SG10201402593QA - Methods of forming replacement fins for a finfet semiconductor device by performing a replacement growth process - Google Patents

Methods of forming replacement fins for a finfet semiconductor device by performing a replacement growth process

Info

Publication number
SG10201402593QA
SG10201402593QA SG10201402593QA SG10201402593QA SG10201402593QA SG 10201402593Q A SG10201402593Q A SG 10201402593QA SG 10201402593Q A SG10201402593Q A SG 10201402593QA SG 10201402593Q A SG10201402593Q A SG 10201402593QA SG 10201402593Q A SG10201402593Q A SG 10201402593QA
Authority
SG
Singapore
Prior art keywords
replacement
methods
semiconductor device
growth process
finfet semiconductor
Prior art date
Application number
SG10201402593QA
Inventor
P Jacob Ajey
K Akarvardar Murat
Fronheiser Jody
P Maszara Witold
Original Assignee
Globalfoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globalfoundries Inc filed Critical Globalfoundries Inc
Publication of SG10201402593QA publication Critical patent/SG10201402593QA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
SG10201402593QA 2013-07-17 2014-05-23 Methods of forming replacement fins for a finfet semiconductor device by performing a replacement growth process SG10201402593QA (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/944,200 US9240342B2 (en) 2013-07-17 2013-07-17 Methods of forming replacement fins for a FinFET semiconductor device by performing a replacement growth process

Publications (1)

Publication Number Publication Date
SG10201402593QA true SG10201402593QA (en) 2015-02-27

Family

ID=52131547

Family Applications (1)

Application Number Title Priority Date Filing Date
SG10201402593QA SG10201402593QA (en) 2013-07-17 2014-05-23 Methods of forming replacement fins for a finfet semiconductor device by performing a replacement growth process

Country Status (5)

Country Link
US (2) US9240342B2 (en)
CN (1) CN104299893B (en)
DE (1) DE102014211026B4 (en)
SG (1) SG10201402593QA (en)
TW (1) TWI540676B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728464B2 (en) * 2012-07-27 2017-08-08 Intel Corporation Self-aligned 3-D epitaxial structures for MOS device fabrication
US9054212B2 (en) * 2012-10-30 2015-06-09 Globalfoundries Inc. Fin etch and Fin replacement for FinFET integration
US9306069B2 (en) 2013-09-11 2016-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. Isolation structure of fin field effect transistor
US9147682B2 (en) 2013-01-14 2015-09-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fin spacer protected source and drain regions in FinFETs
US9202917B2 (en) 2013-07-29 2015-12-01 Taiwan Semiconductor Manufacturing Co., Ltd. Buried SiGe oxide FinFET scheme for device enhancement
US9123633B2 (en) * 2013-02-01 2015-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming semiconductor regions in trenches
KR20160029005A (en) * 2013-06-28 2016-03-14 인텔 코포레이션 NANOSTRUCTURES AND NANOFEATURES WITH Si (111) PLANES ON Si (100) WAFERS FOR III-N EPITAXY
US9496397B2 (en) * 2013-08-20 2016-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. FinFet device with channel epitaxial region
US9159833B2 (en) 2013-11-26 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of semiconductor device
US9196479B1 (en) * 2014-07-03 2015-11-24 International Business Machines Corporation Method of co-integration of strained silicon and strained germanium in semiconductor devices including fin structures
US10026659B2 (en) 2015-01-29 2018-07-17 Globalfoundries Inc. Methods of forming fin isolation regions under tensile-strained fins on FinFET semiconductor devices
US9673112B2 (en) * 2015-02-13 2017-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method of semiconductor fabrication with height control through active region profile
US9608067B2 (en) * 2015-03-30 2017-03-28 International Business Machines Corporation Hybrid aspect ratio trapping
US9799771B2 (en) * 2015-04-20 2017-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET and method for manufacturing the same
EP3093881B1 (en) * 2015-05-13 2020-11-11 IMEC vzw Method for manufacturing a cmos device
US9576796B2 (en) * 2015-05-15 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US9536990B2 (en) * 2015-06-01 2017-01-03 Globalfoundries Inc. Methods of forming replacement fins for a FinFET device using a targeted thickness for the patterned fin etch mask
US9653580B2 (en) * 2015-06-08 2017-05-16 International Business Machines Corporation Semiconductor device including strained finFET
WO2016204737A1 (en) * 2015-06-16 2016-12-22 Intel Corporation A transistor with a subfin layer
US9653359B2 (en) * 2015-09-29 2017-05-16 International Business Machines Corporation Bulk fin STI formation
CN106653843B (en) * 2015-10-30 2022-08-23 联华电子股份有限公司 Semiconductor structure
US9570443B1 (en) 2015-11-23 2017-02-14 International Business Machines Corporation Field effect transistor including strained germanium fins
KR102532169B1 (en) * 2015-12-22 2023-05-16 인텔 코포레이션 Pin-based III-V/SI or GE CMOS SAGE integration
US9864136B1 (en) 2016-08-09 2018-01-09 Globalfoundries Inc. Non-planar monolithic hybrid optoelectronic structures and methods
US9728626B1 (en) 2016-08-30 2017-08-08 Globalfoundries Inc. Almost defect-free active channel region
US10403742B2 (en) 2017-09-22 2019-09-03 Globalfoundries Inc. Field-effect transistors with fins formed by a damascene-like process
US10325811B2 (en) 2017-10-26 2019-06-18 Globalfoundries Inc. Field-effect transistors with fins having independently-dimensioned sections
US11211470B2 (en) * 2019-10-18 2021-12-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
CN114121660B (en) * 2020-08-31 2024-03-12 联华电子股份有限公司 Semiconductor element and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838378B1 (en) * 2006-09-29 2008-06-13 주식회사 하이닉스반도체 Method for fabricating fin transistor
JP2009054705A (en) 2007-08-24 2009-03-12 Toshiba Corp Semiconductor substrate, semiconductor device, and manufacturing method thereof
DE102008030864B4 (en) * 2008-06-30 2010-06-17 Advanced Micro Devices, Inc., Sunnyvale Semiconductor device as a double-gate and tri-gate transistor, which are constructed on a solid substrate and method for producing the transistor
US20100072515A1 (en) * 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8629478B2 (en) * 2009-07-31 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure for high mobility multiple-gate transistor
EP2315239A1 (en) * 2009-10-23 2011-04-27 Imec A method of forming monocrystalline germanium or silicon germanium
US8513107B2 (en) * 2010-01-26 2013-08-20 Taiwan Semiconductor Manufacturing Co., Ltd. Replacement gate FinFET devices and methods for forming the same
US8367498B2 (en) 2010-10-18 2013-02-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8486770B1 (en) 2011-12-30 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming CMOS FinFET device
US8828813B2 (en) * 2012-04-13 2014-09-09 Taiwan Semiconductor Manufacturing Co., Ltd. Replacement channels
US9728464B2 (en) 2012-07-27 2017-08-08 Intel Corporation Self-aligned 3-D epitaxial structures for MOS device fabrication
US20140264488A1 (en) 2013-03-15 2014-09-18 Globalfoundries Inc. Methods of forming low defect replacement fins for a finfet semiconductor device and the resulting devices

Also Published As

Publication number Publication date
TW201515147A (en) 2015-04-16
US9240342B2 (en) 2016-01-19
CN104299893A (en) 2015-01-21
DE102014211026B4 (en) 2019-04-25
TWI540676B (en) 2016-07-01
US20160064250A1 (en) 2016-03-03
CN104299893B (en) 2017-06-06
US20150024573A1 (en) 2015-01-22
DE102014211026A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
SG10201402593QA (en) Methods of forming replacement fins for a finfet semiconductor device by performing a replacement growth process
SG2014003149A (en) Methods of forming fins for a finfet semiconductor device using a mandrel oxidation process
SG10201604931PA (en) Methods of forming low defect replacement fins for a finfet semiconductor device and the resulting devices
EP2985614A4 (en) Production method for semiconductor device
SG11201600440VA (en) Novel mask removal process strategy for vertical nand device
EP2793251A4 (en) Production method for semiconductor device
EP2790208A4 (en) Production method for semiconductor device
EP2964416C0 (en) Method for separating a substrate
SG11201600207TA (en) Method for producing a large quartz-glass pipe
EP2991129A4 (en) Organic semiconductor thin film production method
SG10201405742XA (en) Method For Simultaneously Cutting A Multiplicity Of Wafers From A Workpiece
EP2966702A4 (en) Organic semiconductor thin film production method
HK1202704A1 (en) Manufacturing method of semiconductor device
TWI563544B (en) Method of forming transistor device
SG11201601359VA (en) Method for producing mirror-polished wafer
EP2728612A4 (en) Method for producing semiconductor device
SG2014002539A (en) Method of forming a semiconductor structure including a vertical nanowire
EP2957543A4 (en) Method for producing trichlorosilane
EP2919273A4 (en) Method for manufacturing semiconductor device
HK1218842A1 (en) Method for producing fried-noodle cluster
ZA201602066B (en) Methods for improving plant growth
EP2685488A4 (en) Production method for semiconductor device
EP2869330A4 (en) Method for producing semiconductor device
TWI562728B (en) A process for producing co-crystal
SG11201508204RA (en) Method of producing semiconductor device