SG10201911380YA - Multi-station plasma reactor with rf balancing - Google Patents

Multi-station plasma reactor with rf balancing

Info

Publication number
SG10201911380YA
SG10201911380YA SG10201911380YA SG10201911380YA SG10201911380YA SG 10201911380Y A SG10201911380Y A SG 10201911380YA SG 10201911380Y A SG10201911380Y A SG 10201911380YA SG 10201911380Y A SG10201911380Y A SG 10201911380YA SG 10201911380Y A SG10201911380Y A SG 10201911380YA
Authority
SG
Singapore
Prior art keywords
balancing
plasma reactor
station plasma
station
reactor
Prior art date
Application number
SG10201911380YA
Inventor
Sunil Kapoor
Karl F Leeser
Adrien Lavoie
Yaswanth Rangineni
Original Assignee
Lam Res Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Res Corp filed Critical Lam Res Corp
Publication of SG10201911380YA publication Critical patent/SG10201911380YA/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32889Connection or combination with other apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32899Multiple chambers, e.g. cluster tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45538Plasma being used continuously during the ALD cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
SG10201911380YA 2014-06-03 2015-05-22 Multi-station plasma reactor with rf balancing SG10201911380YA (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462007350P 2014-06-03 2014-06-03
US14/458,135 US9263350B2 (en) 2014-06-03 2014-08-12 Multi-station plasma reactor with RF balancing

Publications (1)

Publication Number Publication Date
SG10201911380YA true SG10201911380YA (en) 2020-02-27

Family

ID=54702649

Family Applications (2)

Application Number Title Priority Date Filing Date
SG10201911380YA SG10201911380YA (en) 2014-06-03 2015-05-22 Multi-station plasma reactor with rf balancing
SG10201504057QA SG10201504057QA (en) 2014-06-03 2015-05-22 Multi-station plasma reactor with rf balancing

Family Applications After (1)

Application Number Title Priority Date Filing Date
SG10201504057QA SG10201504057QA (en) 2014-06-03 2015-05-22 Multi-station plasma reactor with rf balancing

Country Status (5)

Country Link
US (3) US9263350B2 (en)
KR (3) KR102460602B1 (en)
CN (2) CN108461376B (en)
SG (2) SG10201911380YA (en)
TW (2) TWI729399B (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US9797042B2 (en) 2014-05-15 2017-10-24 Lam Research Corporation Single ALD cycle thickness control in multi-station substrate deposition systems
US9263350B2 (en) 2014-06-03 2016-02-16 Lam Research Corporation Multi-station plasma reactor with RF balancing
KR102323248B1 (en) * 2015-03-25 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Method of forming a thin film
US20170278679A1 (en) * 2016-03-24 2017-09-28 Lam Research Corporation Method and apparatus for controlling process within wafer uniformity
KR20170117311A (en) * 2016-04-13 2017-10-23 램 리써치 코포레이션 Systems and methods for tuning an impedance matching network in a step-wise fashion for multiple states of an rf generator
US9644271B1 (en) * 2016-05-13 2017-05-09 Lam Research Corporation Systems and methods for using electrical asymmetry effect to control plasma process space in semiconductor fabrication
US10229816B2 (en) * 2016-05-24 2019-03-12 Mks Instruments, Inc. Solid-state impedance matching systems including a hybrid tuning network with a switchable coarse tuning network and a varactor fine tuning network
US10187032B2 (en) * 2016-06-17 2019-01-22 Lam Research Corporation Combiner and distributor for adjusting impedances or power across multiple plasma processing stations
US10553465B2 (en) * 2016-07-25 2020-02-04 Lam Research Corporation Control of water bow in multiple stations
US20180046206A1 (en) * 2016-08-13 2018-02-15 Applied Materials, Inc. Method and apparatus for controlling gas flow to a process chamber
US9892956B1 (en) * 2016-10-12 2018-02-13 Lam Research Corporation Wafer positioning pedestal for semiconductor processing
US10109460B2 (en) * 2016-11-30 2018-10-23 Lam Research Corporation Universal non-invasive chamber impedance measurement system and associated methods
KR102156879B1 (en) * 2016-12-16 2020-09-16 주식회사 원익아이피에스 Plasma reactor power division system and power division method using the same
US20180175819A1 (en) * 2016-12-16 2018-06-21 Lam Research Corporation Systems and methods for providing shunt cancellation of parasitic components in a plasma reactor
JP2020502803A (en) * 2016-12-16 2020-01-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated How to enable high temperature processing without chamber drifting
EP3396700A1 (en) * 2017-04-27 2018-10-31 TRUMPF Hüttinger GmbH + Co. KG Power converter unit, plasma processing equipment and method of controlling several plasma processes
US10663355B2 (en) 2017-06-30 2020-05-26 Texas Instruments Incorporated Thermistor with tunable resistance
US11315758B2 (en) * 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US11101110B2 (en) 2017-07-10 2021-08-24 Reno Technologies, Inc. Impedance matching network and method
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US10714314B1 (en) 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US11393659B2 (en) 2017-07-10 2022-07-19 Reno Technologies, Inc. Impedance matching network and method
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US10536130B2 (en) 2017-08-29 2020-01-14 Mks Instruments, Inc. Balancing RF circuit and control for a cross-coupled SIMO distribution network
US10697059B2 (en) 2017-09-15 2020-06-30 Lam Research Corporation Thickness compensation by modulation of number of deposition cycles as a function of chamber accumulation for wafer to wafer film thickness matching
JP7209483B2 (en) * 2017-10-10 2023-01-20 東京エレクトロン株式会社 Plasma processing equipment and measurement circuit
CN109659215B (en) * 2017-10-10 2021-03-09 东京毅力科创株式会社 Plasma processing apparatus and detection circuit
KR102024185B1 (en) * 2018-01-11 2019-09-23 (주)이큐글로벌 Source matcher
US10832979B2 (en) * 2018-02-22 2020-11-10 Lam Research Corporation Feedback control system for iterative etch process
WO2019165297A1 (en) * 2018-02-23 2019-08-29 Lam Research Corporation Capacitance measurement without disconnecting from high power circuit
KR20230104778A (en) * 2018-02-23 2023-07-10 램 리써치 코포레이션 Rf current measurement in semiconductor processing tool
JP2019186098A (en) * 2018-04-12 2019-10-24 東京エレクトロン株式会社 Method of generating plasma
US10916411B2 (en) * 2018-08-13 2021-02-09 Tokyo Electron Limited Sensor-to-sensor matching methods for chamber matching
KR102605121B1 (en) * 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
US11804362B2 (en) * 2018-12-21 2023-10-31 Advanced Energy Industries, Inc. Frequency tuning for modulated plasma systems
US11515123B2 (en) 2018-12-21 2022-11-29 Advanced Energy Industries, Inc. Apparatus and system for modulated plasma systems
KR20200126177A (en) * 2019-04-29 2020-11-06 삼성전자주식회사 Apparatus for monitoring RF(Radio Frequency) power, and PE(Plasma Enhanced) system comprising the same apparatus
US11177115B2 (en) * 2019-06-03 2021-11-16 Applied Materials, Inc. Dual-level pulse tuning
US20220228263A1 (en) * 2019-06-07 2022-07-21 Lam Research Corporation Independently adjustable flowpath conductance in multi-station semiconductor processing
EP4005082A4 (en) 2019-07-29 2023-08-09 AES Global Holdings, Pte. Ltd. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads
KR20220038492A (en) * 2019-07-31 2022-03-28 램 리써치 코포레이션 Radio Frequency (RADIO FREQUENCY) Power Generator with Multiple Output Ports
CN112530775A (en) * 2019-09-18 2021-03-19 中微半导体设备(上海)股份有限公司 Plasma processing device
JP2022553368A (en) * 2019-10-25 2022-12-22 ラム リサーチ コーポレーション Unbalancing Radio Frequency (RF) Power in Multi-Station Integrated Circuit Manufacturing Chambers
WO2022177845A1 (en) * 2021-02-17 2022-08-25 Advanced Energy Industries, Inc. Frequency tuning for modulated plasma systems
KR102399398B1 (en) * 2021-09-27 2022-05-18 아리온주식회사 RF split adjusting system
WO2023059988A1 (en) * 2021-10-07 2023-04-13 Lam Research Corporation Selective control of multi-station processing chamber components
WO2023114067A1 (en) * 2021-12-13 2023-06-22 Lam Research Corporation Valve systems for balancing gas flow to multiple stations of a substrate processing system
TW202347404A (en) * 2022-02-01 2023-12-01 美商蘭姆研究公司 Rf power path symmetry

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063375A (en) * 1983-09-14 1985-04-11 Canon Inc Apparatus for producing deposited film by vapor phase method
US4695327A (en) * 1985-06-13 1987-09-22 Purusar Corporation Surface treatment to remove impurities in microrecesses
US5474648A (en) * 1994-07-29 1995-12-12 Lsi Logic Corporation Uniform and repeatable plasma processing
US6143082A (en) 1998-10-08 2000-11-07 Novellus Systems, Inc. Isolation of incompatible processes in a multi-station processing chamber
US6199506B1 (en) 1999-06-30 2001-03-13 Novellus Systems, Inc. Radio frequency supply circuit for in situ cleaning of plasma-enhanced chemical vapor deposition chamber using NF3 or NF3/He mixture
US6899787B2 (en) * 2001-06-29 2005-05-31 Alps Electric Co., Ltd. Plasma processing apparatus and plasma processing system with reduced feeding loss, and method for stabilizing the apparatus and system
US7042311B1 (en) 2003-10-10 2006-05-09 Novellus Systems, Inc. RF delivery configuration in a plasma processing system
US20070271751A1 (en) * 2005-01-27 2007-11-29 Weidman Timothy W Method of forming a reliable electrochemical capacitor
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
CN100362620C (en) 2005-08-11 2008-01-16 中微半导体设备(上海)有限公司 Loading umloading device of semiconductor processing piece and its loading and unloading method
US20070116872A1 (en) * 2005-11-18 2007-05-24 Tokyo Electron Limited Apparatus for thermal and plasma enhanced vapor deposition and method of operating
US20100024732A1 (en) * 2006-06-02 2010-02-04 Nima Mokhlesi Systems for Flash Heating in Atomic Layer Deposition
US7416989B1 (en) 2006-06-30 2008-08-26 Novellus Systems, Inc. Adsorption based material removal process
JP2008153147A (en) * 2006-12-20 2008-07-03 Seiko Epson Corp Plasma treatment device
US7977249B1 (en) 2007-03-07 2011-07-12 Novellus Systems, Inc. Methods for removing silicon nitride and other materials during fabrication of contacts
US8450635B2 (en) * 2007-03-30 2013-05-28 Lam Research Corporation Method and apparatus for inducing DC voltage on wafer-facing electrode
US8187486B1 (en) 2007-12-13 2012-05-29 Novellus Systems, Inc. Modulating etch selectivity and etch rate of silicon nitride thin films
US7839223B2 (en) * 2008-03-23 2010-11-23 Advanced Energy Industries, Inc. Method and apparatus for advanced frequency tuning
US7981763B1 (en) 2008-08-15 2011-07-19 Novellus Systems, Inc. Atomic layer removal for high aspect ratio gapfill
US8282983B1 (en) * 2008-09-30 2012-10-09 Novellus Systems, Inc. Closed loop control system for RF power balancing of the stations in a multi-station processing tool with shared RF source
KR101627297B1 (en) * 2008-10-13 2016-06-03 한국에이에스엠지니텍 주식회사 Plasma processing member, deposition apparatus including the same and depositing method using the same
US8058179B1 (en) 2008-12-23 2011-11-15 Novellus Systems, Inc. Atomic layer removal process with higher etch amount
US8956983B2 (en) * 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
JP5867701B2 (en) * 2011-12-15 2016-02-24 東京エレクトロン株式会社 Plasma processing equipment
KR102122612B1 (en) * 2012-05-18 2020-06-15 노벨러스 시스템즈, 인코포레이티드 Conformal doping via plasma activated atomic layer deposition and conformal film deposition
KR102207992B1 (en) * 2012-10-23 2021-01-26 램 리써치 코포레이션 Sub-saturated atomic layer deposition and conformal film deposition
US9318304B2 (en) * 2013-11-11 2016-04-19 Applied Materials, Inc. Frequency tuning for dual level radio frequency (RF) pulsing
US9263350B2 (en) 2014-06-03 2016-02-16 Lam Research Corporation Multi-station plasma reactor with RF balancing

Also Published As

Publication number Publication date
KR20150139461A (en) 2015-12-11
US9840776B2 (en) 2017-12-12
KR102460602B1 (en) 2022-10-27
US20150348854A1 (en) 2015-12-03
CN105321792A (en) 2016-02-10
US20160168701A1 (en) 2016-06-16
US10145010B2 (en) 2018-12-04
US9263350B2 (en) 2016-02-16
TW201935596A (en) 2019-09-01
TWI729399B (en) 2021-06-01
TW201611153A (en) 2016-03-16
KR102593566B1 (en) 2023-10-23
KR20230149793A (en) 2023-10-27
KR20220148149A (en) 2022-11-04
CN108461376A (en) 2018-08-28
US20180163302A1 (en) 2018-06-14
TWI668778B (en) 2019-08-11
CN105321792B (en) 2018-04-24
SG10201504057QA (en) 2016-01-28
CN108461376B (en) 2020-08-04

Similar Documents

Publication Publication Date Title
SG10201911380YA (en) Multi-station plasma reactor with rf balancing
IL274903A (en) Cell
GB2532195B (en) Plasma generation
EP3100597A4 (en) Plasma torch design
GB201401146D0 (en) Non-thermal plasma
LT3207593T (en) Multi-sector antennas
HUE059764T2 (en) Rapid pretreatment
SG11201608640QA (en) Showerhead design
GB2523386B (en) Snubber
GB201401151D0 (en) Plasma device
GB201401144D0 (en) Plasma device
EP3090800A4 (en) Batch reactor with baffle
EP3383144A4 (en) Plasma reactor
EP3174630A4 (en) Reactor with baffle configuration
GB2543719B (en) Spectrometer
HK1216124A2 (en) Herb-fruit five-element four-season beverage
HUE042287T2 (en) Lithium-sulphur cell
SG11201508723QA (en) Underwear
GB2526850B (en) Logic analyzer
GB201510312D0 (en) Frustrated lewis pairs
EP3128046A4 (en) Basket type anode
GB201506892D0 (en) Genetic enhancement ideas two
HU4515U (en) Disintegrator
GB201415471D0 (en) Energy optomiser
GB201419897D0 (en) Host cell