SE537424C2 - Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae - Google Patents

Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae Download PDF

Info

Publication number
SE537424C2
SE537424C2 SE1350560A SE1350560A SE537424C2 SE 537424 C2 SE537424 C2 SE 537424C2 SE 1350560 A SE1350560 A SE 1350560A SE 1350560 A SE1350560 A SE 1350560A SE 537424 C2 SE537424 C2 SE 537424C2
Authority
SE
Sweden
Prior art keywords
insect
larvae
pest
microorganism
pathogen
Prior art date
Application number
SE1350560A
Other languages
Swedish (sv)
Other versions
SE1350560A1 (en
Inventor
Peter Witzgall
Marie Bengtsson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SE1350560A priority Critical patent/SE537424C2/en
Priority to PCT/SE2014/050555 priority patent/WO2014182228A1/en
Publication of SE1350560A1 publication Critical patent/SE1350560A1/en
Publication of SE537424C2 publication Critical patent/SE537424C2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Mycology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

16 Abstract The present invention relates to a composition for control of a pest in-sect, such as Lepidoptera, said composition comprising an insect pathogenand a microorganism that is naturally associated with the Iarvae of the pestinsect.

Description

Tekniskt onnrade och uppfinningens bakgrund Samrore mellan jast och insektsvaxtatare är vanligt forkommande, och dessa interspecifika interaktioner har avgOrande betydelse fOr evolutionen bade av jast och insekter (Janson et al. 2008, Klepzig et al. 2009, Guzman et 5 al. 2013). Mikrobiell insektsekologi är ett valetablerat forskningsomrade, men hittills har fokus legat pa vissa grupper sasom barkborrar, fruktflugor och sociala insekter (Starmer and Fogleman 1986, Farrell et al. 2001, Mueller et al. 2005, Schoenian et al. 2011). Emellertid har dessa kunskaper inte kommit till praktisk nytta. TECHNICAL ARRANGEMENTS AND BACKGROUND OF THE INVENTION Joints between yeast and insect growers are common, and these interspecific interactions are crucial to the evolution of both yeast and insects (Janson et al. 2008; Klepzig et al. 2009; Guzman et al. 2013). Microbial insect ecology is an established research area, but so far the focus has been on certain groups such as bark beetles, fruit flies and social insects (Starmer and Fogleman 1986, Farrell et al. 2001, Mueller et al. 2005, Schoenian et al. 2011). However, this knowledge has not come in handy.

Parallellt med den hastigt expanderande forskningen kring det nnanskliga nnikrobionnet, har aven insekt-vaxt-nnikrob-interaktioner rant storre uppmarksamhet. Vi har bidragit genom var forskning som visar att bananflugan, Drosophila melanogaster, lockas till jast och inte frukt (Becher et al. 2012) samt att applevecklaren Cydia pomonella, en typisk vaxtatare, lever i 15 mutualism med jast (Witzgall et al. 2012). In parallel with the rapidly expanding research on the human microbiota, insect-growth-microbial interactions have also received greater attention. We have contributed through our research that shows that the banana fly, Drosophila melanogaster, is attracted to yeast and not fruit (Becher et al. 2012) and that the apple developer Cydia pomonella, a typical plant eater, lives in mutualism with yeast (Witzgall et al. 2012) .

Biologisk insektsbekampning omfattar tre sektorer: nyttoinsekter, patogener och "semiokemikalier". Omrade (1): nyttoinsekter, eller naturliga fiender som slapps ut for att bekampa skadeinsekter framforallt i vaxthusmiljoer. Omrade (2): insektpatogena virus, bakterier eller svampar anvands 20 vid sprutbehandling av faltgrodor och fruktodlingar for att &Ida insektslarver. Omrade (3): sk "semiokemikalier" (feromoner eller kairomoner, kemiska amnen som paverkar inskternas beteenden) anvands mot fullvuxna insekter for att forhinda parning eller f6r att fanga insekter i fallor (Witzgall et al. 2008, 2010). Biological insect control covers three sectors: beneficial insects, pathogens and "semiochemicals". Area (1): beneficial insects, or natural enemies that are released to fight pests, especially in greenhouse environments. Area (2): Insect pathogenic viruses, bacteria or fungi are used in the spraying treatment of field frogs and orchards to kill insect larvae. Area (3): so-called "semiochemicals" (pheromones or kairomones, chemical substances that affect the behavior of insects) are used against adult insects to prevent mating or to catch insects in traps (Witzgall et al. 2008, 2010).

F6rs6k att kombinera patogener med semiokemikalier har hittills inte varit sa framgangsrika som fOrvantat. Det finns tva anledningar till detta: 1 537 424 fullvuxna insekter, som kan bekannpas med senniokennikalier, är inte tillrackligt mottagliga for insektspatogener for att mojliggora effektiv kontroll. Insektslarver daremot är mer kansliga f6r insektspatogener, men kan inte bekampas med semiokemikalier pa ett enkelt sail nar de redan befinner sig pa sin 5 vardvaxt. Attempts to combine pathogens with semi-chemicals have so far not been as successful as expected. There are two reasons for this: 1,537,424 adult insects, which can be identified with senniogenics, are not sufficiently susceptible to insect pathogens to enable effective control. Insect larvae, on the other hand, are more susceptible to insect pathogens, but cannot be controlled with semi-chemicals on a single sail when they are already in their care.

Kemosensoriska stimuli styr larvemas beteenden Hos bananflugan D. melanogaster (Fishilevich et al. 2005, Kreher et al. 2005) och formodligen ocksa hos andra insekter, uttrycks en viss del av de 10 olfaktoriska receptorgenerna i larvernas olfaktoriska sensoriska neuroner. Larver och vuxna fjarilar av applevecklaren C. pomonella lockas till vaxtdofter (Sutherland 1972, Knight and Light 2001) och det är troligt att bade larver och agglaggande honor dessutom reagerar pa dofter som avges av associerade mikroorganismer. Kemosensorisk attraktion hos S. frugiperda larver har inte 15 studerats, men det är troligt att de ocksa attraheras av doftsignaler. Chemosensory stimuli control the behavior of the larvae In the banana fly D. melanogaster (Fishilevich et al. 2005, Kreher et al. 2005) and probably also in other insects, a certain part of the olfactory receptor genes is expressed in the larvae's olfactory sensory neurons. Larvae and adult butterflies by the apple developer C. pomonella are attracted to plant odors (Sutherland 1972, Knight and Light 2001) and it is likely that both larvae and agglomerating females also react to odors emitted by associated microorganisms. Chemosensory attraction in S. frugiperda larvae has not been studied, but it is likely that they are also attracted by odor signals.

Applevecklarens granulovirus Cydia pomonella granulovirus (CpGV) har erhallit avsevard uppmarksamhet som mikrobiell insekticid pa grund av den specificitet for appleveck20 laren och dess sakerhet mot icke-malorganismer. CpGV har registrerats i manga lander och anvands arligen pa mer an 150.000 ha (Cross et al. 1999, Lacey and Shapiro 2008, Lacey et al. 2008, Chandler et al. 2011) Applevecklarhonor lagger agg direkt pa, eller i narheten av frukt men de nyklackta larverna borjar inte aktivt att ata forran de forst gnagt sig igenom 25 fruktskalet. Nar larven val kommit in i frukten är fysiskt isolerad fran efterfoljande bekampningsmetoder. The apple developer's granulovirus Cydia pomonella granulovirus (CpGV) has received considerable attention as a microbial insecticide due to its specificity for the apple developer and its safety against non-malignant organisms. CpGV has been registered in many countries and is used annually on more than 150,000 hectares (Cross et al. 1999, Lacey and Shapiro 2008, Lacey et al. 2008, Chandler et al. 2011) Apple picker females lay eggs directly on, or near fruit but the newly hatched larvae do not begin to actively eat until they have first gnawed their way through the fruit peel. Once the larval selection has entered the fruit is physically isolated from subsequent control methods.

Detta beteende hos applevecklarlarverna Or dem mycket svara att bekampa med CpGV, som maste tas in med fodan for att ha effekt (Jacques et al. 1987). Efter besprutning ar viruset bara aktivt under nagra fa dagar i 30 odlingen. Darfor har f6rs6k gjorts f6r att Oka effekten av CpGV genom att Oka virusintag genom stimulering av atbeteende och larvattraherande kemiska substanser (Lacey et al. 2008, Ballard et al. 2000a,b). 2 537 424 Exennpel pa substanser som attraherar applevecklarlarver är (E,E)-a- farnesen och paronester, ethyl (E,Z)-2,4-decadienoat (Sutherland 1972, Knight and Light 2001). Tillsats av a-farnesen okade effekten av CpGV (Ballard et al. 2000a) och paronester reducerades angrepp pa valnotter (Light 5 and Knight 2011), men inte pa apple och 'Aron (Arthurs et al. 2007, Schmidt et al. 2008). Amnen som stimulerar larvernas atbeteende, sasom sirap eller socker, visar en effekt, men orsakar aven sekundara svampinfektioner (Ballard et al. 2000a). Dessa studier visar att det är mojligt att oka effekten av CpGV genom inkorporering av attraherande substanser och/eller atstimuler10 ande medel, men den overgripande effekten var begransad. This behavior of the apple caterpillar larvae is very difficult to control with CpGV, which must be ingested with the food to have an effect (Jacques et al. 1987). After spraying, the virus is only active for a few days in the culture. Therefore, attempts have been made to increase the effect of CpGV by increasing virus intake by stimulating behavior and larval attracting chemical substances (Lacey et al. 2008; Ballard et al. 2000a, b). 2,537,424 Examples of substances that attract apple larvae are (E, E) -a- farnesen and paronesters, ethyl (E, Z) -2,4-decadienoate (Sutherland 1972, Knight and Light 2001). Addition of α-farnesis increased the effect of CpGV (Ballard et al. 2000a) and paronesters reduced attacks on walnuts (Light 5 and Knight 2011), but not on apple and 'Aaron' (Arthurs et al. 2007, Schmidt et al. 2008) . The substances that stimulate the behavior of the larvae, such as syrup or sugar, show an effect, but also cause secondary fungal infections (Ballard et al. 2000a). These studies show that it is possible to increase the effect of CpGV by incorporating attractive substances and / or stimulants, but the overall effect was limited.

Spodoptera frugiperda nucleopolyhedro virus Baculovirus forkommer hos manga fjarilsarter och anvands kommersiellt fOr bekampning av nattflyn Noctuidae, t ex mot Anticarsia gemmatalis pa 15 sojab6nor i Brasilien (Moscardi 1999, Cory and Myers 2003). En mikroinkapslingsmetod for storskalig, industriell produktion av Spodoptera frugiperda nucleopolyhedrovirus finns redan etablerad (Villamizar et al. 2010). Spodoptera frugiperda nucleopolyhedro virus Baculovirus is found in many butterfly species and is used commercially to control the night fly Noctuidae, for example against Anticarsia gemmatalis on 15 soybeans in Brazil (Moscardi 1999, Cory and Myers 2003). A microencapsulation method for large-scale, industrial production of Spodoptera frugiperda nucleopolyhedrovirus has already been established (Villamizar et al. 2010).

Sammanfattning av uppfinningen Vaxtatande insekter är associerade med mutualistiska mikroorganismer Vi har nyligen visat att en typisk vaxtatare, applevecklaren C. pomonella, är associerad med jast och svannpar, i synnerhet med Metschnikowia spec. (Ascomycota, Saccharomycetes), Aureobasidium spec. (Ascomycota, Sordariomycetes) och Cryptococcus spec. (Basidiomycota, 25 Tremellomycetes) (Witzgall et al. 2012). Summary of the Invention Growth-eating insects are associated with mutualistic microorganisms We have recently shown that a typical plant-eater, the apple pus-celery C. pomonella, is associated with yeast and swan pairs, in particular with Metschnikowia spec. (Ascomycota, Saccharomycetes), Aureobasidium spec. (Ascomycota, Sordariomycetes) and Cryptococcus spec. (Basidiomycota, 25 Tremellomycetes) (Witzgall et al. 2012).

Vi visar nu att nattflyet, Spodoptera frugiperda är associerat med jastoch svamparter, i synnerhet med Metschnikowia spec. (Ascomycota, Saccharomycetes) och Cryptococcus spec. (Basidiomycota, Tremellomycetes) (opubl. res.) 3 537 424 Kombinerad anvandning av mutualistiska mikroorganismer och insektspatogener Vi upptackte nu att dessa mutualistiska mikroorganismer som 5 forekommer tillsammans i nara anslutning till insektslarver, okar intaget av insektspatogena virus hos nyklackta larver (opubl. res.) Man ipulering av larvernas beteenden mot en okad exponering for patogener blir nu mojlig genom att kombinera patogener med mutualistiska mikroorganismer som f6rekommer tillsammans i nara association med 10 insektslarver. We now show that the nocturnal aircraft, Spodoptera frugiperda, is associated with jastoch fungi, in particular with the Metschnikowia spec. (Ascomycota, Saccharomycetes) and Cryptococcus spec. (Basidiomycota, Tremellomycetes) (unpublished res.) 3 537 424 Combined use of mutualistic microorganisms and insect pathogens We now discovered that these mutualistic microorganisms, which occur together in close association with insect larvae, increase the intake of insect pathogenic larvae in unpublished res. .) Manipulation of the larvae's behaviors against an increased exposure to pathogens is now possible by combining pathogens with mutualistic microorganisms that occur together in close association with 10 insect larvae.

Denna upptackt oppnar ett nytt perspektiv for biologisk insektsbekampning och ger mOjlighet att utveckla en ny vaxtskyddsmetod. Vi fOrvantar oss att metoden vasentligt kommer att bidra till insektsbekampning i framtiden. Saledes avser uppfinningen en ny insektsbekampningsmetod. Metoden 15 bygger pa mutualistiska mikroorganismer som forekommer tillsammans med insektslarver, som attraherar dessa insektslarver fOr intag av foda, i kombination med insektspatogener, i synnerhet patogena virus, svampar eller bakterier. This discovery opens up a new perspective for biological insect control and provides an opportunity to develop a new plant protection method. We expect that the method will significantly contribute to insect control in the future. Thus, the invention relates to a new insect control method. The method is based on mutualistic microorganisms which occur together with insect larvae, which attract these insect larvae for food intake, in combination with insect pathogens, in particular pathogenic viruses, fungi or bacteria.

Utan attraherande mikroorganismer sasom jast eller svampar, traffar 20 larverna bara slum pvis pa insektspatogener. Att form ulera attraherande mikroorganismer, sasom jast eller svampar, tillsammans med insektspatogenet okar kraftigt det avdodande patogenets effekt, eftersonn nnikroorganismerna som är associerade med insekter attraherar larver och aven stimulerar intaget av foda. Without attractive microorganisms such as yeast or fungi, the 20 larvae only encounter slugs in insect pathogens. The formation of attractive microorganisms, such as yeast or fungi, together with the insect pathogen greatly increases the effect of the killing pathogen, since the microorganisms associated with insects attract larvae and also stimulate the intake of food.

Uppfinningen kan anvandas pa vaxtatande insektslarver for vilka associerade mikroorganismer, sasom jast och jastliknande svampar, kan kombineras med insektspatogener, sasom patogena insektsvirus, svampar eller bakterier. The invention can be applied to plant-growing insect larvae for which associated microorganisms, such as yeast and yeast-like fungi, can be combined with insect pathogens, such as pathogenic insect viruses, fungi or bacteria.

Uppfinningen avser narmare bestamt en komposition for kontroll av en 30 skadeinsekt, innefattande en insektspatogen och atminstone en mikroorga- nism som forekommer naturligt tillsammans med skadeinsektens larver. Foreliggande uppfinning avser aven ett forfarande f6r bekannpning av skadeinsekter, innefattande exponering av skadeinsekten fOr en insektspato- 4 537 424 gen och atnninstone en nnikroorganisnn som forekonnnner naturligt med skadeinsektens larver. More particularly, the invention relates to a composition for controlling a pest, comprising an insect pathogen and at least one microorganism which occurs naturally together with the larvae of the pest. The present invention also relates to a method for detecting insect pests, comprising exposing the pest to an insect pathogen and at least one microorganism which occurs naturally with the larvae of the insect.

Kort beskrivning av ritningen Fig. 1 visar resultaten av experiment dar mikroorganismerna Cryptococcus tephrensis, Aureobasidium pullulans eller Metschnikowia pulcherrima kombinerades med applevecklarens granulovirus (CpGV). Mortaliteten av nyklackta applevecklarlarver pa applen som behandlades med en blandning av CpGV (3.8 x 7 occlusion bodies/L) och 1.2 eller 3.6 g/L 10 mikroorganismer, med eller utan tillsats av socker, var signifikant hogre an pa apple som behandlades enbart med CpGV. Tre forsok genomf6rdes: virus och socker; virus och mikroorganismer; virus, socker och mikroorganismer, jamfort med enbart virus och vatten. Staplar med olika bokstaver ar signifikant skilda at med P < 0.05. Brief Description of the Drawing Fig. 1 shows the results of experiments in which the microorganisms Cryptococcus tephrensis, Aureobasidium pullulans or Metschnikowia pulcherrima were combined with the apple developer granulovirus (CpGV). The mortality of freshly picked apple worm larvae on the apple treated with a mixture of CpGV (3.8 x 7 occlusion bodies / L) and 1.2 or 3.6 g / L microorganisms, with or without the addition of sugar, was significantly higher than in apple treated with CpGV alone . Three trials were conducted: virus and sugar; viruses and microorganisms; viruses, sugars and microorganisms, compared with viruses and water alone. Stacks with different letters are significantly different with P <0.05.

Detaljerad beskrivning av uppfinningen En mutualistisk mikroorganism, sasom jast eller svamp, som attraherar fodosokande insektslarver, i kombination med en insektspatogen, sasom virus, svamp eller bakterie, beskrivs som en ny insektsbekampningsmetod. 20 Den mutualistiska mikroorganismen stimulerar larvattraktion och fodointag och framkallar intag av insektspatogenen. Detailed Description of the Invention A mutualistic microorganism, such as yeast or fungus, which attracts photosynthetic insect larvae, in combination with an insect pathogen, such as a virus, fungus or bacterium, is described as a new insect control method. The mutualistic microorganism stimulates larval attraction and food intake and induces ingestion of the insect pathogen.

Begreppet "skadeinsekt" som anyands i den aktuella beskrivningen hanfor sig till insekter som skadar eller dodar, jordbruksgrodor, tradgardsvaxter eller naturliga vaxter in situ. Larvema av skadeinsekten som kan 25 bekampas med kompositionen eller forfarandet enligt uppfinningen, livnar sig av vaxterna. The term "insect pest" as anyands in the present description refers to insects that damage or kill, agricultural frogs, garden plants or natural plants in situ. The larvae of the pest which can be controlled by the composition or method of the invention feed on the plants.

I nagra utforingsformer ar skadeinsekten vald fran ordningen Lepidoptera. In some embodiments, the pest is selected from the Lepidoptera scheme.

I nagra utforingsformer ar skadeinsekten applevecklaren Cydia pomonella L. (Lepidoptera, Tortricidae) I nagra utforingsformer ar skadeinsekten nattflyet Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). 537 424 I nagra utforingsformer är skadeinsekten nattflyet Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae). In some embodiments, the insect pestle is Cydia pomonella L. (Lepidoptera, Tortricidae). In some embodiments, the insect is the night moth Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). 537 424 In some embodiments, the insect is the moth Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten bomullsflyet Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). In some embodiments, the insect pest is the cotton fly Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten nattflyet Spodoptera exempta (Walker, 1857) (Lepidoptera: Noctuidae). In some embodiments, the insect is the nocturnal aircraft Spodoptera exempta (Walker, 1857) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten smalvingat lovfly Spodoptera exigua (Hubner, 1808) (Lepidoptera: Noctuidae). In some embodiments, the insect is narrow-winged praise fly Spodoptera exigua (Hubner, 1808) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten nattflyety Spodoptera eridania 10 (Stoll, 1782) (Lepidoptera: Noctuidae). In some embodiments, the insect pest is the nocturnal fly Spodoptera eridania 10 (Stoll, 1782) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten nattflyet Anticarsia gemmatalis (Hubner, 1818) (Lepidoptera: Noctuidae). In some embodiments, the insect is the moth Anticarsia gemmatalis (Hubner, 1818) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten nattflyet Heliothis virescens (Fabricius, 1777) (Lepidoptera: Noctuidae). In some embodiments, the insect is the moth Heliothis virescens (Fabricius, 1777) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten brunaktigt knolfly Helicoverpa armigera (Hubner, 1805) (Lepidoptera: Noctuidae). In some embodiments, the pest is the brownish tuberous Helicoverpa armigera (Hubner, 1805) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten nattflyet Helicoverpa zea (Boddie, 1850) (Lepidoptera: Noctuidae). In some embodiments, the insect is the moth Helicoverpa zea (Boddie, 1850) (Lepidoptera: Noctuidae).

I nagra utforingsformer är skadeinsekten fruktskalvecklaren Adoxophyes orana (Fischer von Roslerstamm, 1834) (Lepidoptera: Noctuidae). In some embodiments, the pest is the fruit-shell developer Adoxophyes orana (Fischer von Roslerstamm, 1834) (Lepidoptera: Noctuidae).

Det är av sarskilt intresse i enlighet nned foreliggande uppfinning att anvanda kompositionen och forfarandet for bekampning av insekter som angriper frukt och jordbruksgrodor. It is of particular interest in accordance with the present invention to use the composition and method for controlling insects attacking fruit and agricultural frogs.

Exempel pa frukt eller jordbruksgrodor som angrips av skadeinsekter som kan bekampas enligt uppfinningen är apple (Ma/us domestica Borkh.), paron (Pyrus communis L.), och/eller valnot (Juglans regia L). Examples of fruit or agricultural frogs that are attacked by pests that can be controlled according to the invention are apple (Ma / us domestica Borkh.), Paron (Pyrus communis L.), and / or walnut (Juglans regia L).

Exempel pa jordbruksgrodor som angrips av skadeinsekter som kan bekampas enligt uppfinningen är alfalfa (Medicago sativa L.), bomull (Gossypium spec.), ogonbona (Vigna unguiculata (L.) Walp.), limabonan (Phaseolus lunatus L.), majs (Zea mays L.), ris (Oryza sativa L.), soja (Glycine max (L.) Merr.), och/eller tomat (Solanum lycopersicum L.). 6 537 424 Begreppet "insektspatogen" som anvands i foreliggande beskrivning hanfor sig till alla kanda insektspatogener som infekterar eller clodar skadeinsekterna som bekampningen riktar sig emot. Examples of agricultural frogs that are attacked by pests that can be controlled according to the invention are alfalfa (Medicago sativa L.), cotton (Gossypium spec.), Ogonbona (Vigna unguiculata (L.) Walp.), Limabonan (Phaseolus lunatus L.), maize ( Zea mays L.), rice (Oryza sativa L.), soy (Glycine max (L.) Merr.), And / or tomato (Solanum lycopersicum L.). The term "insect pathogen" as used in the present specification refers to all known insect pathogens which infect or clod the pests against which the control is directed.

Skadeinsekten kan infekteras eller dodas i sitt outvecklade stadie, som 5 en larv, eller som fullvuxen insekt. The pest insect can be infected or killed in its undeveloped stage, as a larva, or as an adult insect.

I nagra utforingsformer dodar insektspatogenen skadeinsekten. In some embodiments, the insect pathogen kills the pest.

For det fall insektspatogenen, som anvands enligt uppfinningen, inte &Aar insekten, är det onskvart att den resulterar i forebyggande av fodointag eller fortplantning hos insekten. In case the insect pathogen used according to the invention does not contain the insect, it is undesirable that it results in the prevention of food intake or reproduction in the insect.

I nagra utforingsformer är insektspatogenen ett virus. In some embodiments, the insect pathogen is a virus.

I nagra utforingsformer är insektspatogenen en svamp. In some embodiments, the insect pathogen is a fungus.

I nagra utforingsformer är insektspatogenen en bakterie. In some embodiments, the insect pathogen is a bacterium.

I nagra utforingsformer är insektspatogenen Cydia pomonella granulovirus (CpGV). In some embodiments, the insect pathogen is Cydia pomonella granulovirus (CpGV).

I nagra ufforingsformer är insektspatogenen Spodoptera frugiperda nucleopolyhedrovirus (SfNPV). In some forms, the insect pathogen is Spodoptera frugiperda nucleopolyhedrovirus (SfNPV).

Uttrycket "mikroorganism som är naturligt associerad med skadeinsektslarven" innefattar alla mikroorganismer som naturligt forekommer med larver av den insekt som ska bekampas. Mikroorganismen som är naturligt 20 associerad med skadeinsektslarven kan ha en naturligt f6rekommande relation, som kan vara en mutualistisk interaktion med skadeinsektslarven. I vissa delar av denna ansokan anvands begreppet "insektsassocierad mikroorganism" vilket betyder det samma som "mikroorganism som är naturligt associerad med skadeinsektslarven". Denna mikroorganism attraherar och 25 stimulerar larven att ata. I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en jast. I nagra utf6ringsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en svamp. Svampen kan vara en jast-liknande svamp. I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en 30 bakterie. Det är mojligt att anvanda till exempel en enstaka jast eller en enstaka svamp, men det är aven mojligt att anvanda en kombination av flera mikroorganismer som är naturligt associerade med skadeinsektslarven, 7 537 424 sasonn tva eller flera jaster, atnninstone tva svannpar, eller atnninstone en jast och atnninstone en svamp. The term "microorganism naturally associated with the insect larval pest" includes all microorganisms naturally occurring with the larvae of the insect to be controlled. The microorganism that is naturally associated with the insect larva may have a naturally occurring relationship, which may be a mutualistic interaction with the insect larva. In some parts of this application, the term "insect-associated microorganism" is used, which means the same as "microorganism naturally associated with the pest insect larva". This microorganism attracts and stimulates the larva to eat. In some embodiments, the microorganism naturally associated with the insect larva is a yeast. In some embodiments, the microorganism naturally associated with the insect larva is a fungus. The fungus can be a yeast-like fungus. In some embodiments, the microorganism naturally associated with the insect larva is a bacterium. It is possible to use, for example, a single yeast or a single fungus, but it is also possible to use a combination of several microorganisms that are naturally associated with the pest insect larva, 7 537 424 season two or more yeasts, atnninstone two swan pairs, or atnninstone one jast and atnninstone a mushroom.

I nagra utforingsformer kan en sockerart kombineras med mikro- organismen som är naturligt associerad med skadeinsektslarven. Sockret 5 fungerar da som ett substrat for mikroorganismen. In some embodiments, a sugar may be combined with the microorganism naturally associated with the insect larva. The sugar 5 then acts as a substrate for the microorganism.

I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en jast av slaktet Metschnikowia. Jasten av slaktet Metschnikowia kan vara Ascomycota. Alternativt kan jasten av slaktet Metschnikowia vara Saccharomycetes. I nagra utforingsformer anvands M. andauensis. I nagra utforingsformer anvands M. pulcherrima. I nagra utforingsformer anvands M. lopburiensis. I nagra utforingsformer anvands M. saccharicola. In some embodiments, the microorganism naturally associated with the insect larva is a yeast of the genus Metschnikowia. The yeast of the genus Metschnikowia may be Ascomycota. Alternatively, the yeast of the genus Metschnikowia may be Saccharomycetes. In some embodiments, M. andauensis is used. In some embodiments, M. pulcherrima is used. In some embodiments, M. lopburiensis is used. In some embodiments, M. saccharicola is used.

I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en jastliknande svamp av slaktet Aureobasidium. 15 Den jastliknande svampen av slaktet Aureobasidium kan vara Ascomycota. In some embodiments, the microorganism naturally associated with the insect larva is a yeast-like fungus of the genus Aureobasidium. The yeast-like fungus of the genus Aureobasidium may be Ascomycota.

Alternativt kan den jastliknande svampen av slaktet Aureobasidium vara Sordariomycetes. I nagra utforingsformer anvands A. pullulans. Alternatively, the yeast-like fungus of the genus Aureobasidium may be Sordariomycetes. In some embodiments, A. pullulans is used.

I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en svamp av slaktet Cryptococcus. Svampen av 20 slaktet Cryptococcus kan vara Basidiomycota. Alternativt, kan svampen av slaktet Cryptococcus vara Tremellomycetes. I nagra utforingsformer anvands C. tephrensis. I nagra utforingsformer anvands C. nemorosus. In some embodiments, the microorganism naturally associated with the insect larva is a fungus of the genus Cryptococcus. The fungus of the genus Cryptococcus may be Basidiomycota. Alternatively, the fungus of the genus Cryptococcus may be Tremellomycetes. In some embodiments, C. tephrensis is used. In some embodiments, C. nemorosus is used.

I specifika utforingsformer, nar kompositionen eller forfarandet ska anvandas for att bekampa applevecklaren Cydia pomonella L. (Lepidoptera, 25 Tortricidae), är mikroorganismen som är naturligt associerad med skadeinsektslarven vald fran den grupp som bestar av Metschnikowia arter, sasom Ascomycota och Saccharomycetes; Aureobasidium arter, sasom Ascomycota och Sordariomycetes; och Cryptococcus arter, sasom Basidiomycota och Tremellomycetes och insektspatogenen är Cydia pomonella granulovirus 30 (CpGV). In specific embodiments, when the composition or method is to be used to control the apple developer Cydia pomonella L. (Lepidoptera, Tortricidae), the microorganism naturally associated with the pest insect larva is selected from the group consisting of Metschnikowia species, such as Ascomyceta and Sacchar; Aureobasidium species, such as Ascomycota and Sordariomycetes; and Cryptococcus species, such as Basidiomycota and Tremellomycetes and the insect pathogen are Cydia pomonella granulovirus (CpGV).

I specifika utforingsformer, nar kompositionen eller forfarandet ska anvandas f6r att bekampa nattflyet Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), valjs mikroorganismen som är naturligt associerad 8 537 424 med skadeinsektslarven ut fran den grupp som bestar av Metschnikowia arter, sasom Ascomycota och Saccharomycetes; och Cryptococcus arter, sasom Basidiomycota och Tremellomycetes och insektspatogenen är Spodoptera frugiperda nucleopolyhedrovirus (SfNPV). In specific embodiments, when the composition or procedure is to be used to control the moth Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), the microorganism naturally associated with the pest insect larva is selected from the group consisting of Metschascomicia species, Metschascomicia species Saccharomycetes; and Cryptococcus species, such as Basidiomycota and Tremellomycetes and the insect pathogen are Spodoptera frugiperda nucleopolyhedrovirus (SfNPV).

Enligt forfarandet enlig foreliggande uppfinning appliceras insekts- patogenet och mikroorganismen som är naturligt associerad med skadeinsektslarven, pa en vaxt till exempel genom besprutning. According to the method of the present invention, the insect pathogen and microorganism naturally associated with the pest insect larva are applied to a plant, for example by spraying.

Insektspatogen och mikroorganismen som är naturligt associerad med skadeinsektslarven, appliceras pa vaxten antingen samtidigt eller var och en 10 for sig. I manga utforingsformer appliceras patogenet och mikroorganismen samtidigt. For det fall att patogenet och mikroorganismen som är naturligt associerad med skadeinsektslarven inte appliceras samtidigt, ska de -bretradesvis appliceras morn en relativt kort tidsperiod. The insect pathogen and the microorganism naturally associated with the pest insect larva are applied to the plant either simultaneously or separately. In many embodiments, the pathogen and microorganism are applied simultaneously. In the event that the pathogen and microorganism naturally associated with the pest insect larva are not applied simultaneously, they should be widely applied for a relatively short period of time.

Exempel De insektassocierade mikroorganismerna Cryptococcus tephrensis, Aureobasidium pullulans eller Metschnikowia pulcherrima kombinerades med applevecklarens granulosvirus (CpGV), ett virus som är ett patogen f6r C. pomonella. Mortaliteten hos nyklackta applevecklarlarver C. pomonella pa 20 apple behandlade med CpGV (3.8 x 7 partiklar/L) och 1.2 eller 3.6 g/L insektassocierade mikroorganismer, med eller utan tillsats av socker, var signifikant hogre an med enbart CpGV (dvs. patogent virus). Examples The insect-associated microorganisms Cryptococcus tephrensis, Aureobasidium pullulans or Metschnikowia pulcherrima were combined with apple granulose virus (CpGV), a virus that is a pathogen for C. pomonella. The mortality of freshly harvested apple peck larvae C. pomonella on 20 apples treated with CpGV (3.8 x 7 particles / L) and 1.2 or 3.6 g / L insect-associated microorganisms, with or without the addition of sugar, was significantly higher than with CpGV alone (ie pathogenic virus ).

Tre experiment genomfordes: patogent virus plus socker; patogent virus plus insektassocierad mikroorganism; patogent virus plus socker plus 25 insektassocierad mikroorganism, jam-fort med patogent virus och enbart vatten. Staplar markerade med olika bokstaver är signifikant skilda at (P < 0.05). Three experiments were performed: pathogenic virus plus sugar; pathogenic virus plus insect-associated microorganism; pathogenic virus plus sugar plus insect-associated microorganism, jam-fast with pathogenic virus and water only. Bars marked with different letters are significantly different at (P <0.05).

Applevecklaren Cydia pomonella 30 Applevecklarlarver är associerade med insektassocierade mikroorganismer av slakten Metschnikowia, Aureobasidium and Cryptococcus, som okar larvernas tillvaxt och overlevnad (Witzgall et al. 2012). Inledande laboratoriefOrsOk visar nu att en blandning av dessa insektassocierade 9 537 424 nnikroorganisnner och applevecklar granulovirus (CpGV) avsevart okar larvernas mortalitet, jamfort med enbart CpGV (se Fig. 1). The apple developer Cydia pomonella 30 Apple developer larvae are associated with insect-associated microorganisms of the genus Metschnikowia, Aureobasidium and Cryptococcus, which increase the growth and survival of the larvae (Witzgall et al. 2012). Preliminary laboratory research now shows that a mixture of these insect-associated 9,537,424 microorganisms and apple-developing granulovirus (CpGV) significantly increases the mortality of the larvae, compared with CpGV alone (see Fig. 1).

Var slutsats är att dessa insektassocierade mikroorganismer okar larvernas attraktion och fodointag, med intag av det patogena viruset som 5 foljd. Kombinationen av insektassocierade mikroorganismer och patogena insektsvirus är foljaktligen en ny och mer effektiv bekampningsteknik an enbart patogent virus. Our conclusion is that these insect-associated microorganisms increase the attraction and food intake of the larvae, with ingestion of the pathogenic virus as a result. The combination of insect-associated microorganisms and pathogenic insect viruses is consequently a new and more effective control technique than just pathogenic virus.

Ett replikerat faltforsok bekraftade effekten av insektassocierade mikroorganismer i kombination med CpGV. Signifikanta skillnader fanns 10 bland behandlingar med avseende pa andelen doda och levande larver. Besprutningar med CpGV (3 x 13 partiklar/L) med och utan M. pulcherrima och rOrsocker applicerades vid 1.2 L/appletrad (623 L/ha). Andelen dOda larver var hogst efter behandling med CpGV plus insektsassocierade mikroorganismer och socker. Andel levande larver i frukten var lagst vid 15 tillsats av insektassocierade mikroorganismer och socker till CpGV. Andelen frukt med larver som fullbordade sin utveckling var hogst i obehandlade kontrollforsok och efter behandling med enbart CpGV. A replicated field trial confirmed the effect of insect-associated microorganisms in combination with CpGV. Significant differences were found among treatments with respect to the proportion of dead and live larvae. Sprays with CpGV (3 x 13 particles / L) with and without M. pulcherrima and cane sugar were applied at 1.2 L / appletrad (623 L / ha). The proportion of dOda larvae was harvested after treatment with CpGV plus insect-associated microorganisms and sugar. The proportion of live larvae in the fruit was lowest when insect-associated microorganisms and sugar were added to CpGV. The proportion of fruit with larvae that completed their development was harvested in untreated control trials and after treatment with CpGV alone.

Fall arm yworm Spodoptera frugiperda Insektassocierade mikroorganismer av slaktet Metschnikowia och Cryptococcus har aven hittats i association med nattflylarver av arten Spodoptera frugiperda. Inledande laboratorieforsok visar att larverna av S. frugiperda attraheras till dessa insektassocierade jaster och vi antar baserat pa dessa experiment att de kan anvandas i kombination med S. frugiperda 25 nucleopolyhedrovirus (SfNPV) for bekampning av S. frugiperda. 537 424 Referenser Arthurs SP, Hilton R, Knight AL, Lacey LA. 2007. Evaluation of the pear ester kairomone as a formulation additive for the granulovirus of codling moth (Lepidoptera: Tortricidae) in pome fruit. J econ Entomol 100:702-709. Fall arm yworm Spodoptera frugiperda Insect-associated microorganisms of the genus Metschnikowia and Cryptococcus have also been found in association with moth larvae of the species Spodoptera frugiperda. Preliminary laboratory tests show that the larvae of S. frugiperda are attracted to these insect-associated yeasts and we assume based on these experiments that they can be used in combination with S. frugiperda nucleopolyhedrovirus (SfNPV) to control S. frugiperda. 537 424 References Arthurs SP, Hilton R, Knight AL, Lacey LA. 2007. Evaluation of the pear ester kairomone as a formulation additive for the granulovirus of codling moth (Lepidoptera: Tortricidae) in pome fruit. J econ Entomol 100: 702-709.

Ballard J, Ellis DJ, Payne CC. 2000a. Uptake of granulovirus from the surface of apples and leaves by first instar larvae of the codling moth Cydia pomonella L. (Lepidoptera: Olethreutidae). Biocontr Sci Technol 10:617-625. Ballard J, Ellis DJ, Payne CC. 2000a. Uptake of granulovirus from the surface of apples and leaves by first instar larvae of the codling moth Cydia pomonella L. (Lepidoptera: Olethreutidae). Biocontr Sci Technol 10: 617-625.

Ballard J, Ellis DJ, Payne CC. 2000b. The role of formulation additives in increasing the potency of Cydia pomonella granulovirus for codling moth 10 larvae, in laboratory and field experiments. Biocontr Sci Technol 10:627-640. Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M. 2012. Yeast, not fruit volatiles mediate attraction and development of the fruit fly Drosophila melanogaster. Funct Ecol 26:822-828. Ballard J, Ellis DJ, Payne CC. 2000b. The role of formulation additives in increasing the potency of Cydia pomonella granulovirus for codling moth 10 larvae, in laboratory and field experiments. Biocontr Sci Technol 10: 627-640. Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M. 2012. Yeast, not fruit volatiles mediate attraction and development of the fruit fly Drosophila melanogaster . Funct Ecol 26: 822-828.

Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987-1998. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366: 1987-1998.

Cory JS, Myers JH. 2003. The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34:239-272. Cory JS, Myers JH. 2003. The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34: 239-272.

Cross JV, Solomon MG, Chandler D, Jarrett P, Richardson PN, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch GA, Zimmerman G. 1999. Biocontrol of pests of apples and pears in northern and central Europe: 1. Microbial agents and nematodes. Bioctrl Sc Techn 9:125-149. Cross JV, Solomon MG, Chandler D, Jarrett P, Richardson PN, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch GA, Zimmerman G. 1999. Biocontrol of pests of apples and pears in northern and central Europe: 1. Microbial agents and nematodes. Bioctrl Sc Techn 9: 125-149.

Farrell BD, Sequeira AS, O'Meara BC, Norrnark BB, Chung JH, Jordal 25 BH. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011-2027 . Farrell BD, Sequeira AS, O'Meara BC, Norrnark BB, Chung JH, Jordal 25 BH. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55: 2011-2027.

Fishilevich E, Domingos Al, Asahina K, Naef F, Vosshall LB, Louis M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086-2096. Fishilevich E, Domingos Al, Asahina K, Naef F, Vosshall LB, Louis M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15: 2086-2096.

Guzman B, Lachance M-A, Herrera CM. 2013. Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: have yeast and angiosperm lineages co-diversified? Mol Phylog Evol 68:161-175. 11 537 424 Jacques RP, Laing JE, Laing DR, Yu DSK. 1987. Effectiveness and persistence of the granulosis virus of the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) on apple. Can Entomol 119:1063-1067. Guzman B, Lachance M-A, Herrera CM. 2013. Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: have yeast and angiosperm lineages co-diversified? Mol Phylog Evol 68: 161-175. 11 537 424 Jacques RP, Laing JE, Laing DR, Yu DSK. 1987. Effectiveness and persistence of the granulosis virus of the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) on apple. Can Entomol 119: 1063-1067.

Janson EM, Stireman JO, Singer MS, Abbot P. 2008. Phytophagous 5 insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997-1012. Janson EM, Stireman JO, Singer MS, Abbot P. 2008. Phytophagous 5 insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62: 997-1012.

Klepzig, K. D., Adams, A. S., Handelsman, J. & Raffa, K. F. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environm 10 Entomol 38,67-77. Klepzig, K. D., Adams, A. S., Handelsman, J. & Raffa, K. F. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environm 10 Entomol 38.67-77.

Knight AL, Light DM. 2001. Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae. Naturwissenschaften 88:339-342. Knight AL, Light DM. 2001. Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae. Natural Sciences 88: 339-342.

Kreher SA, Kwon JY, Carlson JR. 2005. The molecular basis of odor coding in the Drosophila larva. Neuron 46:445-456. Kreher SA, Kwon JY, Carlson JR. 2005. The molecular basis of odor coding in the Drosophila larva. Neuron 46: 445-456.

Lacey LA, Shapiro-Ilan DI. 2008. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu. Rev. Entomol. 53:121-144. Lacey LA, Shapiro-Ilan DI. 2008. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu. Reef. Entomol. 53: 121-144.

Lacey, L. A., Thomson, D., Vincent, C. and Arthurs, S. P. 2008. Codling moth granulovirus: a comprehensive review. Biocontr. Sci. Technol. 20 18:639-663. Lacey, L. A., Thomson, D., Vincent, C. and Arthurs, S. P. 2008. Codling moth granulovirus: a comprehensive review. Biocontr. Sci. Technol. 20 18: 639-663.

Light DM, Knight AL. 2011. Microencapsulated pear ester enhances insecticide efficacy in walnut for codling moth (Lepidoptera; Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). J econ Entomol 104:1309-1315. Light DM, Knight AL. 2011. Microencapsulated pear ester enhances insecticidal efficacy in walnut for codling moth (Lepidoptera; Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). J econ Entomol 104: 1309-1315.

Moscardi F. 1999. Assessment of the application of baculoviruses for 25 control of Lepidoptera. Annu Rev Entomol 44:257-289. Moscardi F. 1999. Assessment of the application of baculoviruses for 25 control of Lepidoptera. Annu Rev Entomol 44: 257-289.

Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 2005. The evolution of agriculture in insects. Annu Rev Entomol 36:563-595. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 2005. The evolution of agriculture in insects. Annu Rev Entomol 36: 563-595.

Schmidt S, Tomasi C, Pasqualini E, loriatti C. 2008. The biological efficacy of pear ester on the activity of granulosis virus for codling moth. J 30 Pest Sci 81:29-34. Schmidt S, Tomasi C, Pasqualini E, loriatti C. 2008. The biological efficacy of pear ester on the activity of granulosis virus for codling moth. J 30 Pest Sci 81: 29-34.

Schoenian I, SpiteIler M, Ghaste M, Wirth R, Herz H, SpiteIler D. 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci 108:1955-1960. 12 537 424 Starrner WT, Fogleman JC. 1986. Coadaptation of Drosophila and yeasts in their natural habitat. J chem Ecol 12:1037-1055. Schoenian I, SpiteIler M, Ghaste M, Wirth R, Herz H, SpiteIler D. 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci 108: 1955-1960. 12 537 424 Starrner WT, Fogleman JC. 1986. Coadaptation of Drosophila and yeasts in their natural habitat. J chem Ecol 12: 1037-1055.

Sutherland RW. 1972. The attraction of newly-hatched codling moth (Laspeyresia pomonella) larvae to apple. Entomol exp appl. 15:481-487. Sutherland RW. 1972. The attraction of newly-hatched codling moth (Laspeyresia pomonella) larvae to apple. Entomol exp appl. 15: 481-487.

Villamizar L, Barrera G, Cotes AM, Martinez F. 2010. Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: physicochemical characterization, photostability and in vitro virus release. J Microencapsulation 27:314-324. Villamizar L, Barrera G, Cotes AM, Martinez F. 2010. Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: physicochemical characterization, photostability and in vitro virus release. J Microencapsulation 27: 314-324.

Witzgall P, Stelinski L, Gut L, Thomson D. 2008. Codling moth 10 management and chemical ecology. Annu Rev Entomol 53:503-522. Witzgall P, Stelinski L, Gut L, Thomson D. 2008. Codling moth 10 management and chemical ecology. Annu Rev Entomol 53: 503-522.

Witzgall P, Kirsch P, Cork A. 2010. Sex pheromones and their impact on pest management. J chem Ecol 36:80-100. Witzgall P, Kirsch P, Cork A. 2010. Sex pheromones and their impact on pest management. J chem Ecol 36: 80-100.

Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman 15 CP, Piskur J, Knight A. 2012. "This is not an apple" - yeast mutualism in codling moth. J chem Ecol 38:949-957. 13 Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman 15 CP, Piskur J, Knight A. 2012. "This is not an apple" - yeast mutualism in codling moth. J chem Ecol 38: 949-957. 13

Claims (10)

14 Claims
1. A composition for control of a pest insect, comprising an insect pa-thogen and at least one microorganism that is naturally associated with thelarvae of the pest insect.
2. A composition according to claim 1, wherein said pest insect is se-lected from the order Lepidoptera.
3. A composition according to claim 1 or 2, wherein said insect patho-gen is Cydia pomonella granulovirus (CpGV) or Spodoptera frugiperda nuc-leopolyhedrovirus (SfNPV).
4. A composition according to any one of the claims 1-3, wherein saidat least one microorganism that is naturally associated with the larvae of thepest insect is selected from the group consisting of Metschnikowia species,such as Ascomycota and Saccharomycetes; Aureobasidium species, such asAscomycota and Sordariomycetes; and Cryptococcus species, such as Basi-diomycota and Tremellomycetes.
5. A composition according to any one of the claims 1-4, wherein thepest insect is codling moth and/or fall armyworm.
6. A method for controlling pest insects, comprising exposing the pestsinsect to an insect pathogen and at least one microorganism that is naturallyassociated with the larvae of the pest insect.
7. A method according to claim 6, wherein said pest insect is selectedfrom the order Lepidoptera.
8. A method according to claim 6 or 7, wherein said insect pathogen isCydia pomonella granulovirus (CpGV) or Spodoptera frugiperda nucleopoly-hedrovirus (SfNPV).
9. A method according to any one of the claims 6-8, wherein said atleast one microorganism that is naturally associated with the larvae of thepest insect is selected from the group consisting of Metschnikowia species,such as Ascomycota and Saccharomycetes; Aureobasidium species, such asAscomycota and Sordariomycetes; and Cryptococcus species, such as Basi-diomycota and Tremellomycetes.
10. A method according to any one of the claims 6-9, wherein the pestinsect is codling moth or fall armyworm.
SE1350560A 2013-05-07 2013-05-07 Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae SE537424C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1350560A SE537424C2 (en) 2013-05-07 2013-05-07 Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae
PCT/SE2014/050555 WO2014182228A1 (en) 2013-05-07 2014-05-07 A method for controlling insects, using an insect pathogen and a microorganism that is naturally associated with the larvae of the insects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350560A SE537424C2 (en) 2013-05-07 2013-05-07 Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae

Publications (2)

Publication Number Publication Date
SE1350560A1 SE1350560A1 (en) 2014-11-08
SE537424C2 true SE537424C2 (en) 2015-04-21

Family

ID=51867572

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350560A SE537424C2 (en) 2013-05-07 2013-05-07 Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae

Country Status (2)

Country Link
SE (1) SE537424C2 (en)
WO (1) WO2014182228A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109605A1 (en) 2015-12-21 2017-06-29 Corporación Colombiana De Investigación Agropecuaria-Corpoica Virus-based biopesticide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753656B2 (en) * 2000-10-04 2014-06-17 Paul Stamets Controlling zoonotic disease vectors from insects and arthropods using preconidial mycelium and extracts of preconidial mycelium from entomopathogenic fungi
AU2002255715B2 (en) * 2001-03-14 2008-05-01 State Of Israel- Ministry Of Agriculture Agricultural Research Organisation A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same
JP4969373B2 (en) * 2007-08-31 2012-07-04 協友アグリ株式会社 Pest control agent
BRPI0901235A2 (en) * 2009-04-16 2010-12-28 Embrapa Pesquisa Agropecuaria insect biocontrol formulation process of the order lepidoptera and formulation obtained

Also Published As

Publication number Publication date
WO2014182228A1 (en) 2014-11-13
SE1350560A1 (en) 2014-11-08

Similar Documents

Publication Publication Date Title
Weber et al. Chemical ecology of Halyomorpha halys: discoveries and applications
Khater Ecosmart biorational insecticides: alternative insect control strategies
Tewari et al. Use of pheromones in insect pest management, with special attention to weevil pheromones
Maloney et al. TB190: Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations.
El-Sayed et al. Potential of mass trapping for long-term pest management and eradication of invasive species
Ghosh et al. Bio-efficacy of spinosad against tomato fruit borer (Helicoverpa armigera Hub.)(Lepidoptera: Noctuidae) and its natural enemies
Knight et al. Combining mutualistic yeast and pathogenic virus—a novel method for codling moth control
Sharma et al. Biopesticides: Types and applications
Butu et al. Biopesticides: Clean and viable technology for healthy environment
Leng et al. Bioactivity of selected eco-friendly pesticides against Cylas formicarius (Coleoptera: Brentidae)
Ahissou et al. Integrated pest management options for the fall armyworm Spodoptera frugiperda in West Africa: Challenges and opportunities. A review
Sarwar Information on activities regarding biochemical pesticides: an ecological friendly plant protection against insects
SE523876C2 (en) Procedure for the control of insect trapping of insects from the group Argyresthia conjugella (rowan berry), Cydia pomonella (apple wicker), Hedya nubiferana and Pandemis heparana of fruit trees using certain volatile plant substances from rowan or apple and composition for carrying out the procedure
Peri et al. Applied chemical ecology to enhance insect parasitoid efficacy in the biological control of crop pests
WO2016009981A1 (en) Combination of harmful-arthropod-attracting compound and natural enemy
AU2017290129A1 (en) Mixtures of sabadilla alkaloids and pyrethrum and uses thereof
EP4208019A1 (en) Use of erythritol compositions as mammal-safe insecticides
Klassen et al. Chemical attractants in integrated pest management programs
Srinivasan et al. Towards developing a biological control program for legume pod borer, Maruca vitrata
Nuessly et al. Contact and leaf residue activity of insecticides against the sweet corn pest Euxesta stigmatias (Diptera: Otitidae)
SE537424C2 (en) Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae
Fetoh et al. Combined effect of entomopathogenic nematodes and biopesticides to control the greasy cut worm, Agrotis ipsilion (Hufn.) in the strawberry fields
Solangi et al. Comparative toxicity of some insecticides on 4th instar grub of Coccinella septempunctata L. under laboratory conditions
Prasad et al. Use of semio-chemicals and pheromones in insect pest management (IPM)
Ghosh Role of biological control in conserving biodiversity

Legal Events

Date Code Title Description
NUG Patent has lapsed