SE537396C2 - Procedure for detecting a blocked flow - Google Patents

Procedure for detecting a blocked flow Download PDF

Info

Publication number
SE537396C2
SE537396C2 SE1350705A SE1350705A SE537396C2 SE 537396 C2 SE537396 C2 SE 537396C2 SE 1350705 A SE1350705 A SE 1350705A SE 1350705 A SE1350705 A SE 1350705A SE 537396 C2 SE537396 C2 SE 537396C2
Authority
SE
Sweden
Prior art keywords
fluid
river
time
volume
dependent
Prior art date
Application number
SE1350705A
Other languages
Swedish (sv)
Other versions
SE1350705A1 (en
Inventor
Johan Wängdahl
Kurt Källkvist
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1350705A priority Critical patent/SE537396C2/en
Priority to PCT/SE2014/050663 priority patent/WO2014200413A1/en
Priority to DE112014002374.4T priority patent/DE112014002374B4/en
Publication of SE1350705A1 publication Critical patent/SE1350705A1/en
Publication of SE537396C2 publication Critical patent/SE537396C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

SAMMANDRAG Forfarande for att detektera en flodesblockering (205) i ett fluidsystem (201), vilken flodesblockering är anordnad mellan en forsta fluidledning (203) och en till den forsta fluidledningen via flodesblockeringen (205) ansluten andra fluidledning (204). Forfarandet innefattar att styra en till den fOrsta fluidledningen (203) ansluten flodeskalla (202) sa att minst ett inflode (208) in i den forsta fluidledningen (203) skapas och att styra en till den andra fluidledningen (204) ansluten doseringsenhet (206) sa att minst ett utflode (209, 219) ut ur den andra fluidledningen skapas. Forfarandet innefattar att skapa ett av de namnda flodena (209) som ett tidsberoende flode av kand storlek och med en tidskonstant T och resterande namnda minst ett flode (208, 219) som ett Over tidskonstanten T vasentligen konstant flode sa att trycksvangningar uppstar i atminstone en av namnda fluidledningar (203, 204), att mata amplituden hos trycksvangningarna och pa basis av den uppmatta amplituden detektera flodesblockeringen (205). SUMMARY A method for detecting a river block (205) in a fluid system (201), which river block is arranged between a first fluid line (203) and a second fluid line connected to the first fluid line via the river block (205). The method includes controlling a flow head (202) connected to the first fluid conduit (203) so as to create at least one inflow (208) into the first fluid conduit (203) and controlling a metering unit (206) connected to the second fluid conduit (204). so that at least one effluent (209, 219) out of the second fluid line is created. The method comprises creating one of the said rivers (209) as a time-dependent flood of kand size and with a time constant T and remaining said at least one river (208, 219) as an Over time constant T substantially constant flow so that pressure fluctuations occur in at least one of said fluid lines (203, 204), to supply the amplitude of the pressure fluctuations and on the basis of the measured amplitude detect the river blockage (205).

Description

Forfarande for detektering av ett blockerat flocle UPPFINNINGENS OMRADE Foreliggande uppfinning avser ett forfarande far att detektera ett blockerat flode. Uppfinningen är speciellt, men inte uteslutande, inriktad pa utforandet av ett sadant forfarande for att detektera graden av igensattning av ett filter i ett SCR-system far avgasrening. Uppfinningen avser aven en datorprogramprodukt innefattande datorprogramkod for implementering av ett forfarande enligt uppfinningen, samt en elektronisk styrenhet. FIELD OF THE INVENTION The present invention relates to a method for detecting a blocked flock. The invention is particularly, but not exclusively, directed to the performance of such a method for detecting the degree of clogging of a filter in an SCR system for exhaust gas purification. The invention also relates to a computer program product comprising computer program code for implementing a method according to the invention, as well as an electronic control unit.

BAKGRUNDSTEKNIK For att uppfylla radande krav pa avgasrening är dagens motor- fordon vanligtvis forsedda med en katalysator i avgasledningen for att astadkomma katalytisk omvandling av miljofarliga bestandsdelar i avgaserna till mindre miljofarliga amnen. En metod som tagits i bruk for att astadkomma en effektiv katalytisk om- vandling bygger pa insprutning av ett reduktionsmedel i avga- serna uppstroms katalysatorn. Ett i reduktionsmedlet ingaende eller av reduktionsmedlet bildat reduktionsamne fors av avgaserna in i katalysatorn dar det adsorberas pa aktiva saten i katalysatorn, vilket ger upphov till ackumulation av reduktionsamnet i katalysatorn. Det ackumulerade reduktionsamnet kan antingen desorbera, d.v.s. lossna fran de aktiva satena, eller reagera med ett avgasamne for omvandling av detta avgasamne till ett ofarligt amne. En sadan reduktionskatalysator kan exempelvis vara av SCR-typ (SCR = Selective Catalytic Reduction). Denna typ av katalysator benamns fortsattningsvis SCR-katalysator. En SCR- 1 katalysator reducerar selektivt NO i avgaserna men inte syret i avgaserna. Hos en SCR-katalysator insprutas vanligtvis ett ureaeller ammoniakbaserat reduktionsmedel, t.ex. AdBlue, i avgaserna uppstroms katalysatorn. Vid insprutningen av urea i avgaserna bildas ammoniak och det är denna ammoniak som utgor reduktionsamnet som bidrar till den katalytiska omvandlingen i SCR-katalysatorn. BACKGROUND ART In order to meet stringent requirements for exhaust gas purification, today's motor vehicles are usually equipped with a catalyst in the exhaust line to effect the catalytic conversion of environmentally hazardous constituents in the exhaust gases into less environmentally hazardous substances. A method used to achieve efficient catalytic conversion is based on injecting a reducing agent into the exhaust gases upstream of the catalyst. An reducing substance entering the reducing agent or formed by the reducing agent is forced by the exhaust gases into the catalyst where it is adsorbed on the active compounds in the catalyst, which gives rise to accumulation of the reducing agent in the catalyst. The accumulated reducing agent can either desorb, i.e. detach from the active compounds, or react with an exhaust gas to convert this exhaust gas to a non-hazardous substance. Such a reduction catalyst can, for example, be of the SCR type (SCR = Selective Catalytic Reduction). This type of catalyst is still referred to as the SCR catalyst. An SCR-1 catalyst selectively reduces NO in the exhaust gases but not the oxygen in the exhaust gases. In an SCR catalyst, a ureal ammonia-based reducing agent is usually injected, e.g. AdBlue, in the exhaust gases upstream of the catalyst. During the injection of urea into the exhaust gases, ammonia is formed and it is this ammonia that constitutes the reducing substance that contributes to the catalytic conversion in the SCR catalyst.

SE1150862 och W02011142708 beskriver SCR-system for insprutning av reduktionsmedel i ett avgassystem uppstroms en SCR-katalysator. I denna typ av SCR-system inbegrips en tank som hailer reduktionsmedlet. SCR-systemet har aven en pump som är anordnad att pumpa upp reduktionsmedlet fran tanken via en sugslang och tillfora den via en trycksatt slang till en doseringsenhet som är anordnad vid ett avgassystem hos fordonet, sasom t.ex. vid ett avgasror has avgassystemet. Doseringsenheten är anordnad att injicera en erforderlig mangd reduktionsmedel in i avgasroret uppstroms SCR-katalysatorn enligt drivrutiner inlagrade i en styrenhet has fordonet. For att lattare reglera trycket vid sma eller inga doseringsmangder kan systemet aven ha en returslang som är anordnad fran en trycksida has systemet tillbaka till tanken. Enligt denna konfiguration är det mojligt att kyla doseringsenheten medelst reduktionsmedlet som vid kylning flodar fran tanken via pumpen och doseringsenheten tillbaka till tanken. Pa detta satt tillhandahalls en aktiv kylning av doseringsenheten. Returflodet frail doseringsenheten till behallaren är vasentligen konstant. SCR-systemet innefattar aven ett filter for att filtrera reduktionsmedlet fore dosering medelst doseringsenheten. Detta filter är anordnat for att skydda doseringsenheten fran att sattas 2 igen av partiklar, sasom t.ex. jordpartiklar, smuts, etc. Filtret kan vara ett pappersfilter, men andra slags filter är naturligtvis brukliga. SE1150862 and WO2011142708 describe SCR systems for injecting reducing agent into an exhaust system upstream of an SCR catalyst. This type of SCR system includes a tank that hails the reducing agent. The SCR system also has a pump which is arranged to pump up the reducing agent from the tank via a suction hose and supply it via a pressurized hose to a dosing unit which is arranged at an exhaust system of the vehicle, such as e.g. in the case of an exhaust pipe, the exhaust system has. The dosing unit is arranged to inject a required amount of reducing agent into the exhaust pipe upstream of the SCR catalyst according to drivers stored in a control unit of the vehicle. In order to more easily regulate the pressure at small or no dosage amounts, the system can also have a return hose which is arranged from a pressure side and has the system returned to the tank. According to this configuration, it is possible to cool the dosing unit by means of the reducing agent which, when cooled, flows from the tank via the pump and the dosing unit back to the tank. In this way an active cooling of the dosing unit is provided. The return flow from the dosing unit to the container is essentially constant. The SCR system also includes a filter for filtering the reducing agent before dosing by the dosing unit. This filter is arranged to protect the dosing unit from being blocked by particles, such as e.g. soil particles, dirt, etc. The filter can be a paper filter, but other types of filters are of course common.

Ett problem med sadana filter är att dessa latt kan sattas igen, vilket leder till en flodesblockering sa att reduktionsmedlet inte kan doseras sasom avsett. En sadan flodesblockering maste detekteras och atgardas, eftersom utslappen av NOx-gaser annars stiger. I W02011142708 loses detta problem genom att kontinuerligt mata ackumulerad mangd vatska som doseras via en doseringsenhet och utifran dessa matningar avgara om filtret behover bytas ut. Detta forfarande bygger pa antaganden om att en viss mangd doserat reduktionsmedel leder till en viss grad av igensattning av filtret. For att undvika filterbyten i onodan och forsamrad avgasrening är det onskvart att astadkomma ett satt att detektera om filtret är igensatt. A problem with such filters is that they can be easily clogged, leading to a river blockage so that the reducing agent cannot be dosed as intended. Such a river blockage must be detected and guarded, as otherwise NOx gas emissions will rise. In WO2011142708 this problem is solved by continuously feeding accumulated amount of liquid which is dosed via a dosing unit and from these feeds dispensing if the filter needs to be replaced. This procedure is based on the assumption that a certain amount of dosing reducing agent leads to a certain degree of clogging of the filter. In order to avoid filter changes in inconvenient and condensed exhaust gas purification, it is advisable to provide a method for detecting whether the filter is clogged.

Ett satt att detektera en flodesblockering, till exempel i form av ett igensatt filter, är att mata tryckfallet Over det igensatta eller delvis igensatta filtret. Med kannedom om flodet genom filtret kan man avgara blockeringens storlek. Det kravs dock att trycken i de till filtret angransande fluidledningarna pa !Dada sidor om filtret är ' SAMMANFATTNING AV UPPFINNINGEN Ett syfte med foreliggande uppfinning är att anvisa ett forfarande for att i ett tidigt skede med enkla medel kunna detektera en flodesblockering i ett fluidsystem utan att paverka fluidsystemets normala funktion. One way of detecting a river blockage, for example in the form of a clogged filter, is to feed the pressure drop across the clogged or partially clogged filter. Knowing the flow through the filter can determine the size of the blockage. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for being able to detect a river block in a fluid system at an early stage by simple means without affect the normal functioning of the fluid system.

Enligt en forsta aspekt av uppfinningen uppnas detta syfte medelst ett forfarande for att detektera en flodesblockering i ett fluidsystem, vilken flodesblockering är anordnad mellan en forsta 15 fluidledning och en till den forsta fluidledningen via flodesblockeringenanslutenandrafluidledning,varvid forfarandet innefattar att styra en till den forsta fluidledningen ansluten flodeskalla sa att minst ett inflode in i den forsta fluidledningen skapas och att styra en till den andra fluidledningen ansluten doseringsenhet sa att minst ett utflode ut ur den andra fluidledningen skapas. Forfarandet innefattar vidare att skapa ett av de namnda flodena som ett tidsberoende flode av kand storlek och med en tidskonstant r och resterande namnda minst ett flOde som ett over tidskonstanten T konstant eller vasentligen konstant flode sa att trycksvangningar uppstar i atminstone en av namnda fluidledningar, att mata amplituden hos trycksvangningarna i en av namnda fluidledningar dar trycksvangningar uppstar och pa basis av den uppmatta amplituden detektera flodesblockeringen. 4 Eftersom amplituden has trycksvangningarna beror av flodesblockeringens storlek kan man genom att mata denna detektera huruvida en flodesblockering foreligger. Franvaro av en flOdesblockeringinnebarenmindreamplitudhos trycksvangningarna. Amplituden has trycksvangningarna vaxer ju storre flodesblockeringen blir, eftersom de !pada fluidledningarna genom blockeringen avgransas alltmer fran varandra. Med f6rfarandet enligt uppfinningen kan en flodesblockering upptackas i ett tidigt skede innan den blir kritisk och riskerar att ge allvarliga foljder. Detta sker dessutom genom att endast mata trycket i en av de till blockeringen anslutna fluidledningarna. Det racker alltsa med en trycksensor, vilket minskar behovet av hardvara jamfort med den inledningsvis beskrivna kanda tekniken dar ett tryckfall mats aver blockeringen. Da forfarandet utfors i t.ex. ett SCR-system sasom inledningsvis beskrivits inverkar det dessutom inte pa systemets normala funktion, eftersom forfarandet kan utforas oberoende av konstanta eller vasentligen konstanta floden till respektive fran de bada fluidledningarna och eftersom en tidsberoende flodeskalla redan finns pa plats. According to a first aspect of the invention, this object is achieved by a method for detecting a river block in a fluid system, which river block is arranged between a first fluid line and one connected to the first fluid line via the river block connected to another fluid line, the method comprising controlling a first fluid line flow head said that at least one inflow into the first fluid line is created and controlling a dosing unit connected to the second fluid line said that at least one outflow out of the second fluid line is created. The method further comprises creating one of said rivers as a time dependent flow of known size and with a time constant r and remaining said at least one river as a constant or substantially constant flow over time constant so that pressure fluctuations occur in at least one of said fluid lines, that feed the amplitude of the pressure fluctuations in one of said fluid lines where pressure fluctuations occur and on the basis of the measured amplitude detect the river blockage. Since the amplitude of the pressure fluctuations depends on the size of the river block, it is possible to detect whether there is a river block by feeding it. The absence of a flow blockage means less amplitude at the pressure fluctuations. The amplitude of the pressure fluctuations increases the larger the river blockage becomes, as the fluid conduits through the blockage are increasingly delimited from each other. With the method according to the invention, a river blockage can be detected at an early stage before it becomes critical and risks giving serious consequences. This is also done by only supplying the pressure in one of the fluid lines connected to the blockage. That is, with a pressure sensor, which reduces the need for hardware compared to the initially described kanda technology where a pressure drop is fed by the blockage. When the procedure is performed in e.g. moreover, an SCR system as initially described does not affect the normal operation of the system, since the process can be performed independently of constant or substantially constant flow to and from the two fluid lines, respectively, and since a time-dependent river head is already in place.

Flodesblockeringen kan alltsa detekteras samtidigt som fluid strommar som van ligt genom systemet. The river blockage can thus be detected at the same time as fluid flows as usual through the system.

Enligt en utforingsform detekteras flodesblockeringen pa basis av den uppmatta amplituden, storleken av det tidsberoende flodet och fluidsystemets volym V och elasticitet E. Genom att kanna till dessa storheter far man en sakrare detektering av flOdesblockeringen. According to one embodiment, the river block is detected on the basis of the measured amplitude, the size of the time-dependent flow and the volume V and elasticity E of the fluid system. Knowing these quantities results in a more accurate detection of the river block.

Enligt en utforingsform anvands den uppmatta amplituden som en testvariabel ti vilken testas mot ett larmkriterium, och, givet att larmkriteriet uppfylls, alstras en felkod. Pa detta satt kan en styrenhet vilken är anordnad att implementera forfarandet automatiskt larma da flodesblockeringen behover atgardas. Genom att direkt anvanda den uppmatta amplituden behover inga berakningar av flodesblockeringens faktiska storlek utforas av styrenheten. According to one embodiment, the measured amplitude is used as a test variable ti which is tested against an alarm criterion, and, given that the alarm criterion is met, an error code is generated. In this way, a control unit which is arranged to implement the method can automatically sound an alarm when the river blockage needs to be actuated. By directly using the measured amplitude, no calculations of the actual size of the river blockage need be performed by the control unit.

Enligt ytterligare en utforingsform beraknas flodesblockeringens storlek pa basis av den uppmatta amplituden, storleken av det tidsberoende flodet, den forsta fluidledningens volym Vi och elasticitet Ei och den andra fluidledningens volym V2 och elasticitet E. Med kannedom om de namnda storheterna kan storleken pa en blockering beraknas, vilket är anvandbart om blockeringen endast blir kritisk da den overstiger en viss storlek. According to a further embodiment, the size of the river block is calculated on the basis of the measured amplitude, the size of the time-dependent flow, the volume Vi and elasticity of the first fluid line and the volume V2 and elasticity E of the second fluid line. , which is useful if the blockage only becomes critical as it exceeds a certain size.

Man kan da vidta atgarder i ratt tid och slipper t ex byta filter da filtret endast är lindrigt igensatt och fluidsystemet fortfarande fungerar tillfredsstallande. You can then take action at the right time and avoid, for example, changing filters as the filter is only slightly clogged and the fluid system still works satisfactorily.

Enligt en utforingsform anvands den beraknade storleken som en testvariabel t1 vilken testas mot ett larmkriterium, och, givet att larmkriteriet uppfylls, alstras en felkod. Pa detta satt kan en styrenhet vilken är anordnad att implementera forfarandet automatiskt larma da flodesblockeringen behover atgardas. According to one embodiment, the calculated size is used as a test variable t1 which is tested against an alarm criterion, and, given that the alarm criterion is met, an error code is generated. In this way, a control unit which is arranged to implement the method can automatically sound an alarm when the river blockage needs to be actuated.

Enligt en utforingsform uppfylls larmkriteriet om testvariabeln ti overskrider ett forutbestamt troskelvarde. Detta är ett enkelt satt att avgora om flodesblockeringen behover atgardas. Oavsett om den beraknade storleken av flodesblockeringen eller den uppmatta amplituden hos trycksvangningarna anvands som testvariabel t1, kan troskelvardet med fordel sattas sa att det 6 optimeras for det aktuella fluidsystemet, d.v.s. med avseende pa t.ex. fluidsystemets ingaende volymer, elasticitet, fluidens egenskaper, omgivningsparametrar sasom tryck och temperatur, det tidsberoende flodets storlek, etc. According to one embodiment, the alarm criterion is met if the test variable ti exceeds a predetermined threshold value. This is an easy way to determine if the river blockage needs to be remedied. Regardless of whether the calculated magnitude of the river blockage or the measured amplitude of the pressure fluctuations is used as test variable t1, the threshold value can advantageously be set so that it is optimized for the current fluid system, i.e. with respect to e.g. the fluid volumes' input volumes, elasticity, fluid properties, environmental parameters such as pressure and temperature, the size of the time-dependent river, etc.

Enligt ytterligare en utforingsform utfors forfarandet for ett system dar de namnda fluidledningarna skiljer sig i volym. Foretradesvis är volymen av en av de namnda fluidledningarna minst tio ganger storre an volymen av en annan av de namnda fluidledningarna. Trycksvangningarna kan i ett sadant system bli mer markanta i den mindre av de bada fluidledningarna, vilket underlattar detekteringen av flodesblockeringen. According to a further embodiment, the method is carried out for a system in which the said fluid lines differ in volume. Preferably, the volume of one of said fluid conduits is at least ten times greater than the volume of another of said fluid conduits. The pressure fluctuations in such a system can become more marked in the smaller of the bath fluid lines, which facilitates the detection of the river blockage.

Enligt annu en utforingsform skapas det tidsberoende flodet i den av de namnda fluidledningarna som har minst volym. Detta ger vanligtvis mest markanta trycksvangningar. According to another embodiment, the time-dependent flow is created in the one of the said fluid lines which has the least volume. This usually gives the most marked pressure fluctuations.

Enligt ytterligare en utforingsform mats amplituden hos trycksvangningarna i den av de namnda fluidledningarna som har minst volym. Enligt en annan utforingsform mats amplituden hos trycksvangningarna i den av de namnda fluidledningarna dar det tidsberoende flodet skapas. Pa dessa satt gar det lattast att detektera trycksvangningarna eftersom de vanligtvis blir tydligast i dessa !pada fall. Naturligtvis kan den av de namnda fluidledningarna som har minst volym sammanfalla med den av de namnda fluidledningarna dar det tidsberoende flodet skapas. According to a further embodiment, the amplitude of the pressure fluctuations in the one of the said fluid lines which has the least volume is fed. According to another embodiment, the amplitude of the pressure fluctuations in the one of the named fluid lines where the time-dependent flow is created is fed. In these ways, it is easiest to detect the pressure fluctuations because they usually become clearest in these cases. Of course, the one of the said fluid lines having the least volume may coincide with that of the said fluid lines where the time-dependent flow is created.

Enligt annu en utforingsform skapas minst ett namnt inflode in i den forsta fluidledningen genom att styra en flodeskalla i form av 30 en pump sa att fluid pumpas fran en tank in i den namnda forsta 7 fluidledningen. Genom att anvanda en pump kan det namnda inflodet skapas antingen som ett tidsberoende eller som ett konstant eller vasentligen konstant flode. According to another embodiment, at least one named inflow is created into the first fluid line by controlling a river head in the form of a pump so that fluid is pumped from a tank into the said first fluid line. By using a pump, the said inflow can be created either as a time-dependent or as a constant or substantially constant flow.

Enligt en variant av denna utforingsform aterfors fran den andra fluidledningen fluid till namnda tank i ett namnt utflode i form av ett returflode, och leds fluid ut ur fluidsystemet i ett namnt utflode i form av ett forbrukningsflode. Pa sa vis skapas ett genomflode av fluid i systemet, vilket är fordelaktigt om flagon del i fluidsystemet är beroende av genomstromning for att kylas ay. I exempelvis ett system far insprutning av reduktionsmedel uppstroms en SCR-katalysator anvands ofta en del av reduktionsmedlet for dosering till avgassystemet via doseringsenhetens utflode och den del av reduktionsmedlet som inte doseras aterfors i ett returflode till tanken. Denna del reduktionsmedel anvands fordelaktigt som kylmedel for att undvika overhettning av doseringsenheten. Reduktionsmedlet i returflodet är filtrerat och SCR-systemet blir darfor till viss del sjalvrenande. Det aterforda filtrerade reduktionsmedlet bidrar darmed inte till att ytterligare satta igen filtret. According to a variant of this embodiment, fluid is returned from the second fluid line to said tank in a named outflow in the form of a return flow, and fluid is led out of the fluid system in a named outflow in the form of a consumption flow. In this way, a flow of fluid is created in the system, which is advantageous if the flake part of the fluid system is dependent on flow through to be cooled. For example, in a system for injecting reducing agent upstream of an SCR catalyst, a portion of the reducing agent is often used for dosing to the exhaust system via the effluent of the dosing unit and the portion of the reducing agent that is not dosed is returned in a return flow to the tank. This part of the reducing agent is advantageously used as a coolant to avoid overheating of the dosing unit. The reducing agent in the return flow is filtered and the SCR system therefore becomes to some extent self-cleaning. The required filtered reducing agent thus does not contribute to further clogging the filter.

Enligt en utforingsform styrs doseringsenheten att skapa det namnda tidsberoende flodet. Detta är fordelaktigt i tillampningar dar man vill att fluid istallet for genom ett kontinuerligt utflode ska lamna fluidsystemet i form av diskreta doser, sasom ofta är fallet i ett system for insprutning av reduktionsmedel uppstroms en SCR-katalysator. According to one embodiment, the dosing unit is controlled to create the said time-dependent flow. This is advantageous in applications where it is desired that the fluid instead of through a continuous outflow should leave the fluid system in the form of discrete doses, as is often the case in a system for injecting reducing agents upstream of an SCR catalyst.

Enligt ytterligare en utforingsform skapas det tidsberoende flodet 30 i form av ett tidsperiodiskt flode. Foretradesvis skapas det 8 tidsperiodiska flodet i form av ett fyrkantsvagsliknande flode. Ett sadant flode astadkommes enkelt genom att till exempel oppna och stanga en ventil, varvid ett fyrkantsvagsliknande flode med en viss tidskonstant skapas. Foretradesvis skapas det tidsperiodiska fladet med en periodtid pa 0,1-10 s, mer foretradesvis 0,2-5 s, annu mer foretradesvis 0,25-1 s. According to a further embodiment, the time-dependent flood 30 is created in the form of a time-periodic flood. Preferably, the 8 time periodic flood is created in the form of a square wave-like flood. Such a flood is easily achieved by, for example, opening and closing a valve, whereby a square wave-like flood with a certain time constant is created. Preferably the time periodic plane is created with a period time of 0.1-10 s, more preferably 0.2-5 s, even more preferably 0.25-1 s.

Enligt en utforingsform utfors forfarandet far ett fluidsystem innefattande en flodesblockering i form av ett i nagon grad igensatt filter, varvid graden av igensattning av filtret detekteras. According to one embodiment, the method is carried out in a fluid system comprising a river blockage in the form of a filter which is somewhat clogged, the degree of clogging of the filter being detected.

Enligt annu en utforingsform utfors forfarandet for ett system for insprutning av reduktionsmedel, sasom ett urea- eller ammoniakbaserat reduktionsmedel, uppstroms en SCR- katalysator i en avgasledning fran en forbranningsmotor. Forfarandet är val lampat att utforas for ett sadant system eftersom systemet vanligen innefattar en tidsberoende flodeskalla, sasom en doseringsenhet vilken doserar reduktionsmedel i diskreta doser till avgasledningen, och igensattningen av ett filter i ett sadant system kan behova matas oberoende av de vasentligen konstanta floden som dessutom finns i systemet. Forfarandet är vidare fordelaktigt eftersom ingen extra tryckgivare behovs utan flodesblockeringen kan detekteras med i systemet befintlig hardvara. According to another embodiment, the process is carried out for a system for injecting reducing agent, such as a urea or ammonia-based reducing agent, upstream of an SCR catalyst in an exhaust line from an internal combustion engine. The process is selectively designed for such a system because the system usually includes a time-dependent river head, such as a dosing unit which dispenses reducing agents in discrete doses to the exhaust line, and the clogging of a filter in such a system may need to be fed regardless of the substantially constant flow. is in the system. The method is further advantageous because no additional pressure sensor is needed but the river blockage can be detected with hardware existing in the system.

Enligt ytterligare en aspekt av uppfinningen uppnas syftet genom ett datorprogram nedladdningsbart till internminnet hos en dator, innefattande programvara for att styra stegen enligt den ovan foreslagna metoden nar namnda program kors pa en dator. According to a further aspect of the invention, the object is achieved by a computer program downloadable to the internal memory of a computer, comprising software for controlling the steps according to the above-proposed method when said program is crossed on a computer.

Enligt annu en aspekt av uppfinningen uppnas syftet genom en 9 datorprogramprodukt innefattande ett datalagringsmedium som är lasbart av en dator, varvid datorprogramkoden hos ett datorprogram enligt ovan är lagrad pa datalagringsmediet. According to another aspect of the invention, the object is achieved by a computer program product comprising a data storage medium which is readable by a computer, the computer program code of a computer program as above being stored on the data storage medium.

Enligt ytterligare en aspekt av uppfinningen uppnas syftet genom en elektronisk styrenhet innefattande ett exekveringsmedel, ett tillexekveringsmedletanslutetminneochetttill exekveringsmedletanslutetdatalagringsmedium,varvid datorprogramkoden hos ett datorprogram enligt ovan är lagrat pa namnda datalagringsmedium. According to a further aspect of the invention, the object is achieved by an electronic control unit comprising an execution means, an execution means connected memory and one to the means of execution connected data storage medium, the computer program code of a computer program as above being stored on said data storage medium.

Enligt annu en aspekt av uppfinningen uppnas syftet genom ett motorfordon innefattande en elektronisk styrenhet enligt ovan. According to another aspect of the invention, the object is achieved by a motor vehicle comprising an electronic control unit as above.

Andra fordelaktiga sardrag has uppfinningen och fordelar med denna framgar av den nedan foljande beskrivningen. Other advantageous features of the invention and advantages thereof are apparent from the following description.

KORT BESKRIVNING AV RITNINGARNA Uppfinningen kommer i det foljande att narmare beskrivas med hjalp av utforingsexempel med hanvisning till bifogade ritningar, dar Fig. 1visar en schematisk skiss av ett system i vilket det uppfinningsenliga forfarandet kan utforas, Fig. 2visar en schematisk skiss av ett system for insprutning av reduktionsmedel uppstroms en SCR-katalysator, och Fig. 3visar en schematisk skiss av en styrenhet for implementering av ett forfarande enligt uppfinningen. 537 396 DETALJERAD BESKRIVNING AV UTFORINGSFORMER AV UPPFINNINGEN Med flodesblockering avses har en flodesblockering av nagon grad, alltsa aven en partiell blockering av ett flode. Den partiella blockeringen kan sitta i ett filter eller vara lokaliserad pa nagot annat stalle i fluidsystemet, t.ex. vid en strypning eller dylikt. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in more detail below with the aid of exemplary embodiments with reference to the accompanying drawings, in which Fig. 1 shows a schematic sketch of a system in which the inventive method can be carried out, Fig. 2 shows a schematic sketch of a system for injection of reducing agent upstream of an SCR catalyst, and Fig. 3 shows a schematic sketch of a control unit for implementing a process according to the invention. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION By river block is meant a river block of some degree, i.e. also a partial block of a river. The partial block may be in a filter or located elsewhere in the fluid system, e.g. at a strangulation or the like.

Med fluidsystem avses ett vatske- eller gassystem. Foretradesvis, men inte nadvandigtvis, avses har ett system avsett for genomstromning av en vatska. Foretradesvis, men inte nadvandigtvis, avses ett fluidsystem i ett fordon. Fluidsystemet kan exempelvis vara ett system for insprutning av reduktionsmedel uppstroms en SCR-katalysator i en avgasledning fran en forbranningsmotor, ett branslesystem avsett att forse en forbranningsmotor med bransle, ett hydrauliskt bromssystem i ett fordon, ett hydrauliksystem, ett pneumatiksystem etc. Fluid system refers to a liquid or gas system. Preferably, but not necessarily, it is intended to have a system for flowing through a liquid. Preferably, but not necessarily, it refers to a fluid system in a vehicle. The fluid system can be, for example, a system for injecting reducing agent upstream of an SCR catalyst in an exhaust line from an internal combustion engine, a fuel system intended to supply an internal combustion engine with fuel, a hydraulic brake system in a vehicle, a hydraulic system, a pneumatic system, etc.

Med fluidledning avses har en passage for att halla och transportera en fluid, sasom t.ex. en reduktant i vatskeform. Ledningen kan vara ett ror av godtycklig dimension. Ledningen kan besta av ett godtyckligt, lampligt material, sasom t.ex. plast, gummi eller metal!. By fluid conduit is meant a passage for holding and transporting a fluid, such as e.g. a reductant in liquid form. The pipe can be a rudder of any dimension. The cable can consist of any, suitable material, such as e.g. plastic, rubber or metal !.

Med doseringsenhet avses har en enhet innefattande en ventilanordning av nagot slag, vilken kan styras att skapa ett konstant eller tidsberoende flode av kand storlek. 11 Med ett konstant eller vasentligen konstant flode avses ett flode som har en tidskonstant vilken är avsevart mycket storre an det tidsberoende floclets tidskonstant, sa att det konstanta eller vasentligen konstanta flodets variationer over tid sker mycket langsammare an det tidsberoende flodets variationer aver tid. By dosing unit is meant a unit comprising a valve device of some kind, which can be controlled to create a constant or time-dependent flow of candle size. By a constant or substantially constant flow is meant a river which has a time constant which is considerably larger than the time constant of the time-dependent floc, so that the variations of the constant or substantially constant flow over time are much slower than the variations of the time-dependent river over time.

Ett forsta fluidsystem 101 dar det uppfinningsenliga forfarandet kan utforas visas schematiskt i fig. 1. Fluidsystemet innefattar en flodeskalla i form av en trycksatt fluidbehallare 102 med en volym VB, en forsta fluidledning 103 med en forsta volym Vi, en andra fluidledning 104 med en andra volym V2 och en flodesblockering 105 anordnad mellan den forsta och den andra fluidledningen. En doseringsenhet 106 är anordnad i anslutning till den andra fluidledningen, liksom en trycksensor 107. A first fluid system 101 in which the method according to the invention can be carried out is shown schematically in Fig. 1. The fluid system comprises a river skull in the form of a pressurized fluid container 102 with a volume VB, a first fluid line 103 with a first volume Vi, a second fluid line 104 with a second volume V2 and a river block 105 arranged between the first and the second fluid line. A dosing unit 106 is arranged in connection with the second fluid line, as well as a pressure sensor 107.

For att berakna storleken av flodesblockeringen 105 skapas ett inflode 108 in i den forsta fluidledningen 103 fran den trycksatta behallaren 102. Med hjalp av doseringsenheten 106 skapas ett tidsberoende utflode 109 av kand storlek och med en tids- konstant T (d.v.s. tiden det tar for flodet att oka/avta till ca 63 % av dess maximala niva) fran den andra fluidledningen 104. Trycksvangningar uppstar da i fluidsystemet 101. Med hjalp av trycksensorn 107 mats trycket i den andra fluidledningen 104 och amplituden av trycksvangningarna bestams. Eftersom trycksvangningarnas amplitud är en funktion av flodesblockeringens storlek kan en blockering detekteras till exempel genom att observera hur amplituden andrar sig over tid. Ju storre flodesblockeringen är, desto storre blir amplituden hos trycksvangningarna. Med kannedom om fluidsystemets ingaende volymer VB, V1 och V2 och behallarens 102 elasticitet Eg samt 12 fluidledningarnas elasticitet Ei respektive E2 liksom utflodets storlek kan storleken pa flodesblockeringen skattas. I det fall strypningar av samma storleksordning som eller storre an flOdesblockeringen 105 forekommer i fluidsystemet 101 mellan den trycksatta behallaren 102 och den forsta fluidledningen 103 kan behallarens 102 volym och elasticitet bortses fran. To calculate the magnitude of the river block 105, an inflow 108 is created into the first fluid line 103 from the pressurized container 102. Using the metering unit 106, a time-dependent effluent 109 of magnitude and with a time-constant T (i.e., the time it takes for the flood) is created. to increase / decrease to about 63% of its maximum level) from the second fluid line 104. Pressure fluctuations then occur in the fluid system 101. With the aid of the pressure sensor 107 the pressure in the second fluid line 104 is measured and the amplitude of the pressure fluctuations is determined. Since the amplitude of the pressure fluctuations is a function of the magnitude of the river block, a block can be detected, for example, by observing how the amplitude changes over time. The greater the river blockage, the greater the amplitude of the pressure fluctuations. With knowledge of the input system volumes VB, V1 and V2 and the elasticity Eg of the container 102 and the elasticity E1 and E2 of the fluid lines, respectively, as well as the size of the outflow, the size of the river block can be estimated. In the event that throttles of the same order of magnitude as or greater than the flow block 105 occur in the fluid system 101 between the pressurized container 102 and the first fluid conduit 103, the volume and elasticity of the container 102 may be disregarded.

I ett fluidsystem liknande det ovan beskrivna systemet kan istallet for en trycksatt behallare en pump ansluten till en fluidtank anvandas som flodeskalla. Pumpen kan styras att skapa ett tidsberoende inflode och doseringsenheten kan da vara anordnad att skapa ett konstant ufflode, eller ett utflode som är vasentligen konstant over inflodets tidskonstant T. Trycksensorn kan vara kopplad till endera av de !Dada fluidledningarna, men lampligen är fluidsystemet anordnat sa att tryckmataren är kopplad till den av de !pada fluidledningarna som har minst volym, eftersom trycksvangningarna blir mest markanta i denna fluidledning. Foretradesvis, men inte nadvandigtvis, sammanfaller denna fluidledning med den fluidledning dar det tids- beroende flodet skapas, vilket kan leda till an mer markanta trycksvangningar. In a fluid system similar to the system described above, instead of a pressurized container, a pump connected to a fluid tank can be used as a river head. The pump can be controlled to create a time-dependent inflow and the dosing unit can then be arranged to create a constant inflow, or an outflow which is substantially constant over the time constant T. The pressure sensor can be connected to either of the fluid lines, but suitably the fluid system is arranged so that the pressure feeder is connected to the one of the padded fluid lines which has the least volume, since the pressure fluctuations become most marked in this fluid line. Preferably, but not necessarily, this fluid line coincides with the fluid line where the time-dependent flow is created, which can lead to more marked pressure fluctuations.

Ett fluidsystem 201 for insprutning av reduktionsmedel uppstroms en SCR-katalysator (ej visad) i en avgasledning fran en forbranningsmotor ar schematiskt illustrerat i fig. 2. Systemet innefattar en flodeskalla i form av en pump 202 anordnad att via en fluidledning 211 pumpa in reduktionsmedel fran en tank 212 och in i en fluidledning 203. I direkt anslutning till fluidledningen 203 finns ett huvudfilter 205 anordnat och nedstroms detta finns en fluidledning 204. I anslutning till denna finns en medelst en 13 styrenhet (ej visad) elektriskt styrbar doseringsenhet 206, vilken är anordnad att via en doseringsventil 210 spruta in reduktionsmedel i namnda ej visade avgasledning. Doseringsenheten 206 innefattar ett elektroniskt kontrollkort (ej visat), vilket är anordnat for att hantera kommunikation med styrenheten. Doseringsenheten 206 kan aven innefatta plast och/eller gummikomponenter, vilka kan smalta eller pa annat satt paverkas negativt vid alltfor hoga temperaturer. En trycksensor 207 ar anordnad att mata trycket i den andra fluidledningen 204. A fluid system 201 for injecting reducing agent upstream of an SCR catalyst (not shown) in an exhaust line from an internal combustion engine is schematically illustrated in Fig. 2. The system comprises a flow head in the form of a pump 202 arranged to pump in reducing fluid from a fluid line 211. a tank 212 and into a fluid line 203. In direct connection to the fluid line 203 a main filter 205 is arranged and downstream there is a fluid line 204. Adjacent to this there is a 13 control unit (not shown) electrically controllable dosing unit 206, which is arranged to inject via a metering valve 210 into reducing agent in said exhaust line not shown. The dosing unit 206 comprises an electronic control card (not shown), which is arranged to handle communication with the control unit. The dosing unit 206 may also comprise plastic and / or rubber components, which may melt or otherwise be adversely affected at excessive temperatures. A pressure sensor 207 is arranged to supply the pressure in the second fluid line 204.

Fran doseringsenheten 206 finns en returledning 213 anordnad, vilken via en strypning 214 leder tillbaka till tanken 212. Forutom huvudfiltret 205 finns ett antal filter 215, 216, 217 anordnade i fluidsystenriet. Filtret 217 är i detta fall avsevart mycket storre an huvudfiltret 205. From the dosing unit 206 a return line 213 is arranged, which via a choke 214 leads back to the tank 212. In addition to the main filter 205, a number of filters 215, 216, 217 are arranged in the fluid system. The filter 217 in this case is considerably larger than the main filter 205.

Vid anvandning skapas med hjalp av pumpen 202 ett vasentligen konstant inflode 208 av reduktionsmedel i fluidledningen 203. Reduktionsmedlet filtreras vid huvudfiltret 205 och passerar in i fluidledningen 204. Nedstroms fluidledningen 204 doseras reduktionsmedlet ut till avgasledningen med hjalp av doseringsenheten 206, vilken styrs att skapa ett utflode 209 av kand storlek fran den andra fluidledningen 204 i form av ett fyrkantsvagsliknande flode genom att oppna och stanga doseringsventilen 210. Via doseringsenheten 206 leds dessutom icke doserat reduktionsmedel tillbaka till tanken 212 i ett vasentligen konstant returflode 219 via strypningen 214. Tack vare returflodet 219 kan doseringsenheten 206 kontinuerligt kylas av med hjalp av reduktionsmedel. Da doseringsventilen 210 ar stangd byggs med hjalp av pumpen 202 ett tryck upp i fluidledningen 204 mot strypningen 214 och da doseringsventilen 14 210 är Open lattar trycket eftersom reduktionsmedel da strommar ut genom bade doseringsventilen och via strypningen 214. Trycksvangningarna mats av trycksensorn 207. Med hjalp av styrenheten beraknas trycksvangningarnas amplitud och utifran denna kan graden av igensattning av huvudfiltret 205 bestammas. Pa basis av den uppmatta amplituden, storleken av det tidsberoende flodet, fluidledningens 203 volym Vi och elasticitet Ei och fluidledningens 204 volym V2 och elasticitet E2 beraknas graden av igensattning av huvudfiltret 205. In use, the pump 202 creates a substantially constant inflow 208 of reducing agent in the fluid line 203. The reducing agent is filtered at the main filter 205 and passes into the fluid line 204. Downstream of the fluid line 204, the reducing agent is dispensed to the exhaust line by the metering unit 206, which is controlled to create a discharge 209 of known size from the second fluid line 204 in the form of a square wave-like flow by opening and closing the metering valve 210. Via the metering unit 206, non-metered reducing agent is also led back to the tank 212 in a substantially constant return flow 219 via the restrictor 214. the dosing unit 206 can be continuously cooled with the aid of reducing agent. When the metering valve 210 is closed, a pressure is built up by the pump 202 in the fluid line 204 against the throttle 214 and when the metering valve 14 210 is open, the pressure is released because reducing agents then flow out through both the metering valve and through the throttle 214. the amplitude of the pressure fluctuations is calculated by the control unit and from this the degree of clogging of the main filter 205 can be determined. On the basis of the measured amplitude, the magnitude of the time-dependent flow, the volume Vi and elasticity E1 of the fluid line 203 and the volume V2 and elasticity E2 of the fluid line 204, the degree of clogging of the main filter 205 is calculated.

I denna utforingsform av det uppfinningsenliga forfarandet är fluidsystemet 201 anordnat med en forsta fluidledning 203 vars volym Vi är ca tio ganger storre an volymen V2 hos den andra fluidledningen 204. Det tidsberoende flodet 209 skapas i form av en fyrkantsvag i den andra fluidledningen 204, vid vilken aven trycket mats. Trycksvangningarna blir darfor latta att detektera med hjalp av trycksensorn 207. Graden av igensattning av huvudfiltret 205 kan faststallas oberoende av de vasentligen konstanta in- och utflodena 208, 219 av reduktionsmedel i fluidledningarna 203, 204. Att flodena är vasentligen konstanta innebar i detta fall att tidskonstanten hos det tidsberoende, i detta fall fyrkantsvagformade, flodet 209 ar betydligt mindre an eventuella tidskonstanter hos de ovriga flodena 208, 219. Detta kan exempelvis innebara att tidskonstanten T for det tidsberoende flodet ar i storleksordningen tiondels sekunder, medan de ovriga flodena varierar over en avsevart langre tid, sasom med en tidskonstant i intervallet 5-30 s. In this embodiment of the method according to the invention, the fluid system 201 is arranged with a first fluid line 203 whose volume Vi is about ten times larger than the volume V2 of the second fluid line 204. The time-dependent flow 209 is created in the form of a square wave in the second fluid line 204, at which also the pressure is fed. The pressure fluctuations are therefore easy to detect with the aid of the pressure sensor 207. The degree of clogging of the main filter 205 can be determined independently of the substantially constant inflows and outflows 208, 219 of reducing agents in the fluid lines 203, 204. The fact that the rivers are substantially constant meant that the time constant of the time-dependent, in this case square-wave, river 209 is considerably smaller than any time constants of the other rivers 208, 219. This may mean, for example, that the time constant T of the time-dependent river is in the order of one-tenth of a second, while the other rivers vary over a considerably longer time, as with a time constant in the interval 5-30 s.

Den beraknade storleken av flodesblockeringen kan lampligen anvandas som en testvariabel ti vilken med hjalp av styrenheten testas mot ett larmkriterium. Givet att larmkriteriet uppfylls alstras en felkod. Larmkriteriet kan till exempel sattas sa att det uppfylls om testvariabeln ti overskrider ett forutbestamt troskelvarde. The calculated size of the river block can suitably be used as a test variable in which, with the aid of the control unit, it is tested against an alarm criterion. Given that the alarm criterion is met, an error code is generated. The alarm criterion can, for example, be set so that it is met if the test variable ti exceeds a predetermined threshold value.

IstaIlet for att berakna storleken av flodesblockeringen kan det vara lampligt att anvanda den uppmatta amplituden hos trycksvangningarna som testvariabel ti. I detta fall kan man satta troskelvardet sa att hansyn tas till fluidsystemets storheter sasom fluidledningarnas volymer och elasticitet sa att ett faktiskt varde pa flodesblockeringens storlek inte behover beraknas. Lampliga troskelvarden kan t.ex. bestammas empiriskt eller med hjalp av simulering. For vissa tillampningar kan dock fluidsystemets storheter variera med till exempel temperatur och tryck. I till exempel branslesystem kan trycket variera mellan ca 500-2000 bar och elasticiteten hos systemet blir i hog grad beroende av trycket. I dessa fall kan det vara fordelaktigt att antingen berakna storleken av flodesblockeringen och anvanda denna som testvariabel ti eller att anvanda ett troskelvarde vilket är t.ex. tryckberoende. Instead of calculating the magnitude of the river block, it may be appropriate to use the measured amplitude of the pressure fluctuations as a test variable ti. In this case, the threshold value can be set so that the magnitude of the fluid system is taken into account, as well as the volumes and elasticity of the fluid lines so that an actual value of the size of the river block does not need to be calculated. Lampliga thresholds can e.g. determined empirically or by means of simulation. For some applications, however, the quantities of the fluid system may vary with, for example, temperature and pressure. In, for example, industrial systems, the pressure can vary between about 500-2000 bar and the elasticity of the system becomes highly dependent on the pressure. In these cases, it may be advantageous to either calculate the size of the river block and use it as a test variable ti or to use a threshold value which is e.g. pressure dependent.

Datorprogramkod far implementering av ett forfarande enligt uppfinningen är lampligen inkluderad i ett datorprogram som är inlasningsbart till internminnet has en dator, sasom internminnet has en elektronisk styrenhet has ett motorfordon. Ett sadant datorprogram är lampligen tillhandahallet via en datorprogramprodukt innefattande ett av en elektronisk styrenhet lasbart datalagringsmedium, vilket datalagringsmedium har datorprogrammet lagrat darpa. Namnda datalagringsmedium är exempelvis ett optiskt datalagringsmedium i form av en CD-ROM-skiva, en DVD- 1 6 skiva etc, ett magnetiskt datalagringsmedium i form av en hard-disk, en diskett, ett kassettband etc, eller ett Flashminne eller ett minne av typen ROM, PROM, EPROM eller EEPROM. Computer program code for implementing a method according to the invention is suitably included in a computer program which can be loaded into the internal memory has a computer, just as the internal memory has an electronic control unit has a motor vehicle. Such a computer program is suitably provided via a computer program product comprising a data storage medium which can be read by an electronic control unit, which data storage medium has the computer program stored there. Said data storage medium is, for example, an optical data storage medium in the form of a CD-ROM, a DVD-disc, etc., a magnetic data storage medium in the form of a hard disk, a floppy disk, a cassette tape, etc., or a flash memory or a memory of type ROM, PROM, EPROM or EEPROM.

Fig. 3 illustrerar schematiskt en elektronisk styrenhet 40 inne- fattande ett exekveringsmedel 41, sasom en central processorenhet (CPU), for exekvering av datorprogramvara. Exekveringsmedlet 41 kommunicerar med ett minne 42, exempelvis av typen RAM, via en databuss 43. Styrenheten 40 innefattar aven datalagringsmedium 44, exempelvis i form av ett Flashminne eller ett minne av typen ROM, PROM, EPROM eller EEPROM. Exekveringsmedlet 41 kommunicerar med datalagringsmediet 44 via databussen 43. Ett datorprogram innefattande datorprogramkod for implementering av ett forfarande enligt uppfinningen är lagrat pa datalagringsmediet 44. Fig. 3 schematically illustrates an electronic control unit 40 comprising an execution means 41, such as a central processor unit (CPU), for executing computer software. The execution means 41 communicates with a memory 42, for example of the RAM type, via a data bus 43. The control unit 40 also comprises data storage medium 44, for example in the form of a Flash memory or a memory of the type ROM, PROM, EPROM or EEPROM. The execution means 41 communicates with the data storage medium 44 via the data bus 43. A computer program comprising computer program code for implementing a method according to the invention is stored on the data storage medium 44.

Uppfinningen är givetvis inte pa nagot satt begransad till de ovan beskrivna utforingsformerna, utan en mangd mojligheter till modifikationer darav torde vara uppenbara for en fackman pa omra- det, utan att denne for den skull avviker fran uppfinningens grundtanke sadan denna definieras i bifogade patentkrav. 17 The invention is of course not limited in any way to the embodiments described above, but a number of possibilities for modifications thereof should be obvious to a person skilled in the art, without the latter deviating from the basic idea of the invention as defined in the appended claims. 17

Claims (21)

537 396 PATENTKRAV537 396 PATENT REQUIREMENTS 1. F6rfarande f6r att detektera en flodesblockering (105, 205) i ett fluidsystem (101, 201), vilken flodesblockering ar anordnad mellan en forsta fluidledning (103, 203) och en till den fi5rsta fluidledningen via flodesblockeringen (105, 205) ansluten andra fluidledning (104, 204), varvid forfarandet innefattar att styra en till den forsta fluidledningen (103, 203) ansluten flodeskalla (102, 202) sa att minst ett inflode (108, 208) in i den forsta fluidledningen (103, 203) skapas och att styra en till den andra fluidledningen (204, 204) ansluten doseringsenhet (106, 206) sa att minst ett utflode (109, 209, 219) ut ur den andra fluidledningen skapas, kannetecknat av att forfarandet innefattar att skapa ett av de namnda flodena (109, 209) som ett tidsberoende flode av kand storlek och med en tidskonstant T och resterande namnda minst ett flode (108, 208, 219) som ett Over tidskonstanten T konstant eller vasentligen konstant flode sa att trycksvangningar uppstar i atminstone en av namnda fluidledningar (103, 104, 203, 204), att mata amplituden hos trycksvangningarna i en av namnda fluidledningar (104, 204) dar trycksvangningar uppstar och pa basis av den uppmatta amplituden detektera flodesblockeringen (105, 205).A method of detecting a river block (105, 205) in a fluid system (101, 201), the river block being arranged between a first fluid conduit (103, 203) and a second fluid conduit connected to the first fluid conduit (105, 205). fluid conduit (104, 204), the method comprising controlling a river skull (102, 203) connected to the first fluid conduit (102, 202) so that at least one inflow (108, 208) into the first fluid conduit (103, 203) is created. and controlling a dosing unit (106, 206) connected to the second fluid line (204, 204) so that at least one outflow (109, 209, 219) out of the second fluid line is created, characterized in that the method comprises creating one of the said the rivers (109, 209) as a time-dependent flood of kand size and with a time constant T and the remaining said at least one river (108, 208, 219) as an Over time constant T constant or substantially constant flow so that pressure fluctuations occur in at least one of saidfluid lines (103, 104, 203, 204), to supply the amplitude of the pressure fluctuations in one of said fluid lines (104, 204) where pressure fluctuations occur and on the basis of the measured amplitude detect the river blockage (105, 205). 2. Forfarande enligt krav 1, kannetecknat av att flodesblockeringen (105, 205) detekteras pa basis av den uppmatta amplituden, storleken av det tidsberoende flodet (109, 209) och fluidsystemets volym V och elasticitet E. 18 537 396Method according to claim 1, characterized in that the river block (105, 205) is detected on the basis of the measured amplitude, the magnitude of the time-dependent flow (109, 209) and the volume V and elasticity of the fluid system E. 18 537 396 3. Forfarande enligt krav 1 eller 2, kannetecknat av att den uppmatta amplituden anvands som en testvariabel ti vilken testas mot ett larmkriterium, och att, givet att larmkriteriet uppfylls, en felkod alstras.Method according to claim 1 or 2, characterized in that the measured amplitude is used as a test variable ti which is tested against an alarm criterion, and that, given that the alarm criterion is met, an error code is generated. 4. Forfarande enligt krav 1, kannetecknat av att flodesblockeringens (105, 205) storlek beraknas pa basis av den uppmatta amplituden, storleken av det tidsberoende flodet (109, 209), den forsta fluidledningens volym Vi och elasticitet Ei och den andra fluidledningens volym V2 och elasticitet E2.Method according to claim 1, characterized in that the size of the river block (105, 205) is calculated on the basis of the amplitude measured, the size of the time-dependent flow (109, 209), the volume V1 of the first fluid line and elasticity E1 and the volume V2 of the second fluid line. and elasticity E2. 5. Forfarande enligt krav 4, kannetecknat av att den beraknade storleken anvands som en testvariabel ti vilken testas mot ett larmkriterium, och att, givet att larmkriteriet uppfylls, en felkod alstras.Method according to claim 4, characterized in that the calculated size is used as a test variable ti which is tested against an alarm criterion, and that, given that the alarm criterion is met, an error code is generated. 6. Forfarande enligt krav 3 eller 5, kannetecknat av att larmkriteriet uppfylls om testvariabeln ti overskrider ett forutbestamt troskelvarde.Method according to claim 3 or 5, characterized in that the alarm criterion is met if the test variable ti exceeds a predetermined threshold value. 7. Forfarande enligt nagot av foregaende krav, kannetecknat av att det utfors for ett system dar de namnda fluidledningarna (103, 104, 203, 204) skiljer sig i volym.A method according to any one of the preceding claims, characterized in that it is carried out for a system in which the said fluid lines (103, 104, 203, 204) differ in volume. 8. Forfarande enligt krav 7, kannetecknat av att det utfors for ett system dar volymen av en av de namnda fluidledningarna (203) är minst tio ganger sti5rre an volymen av en annan av de namnda fluidledningarna (204). 19 537 396A method according to claim 7, characterized in that it is performed for a system where the volume of one of said fluid conduits (203) is at least ten times larger than the volume of another of said fluid conduits (204). 19 537 396 9. F6rfarande enligt krav 7 eller 8, kannetecknat av att det tidsberoende flodet skapas i den av de namnda fluidledningarna (104, 204) som har minst volym.A method according to claim 7 or 8, characterized in that the time-dependent flow is created in that of said fluid conduits (104, 204) having the least volume. 10. Forfarande enligt nagot av krav 7 till 9, kannetecknat av att amplituden hos trycksvangningarna mats i den av de namnda fluidledningarna (104, 204) som har minst volym.Method according to any one of claims 7 to 9, characterized in that the amplitude of the pressure fluctuations is fed into the one of the said fluid lines (104, 204) which has the least volume. 11. Forfarande enligt nagot av foregaende krav, kannetecknat av 10 att amplituden hos trycksvangningarna mats i den av de namnda fluidledningarna (104, 204) dar det tidsberoende floclet (109, 209) skapas.A method according to any one of the preceding claims, characterized in that the amplitude of the pressure fluctuations is fed into that of the said fluid lines (104, 204) where the time-dependent floc (109, 209) is created. 12. F6rfarande enligt nagot av foregaende krav, kannetecknat av att minst ett narnnt inflode (208) in i den forsta fluidledningen (203) skapas genom att styra en flodeskalla i form av en pump (202) sa att fluid pumpas fran en tank (212) in i den namnda f6rsta fluidledningen (203).A method according to any one of the preceding claims, characterized in that at least one narrow inflow (208) into the first fluid line (203) is created by controlling a river head in the form of a pump (202) so that fluid is pumped from a tank (212). ) into said first fluid conduit (203). 13. F6rfarande enligt krav 12, kannetecknat av att det fran den andra fluidledningen (204) aterfors fluid till namnda tank (212) i ett namnt utflocle i form av ett returflode (219), och att det leds fluid ut ur fluidsystemet (201) i ett namnt utflode i form av ett forbrukningsflode (209).A method according to claim 12, characterized in that fluid is returned from the second fluid line (204) to said tank (212) in a named outflow in the form of a return flow (219), and that fluid is led out of the fluid system (201). in a named outflow in the form of a consumption flood (209). 14. Forfarande enligt nagot av foregaende krav, kannetecknat av att doseringsenheten (106, 206) styrs att skapa det namnda tidsberoende floclet (109, 209). 537 396A method according to any one of the preceding claims, characterized in that the dosing unit (106, 206) is controlled to create the said time-dependent flocculation (109, 209). 537 396 15. Forfarande enligt nagot av foregaende krav, kannetecknat av att det tidsberoende flodet (109, 209) skapas i form av ett tidsperiodiskt flocle.A method according to any one of the preceding claims, characterized in that the time-dependent flood (109, 209) is created in the form of a time-periodic flock. 16. Forfarande enligt nagot av foregaende krav, kannetecknat av att det utfors for ett fluidsystem innefattande en flodesblockering (105, 205) i form av ett i nagon grad igensatt filter, varvid graden av igensattning av filtret (105, 205) detekteras.A method according to any one of the preceding claims, characterized in that it is performed for a fluid system comprising a river block (105, 205) in the form of a filter which is somewhat clogged, the degree of clogging of the filter (105, 205) being detected. 17. Forfarande enligt nagot av foregaende krav, kannetecknat av att forfarandet utfors for ett system (201) for insprutning av reduktionsmedel uppstroms en SCR-katalysator i en avgasledning fran en forbranningsmotor.Process according to any one of the preceding claims, characterized in that the process is carried out for a system (201) for injecting reducing agent upstream of an SCR catalyst in an exhaust line from an internal combustion engine. 18. Datorprogram innefattande datorprogramkod for att bringa en dator att implementera ett forfarande enligt nagot av kraven 1-17 nar datorprogramkoden exekveras i datorn.A computer program comprising computer program code for causing a computer to implement a method according to any of claims 1-17 when the computer program code is executed in the computer. 19. Datorprogramprodukt innefattande ett datalagringsmedium 20 som är lasbart av en dator, varvid datorprogramkoden hos ett datorprogram enligt krav 18 är lagrad pa datalagringsmediet.A computer program product comprising a data storage medium 20 readable by a computer, wherein the computer program code of a computer program according to claim 18 is stored on the data storage medium. 20. Elektronisk styrenhet (40) innefattande ett exekveringsmedel (41), ett till exekveringsmedlet anslutet minne (42) och ett till exekveringsmedlet anslutet datalagringsmedium (44), varvid datorprogramkoden has ett datorprogram enligt krav 18 är lagrat pa namnda datalagringsmedium (44).An electronic control unit (40) comprising an execution means (41), a memory (42) connected to the execution means and a data storage medium (44) connected to the execution means, the computer program code having a computer program according to claim 18 being stored on said data storage medium (44). 21. Motorfordon innefattande en elektronisk styrenhet (40) enligt krav 20. 21 1/1 101102 104 106 103 10109Motor vehicle comprising an electronic control unit (40) according to claim 20. 21 1/1 101102 104 106 103 10109
SE1350705A 2013-06-10 2013-06-10 Procedure for detecting a blocked flow SE537396C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1350705A SE537396C2 (en) 2013-06-10 2013-06-10 Procedure for detecting a blocked flow
PCT/SE2014/050663 WO2014200413A1 (en) 2013-06-10 2014-06-02 Method for detection of a blocked flow
DE112014002374.4T DE112014002374B4 (en) 2013-06-10 2014-06-02 Method for detecting a blockage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350705A SE537396C2 (en) 2013-06-10 2013-06-10 Procedure for detecting a blocked flow

Publications (2)

Publication Number Publication Date
SE1350705A1 SE1350705A1 (en) 2014-12-11
SE537396C2 true SE537396C2 (en) 2015-04-21

Family

ID=52022565

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350705A SE537396C2 (en) 2013-06-10 2013-06-10 Procedure for detecting a blocked flow

Country Status (3)

Country Link
DE (1) DE112014002374B4 (en)
SE (1) SE537396C2 (en)
WO (1) WO2014200413A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE541215C2 (en) 2017-09-22 2019-05-07 Scania Cv Ab A system and a method for diagnosing functionality of dosing units of a fluid dosing system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4373684B2 (en) 2003-02-19 2009-11-25 株式会社フィリップスエレクトロニクスジャパン Filter clogging monitoring device and bedside system
AT500849B8 (en) 2004-11-15 2007-02-15 Pankl Emission Control Systems urea dosing
JP4165896B2 (en) * 2007-02-19 2008-10-15 ボッシュ株式会社 Reducing agent path clogging determination device and reducing agent path clogging determination method
US8161808B2 (en) 2009-02-24 2012-04-24 GM Global Technology Operations LLC Exhaust treatment diagnostic system and method
JP5534602B2 (en) * 2009-11-06 2014-07-02 ボッシュ株式会社 Abnormality detection device and abnormality detection method for reducing agent injection valve
SE535326C2 (en) 2010-04-23 2012-06-26 Scania Cv Ab Method and system for determining the need for replacement or cleaning of a filter unit in a liquid dosing system of an SCR system
SE537849C2 (en) 2011-09-22 2015-11-03 Scania Cv Ab Method and system for determining need for review of a dosage unit in an SCR system
US20130079667A1 (en) * 2011-09-28 2013-03-28 General Electric Company Flow sensor with mems sensing device and method for using same
DE102012201595A1 (en) 2012-02-03 2013-08-08 Robert Bosch Gmbh Method for loading diagnosis of filter of internal combustion engine, involves performing diagnosis of load state of filter by measurement of pump current of feed pump on decrease of pressure over filter based on differential pressure

Also Published As

Publication number Publication date
DE112014002374T5 (en) 2016-01-28
DE112014002374B4 (en) 2019-09-19
SE1350705A1 (en) 2014-12-11
WO2014200413A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US9127584B2 (en) Recovery control system
US9328643B2 (en) Selective catalytic reduction system
CN105940197B (en) Diesel exhaust gas fluid filter permeability inspection policies and the machine for using this strategy
EP3469197B1 (en) Method for detecting a leak in a feed line of liquid system in a motor vehicle
CN105189965A (en) Recirculating exhaust treatment fluid system
SE1050400A1 (en) Method of an SCR system and a device including an SCR system
JP5906637B2 (en) Foreign matter removal method and selective reduction catalyst system
JP5914180B2 (en) Abnormality detection device for reducing agent supply device and reducing agent supply device
JP2014129766A (en) Urea water consumption amount diagnosis device for urea scr
SE539491C2 (en) SCR system and procedure of an SCR system
JP2011526983A5 (en)
SE536083C2 (en) A method of detecting reducing agent crystals in an SCR system and corresponding SCR system
JP6142530B2 (en) Urea water consumption diagnostic device for urea SCR
SE537396C2 (en) Procedure for detecting a blocked flow
US10589222B2 (en) Urea water agitation control device
SE535338C2 (en) Apparatus and method for heating a reductant in a SCR system of a motor vehicle
SE1050651A1 (en) Method of SCR system and device of SCR system
SE538382C2 (en) Method of heating a reducing agent in an SCR system and determining suitability for circulation of said reducing agent in said SCR system
JP6011332B2 (en) Urea water consumption diagnostic device for urea SCR
SE538625C2 (en) System and method for diagnosing a sensor of an exhaust gas cleaning system
SE1050653A1 (en) Method and apparatus for determining the minimum level of a reducing agent container in an SCR system based on the cooling needs of a dosing unit
CN112262253B (en) Dynamic monitoring of the flow of a liquid additive injected into a motor vehicle exhaust gas treatment system
JP2017150467A (en) Abnormality diagnosis device of exhaust emission control device of internal combustion engine
SE1050643A1 (en) Device comprising an HC dosing system and a method of an HC dosing system
KR101679983B1 (en) Urea supply apparatus and method