SG10201407463SA - Methods of Forming Epitaxial Semiconductor Material on Source/Drain Regions of a Finfet Semiconductor Device and the Resulting Devices - Google Patents

Methods of Forming Epitaxial Semiconductor Material on Source/Drain Regions of a Finfet Semiconductor Device and the Resulting Devices

Info

Publication number
SG10201407463SA
SG10201407463SA SG10201407463SA SG10201407463SA SG10201407463SA SG 10201407463S A SG10201407463S A SG 10201407463SA SG 10201407463S A SG10201407463S A SG 10201407463SA SG 10201407463S A SG10201407463S A SG 10201407463SA SG 10201407463S A SG10201407463S A SG 10201407463SA
Authority
SG
Singapore
Prior art keywords
methods
source
drain regions
semiconductor device
resulting devices
Prior art date
Application number
SG10201407463SA
Inventor
A Fronheiser Jody
V Krishnan Bharat
Kerem Akarvardar Murat
Bentley Steven
Poovannummoottil Jacob Ajey
Liu Jinping
Original Assignee
Globalfoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globalfoundries Inc filed Critical Globalfoundries Inc
Publication of SG10201407463SA publication Critical patent/SG10201407463SA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
SG10201407463SA 2014-01-27 2014-11-12 Methods of Forming Epitaxial Semiconductor Material on Source/Drain Regions of a Finfet Semiconductor Device and the Resulting Devices SG10201407463SA (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/164,934 US20150214369A1 (en) 2014-01-27 2014-01-27 Methods of forming epitaxial semiconductor material on source/drain regions of a finfet semiconductor device and the resulting devices

Publications (1)

Publication Number Publication Date
SG10201407463SA true SG10201407463SA (en) 2015-08-28

Family

ID=53523025

Family Applications (1)

Application Number Title Priority Date Filing Date
SG10201407463SA SG10201407463SA (en) 2014-01-27 2014-11-12 Methods of Forming Epitaxial Semiconductor Material on Source/Drain Regions of a Finfet Semiconductor Device and the Resulting Devices

Country Status (5)

Country Link
US (1) US20150214369A1 (en)
KR (1) KR20150089962A (en)
CN (1) CN104810403A (en)
DE (1) DE102014223911A1 (en)
SG (1) SG10201407463SA (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379218B2 (en) * 2014-04-25 2016-06-28 International Business Machines Corporation Fin formation in fin field effect transistors
US9318574B2 (en) * 2014-06-18 2016-04-19 International Business Machines Corporation Method and structure for enabling high aspect ratio sacrificial gates
KR102265956B1 (en) * 2014-09-29 2021-06-17 삼성전자주식회사 Semiconductor devices having a source/drain and Method for fabricating the same
US9472573B2 (en) * 2014-12-30 2016-10-18 International Business Machines Corporation Silicon-germanium fin formation
US9799771B2 (en) * 2015-04-20 2017-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET and method for manufacturing the same
US20170025509A1 (en) * 2015-07-24 2017-01-26 International Business Machines Corporation Strained silicon germanium fin with controlled junction for finfet devices
US9865597B2 (en) * 2015-09-08 2018-01-09 Samsung Electronics Co., Ltd. Semiconductor device having fin and dual liner
US9679978B2 (en) 2015-09-24 2017-06-13 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US20170140992A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
US9431399B1 (en) 2015-12-15 2016-08-30 International Business Machines Corporation Method for forming merged contact for semiconductor device
WO2017111873A1 (en) * 2015-12-26 2017-06-29 Intel Corporation A method to achieve a uniform group iv material layer in an aspect ratio trapping trench
US9899526B2 (en) * 2016-01-15 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Fin-type field effect transistor structure and manufacturing method thereof
US10002867B2 (en) * 2016-03-07 2018-06-19 Taiwan Semiconductor Manufacturing Co., Ltd. Fin-type field effect transistor structure and manufacturing method thereof
KR102321839B1 (en) * 2016-05-09 2021-11-05 어플라이드 머티어리얼스, 인코포레이티드 Selective etching method for epitaxial films on source/drain regions of transistors
US9735165B1 (en) 2016-07-21 2017-08-15 International Business Machines Corporation Vertically stacked FinFET fuse
CN107919326B (en) * 2016-10-10 2020-09-08 中芯国际集成电路制造(上海)有限公司 Fin type field effect transistor and forming method thereof
US10453943B2 (en) * 2016-11-29 2019-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. FETS and methods of forming FETS
KR102365109B1 (en) 2017-08-22 2022-02-18 삼성전자주식회사 Integrated circuit devices
TWI630647B (en) * 2017-09-20 2018-07-21 華邦電子股份有限公司 Semiconductor device and manufacturing method thereof
CN109524302B (en) 2017-09-20 2020-12-15 华邦电子股份有限公司 Semiconductor assembly and its manufacturing method
KR20200141142A (en) * 2019-06-10 2020-12-18 삼성전자주식회사 Semiconductor device
TWI817126B (en) * 2020-05-22 2023-10-01 台灣積體電路製造股份有限公司 Semiconductor device including fin field-effect transistor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555688B1 (en) * 2004-01-17 2009-11-11 Samsung Electronics Co., Ltd. Method of manufacturing a multi-sided-channel finfet transistor
US7115920B2 (en) * 2004-04-12 2006-10-03 International Business Machines Corporation FinFET transistor and circuit
US7692254B2 (en) * 2007-07-16 2010-04-06 International Business Machines Corporation Fin-type field effect transistor structure with merged source/drain silicide and method of forming the structure
US8377759B2 (en) * 2010-08-17 2013-02-19 International Business Machines Corporation Controlled fin-merging for fin type FET devices
US8652932B2 (en) * 2012-04-17 2014-02-18 International Business Machines Corporation Semiconductor devices having fin structures, and methods of forming semiconductor devices having fin structures
US9647066B2 (en) * 2012-04-24 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy FinFET structure and method of making same
US8946033B2 (en) * 2012-07-30 2015-02-03 International Business Machines Corporation Merged fin finFET with (100) sidewall surfaces and method of making same
US8981493B2 (en) * 2013-01-09 2015-03-17 International Business Machines Corporation FinFET and method of fabrication
US8796093B1 (en) * 2013-03-14 2014-08-05 International Business Machines Corporation Doping of FinFET structures

Also Published As

Publication number Publication date
KR20150089962A (en) 2015-08-05
DE102014223911A1 (en) 2015-07-30
US20150214369A1 (en) 2015-07-30
CN104810403A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
SG10201407463SA (en) Methods of Forming Epitaxial Semiconductor Material on Source/Drain Regions of a Finfet Semiconductor Device and the Resulting Devices
HK1253883A1 (en) Semiconductor device
TWI563573B (en) Fin-like field-effect transistor (finfet) device and method for fabricating the same
HK1251728A1 (en) Semiconductor device
PT4026529T (en) Mobility device
SG10201913614PA (en) Methods of forming semiconductor device structures including two-dimensional material structures
KR101882055B1 (en) Semiconductor structure with contact over source/drain structure and method for forming the same
SG10201707339PA (en) Semiconductor device
TWI562209B (en) Semiconductor device and method for manufacturing the same
SG10201405677QA (en) Methods of forming finfet semiconductor devices using a replacement gate technique and the resulting devices
TWI560817B (en) Semiconductor device having recessed edges and method of manufacture
EP3123521A4 (en) Confined epitaxial regions for semiconductor devices and methods of fabricating semiconductor devices having confined epitaxial regions
EP3422415C0 (en) Semiconductor device comprising a laterally diffused mos transistor
SG10201912585TA (en) Semiconductor device and method for manufacturing the same
SG11201606536XA (en) Semiconductor device and manufacturing method thereof
EP3032580A4 (en) Cooling device and semiconductor device having said cooling device
HK1223192A1 (en) Semiconductor device and manufacturing method thereof
HK1255949A1 (en) Semiconductor device
TWI562334B (en) Semiconductor device and methods for forming the same
HK1252338A1 (en) Semiconductor device
HK1221070A1 (en) Semiconductor device and methods for manufacturing the same
HK1249276A1 (en) Semiconductor device
TWI562362B (en) Semiconductor device structure and method for forming the same
TWI563604B (en) Semiconductor device and fabricating method thereof
PL3117465T3 (en) Heterojunction field-effect transistor