri, which depends on the measured value of the difference in voltage between the voltage of the power source and the discharge voltage duej in the event that dtr <dtri, the pulse is interrupted. 9. Impulzni generator za potopno elektroerozijsko obdelavo po zahtevku 1, označen s tem, da je v vezje (e) doveden signal za začetek razelektritve, ko pade napetost na reži pod napetost utd in steče tok vžignega dela generatorja iev in izmerimo čas zakasnitve dtrO, ko steče tok jakostnega dela generatorja iej , ki je zaznan s senzorjem (h) in v primeru, da je čas zakasnitve dtrO večji od izbrane vrednosti dtrOi (dtrO 2 dtrOi) iz krmilne enote (e) pride signal Si, ki razelektritev prekine in se naslednji impulz prične po času pavze tO.9. Impulse generator for submersible electro-erosion treatment according to claim 1, characterized in that a signal for the start of discharge is introduced into the circuit (e) when the voltage on the gap drops under voltage utd and the ignition current of the generator iev flows and the delay time dtrO is measured, when the current of the IJ generator part is detected, which is detected by the sensor (h) and if the delay time dtrO is greater than the selected value dtrOi (dtrO 2 dtrOi) from the control unit (e) a signal Si terminates and is discharged. the next impulse begins after the time of pause tO.
SI201500148A 2015-06-18 2015-06-18 Pulse generator with adjustable and controled upward impulse current SI25006A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201500148A SI25006A (en) 2015-06-18 2015-06-18 Pulse generator with adjustable and controled upward impulse current
PCT/SI2016/000017 WO2016204699A2 (en) 2015-06-18 2016-06-16 Pulse generator with adjustable and controled upward impulse current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201500148A SI25006A (en) 2015-06-18 2015-06-18 Pulse generator with adjustable and controled upward impulse current

Publications (1)

Publication Number Publication Date
SI25006A true SI25006A (en) 2016-12-30

Family

ID=56801759

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201500148A SI25006A (en) 2015-06-18 2015-06-18 Pulse generator with adjustable and controled upward impulse current

Country Status (2)

Country Link
SI (1) SI25006A (en)
WO (1) WO2016204699A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552904B (en) * 2017-09-04 2018-12-11 哈尔滨工业大学 A kind of processing power source and processing method for metal-ceramic functionally graded material progress electrical discharge machining
CN109115060B (en) * 2018-10-15 2023-09-19 中国工程物理研究院电子工程研究所 Adjustable universal pulse current generating device for impact sheet detonator and control method thereof
CN110142470B (en) * 2019-07-02 2020-06-19 哈尔滨工业大学 Parameter self-adjusting pulse power supply for insulating ceramic coating-metal electric spark machining
CN111277138B (en) * 2019-12-31 2022-08-16 南京理工大学 Medium-speed wire cutting pulse power supply for processing waist drum problem and processing method thereof
CN115549651A (en) * 2022-11-26 2022-12-30 昆明理工大学 Impulse current generator for simulating multiple lightning strokes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107910A1 (en) * 1991-03-12 1992-09-17 Agie Ag Ind Elektronik PULSE GENERATOR FOR EDM PROCESSING AND PROCEDURE SUITABLE FOR THIS
US5539178A (en) * 1992-11-18 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for controlling the power supply for electrical discharge machine
JP4509457B2 (en) * 2000-05-15 2010-07-21 三菱電機株式会社 Power supply for electric discharge machining
JP5642810B2 (en) * 2013-01-08 2014-12-17 ファナック株式会社 Power supply for electric discharge machining
JP5739563B2 (en) * 2013-07-24 2015-06-24 ファナック株式会社 Wire electric discharge machine equipped with means for calculating average discharge delay time

Also Published As

Publication number Publication date
WO2016204699A2 (en) 2016-12-22
WO2016204699A3 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
SI25006A (en) Pulse generator with adjustable and controled upward impulse current
JP6311725B2 (en) Pulse and gap control for electrical discharge machining equipment
US8648275B2 (en) Power supply device for sinker electric discharge machining
US3604885A (en) Edm power supply for generating self-adaptive discharge pulses
CN106475646B (en) Make to process the constant wire electric discharge machine of clearance distance
US10730126B2 (en) Power supply device for wire electric discharge machining
US20120228268A1 (en) Power supply device for electrical discharge machine and control method therefor
US9205504B2 (en) Self-adjusting power device for high efficiency electrical discharge machining and method thereof
JP5183827B1 (en) Electric discharge machine power supply
CN108723531B (en) Constant current probability pulse power supply controlled by spark wire cutting pulse-to-pulse or pulse width PID
CN106735636A (en) Electrical discharge machining discharging headlamp circuit and method
CN101932402B (en) Electric discharge device
EP0507560B1 (en) Electric discharge machines
JP2008229785A (en) Electric discharge generation detecting method and device
US3875362A (en) Process and apparatus for electro-erosion machining by means of electrical discharges providing a high rate of material removal
US20130292360A1 (en) Power supply device for electric discharge machining apparatus and electric discharge machining method
CN207464371U (en) Electrical discharge machining discharging headlamp circuit and electric discharge machining apparatus
US3419754A (en) Spark erosion machinery with spark controlling feedback circuitry sensing gap conditions
CN104439568A (en) Method and apparatus for spark-erosion machining of a workpiece
US10913124B2 (en) Power supply control apparatus of electric discharge machine
CN105033369A (en) Machining power supply device for electric discharge machine
EP0525682B1 (en) Power supply for electronic discharge machining system
JP6165210B2 (en) Machining power supply for wire electrical discharge machining equipment
US3893013A (en) Electric discharge machining circuit incorporating means for pre-ignition of the discharge channel
USRE28734E (en) EDM power supply for generating self-adaptive discharge pulses

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20170112

KO00 Lapse of patent

Effective date: 20200207