SE527338C2 - Modified Metal Powder Fuel and Ways to Increase Burning Speed and Flammability of Metal Powder Fuel - Google Patents
Modified Metal Powder Fuel and Ways to Increase Burning Speed and Flammability of Metal Powder FuelInfo
- Publication number
- SE527338C2 SE527338C2 SE0401456A SE0401456A SE527338C2 SE 527338 C2 SE527338 C2 SE 527338C2 SE 0401456 A SE0401456 A SE 0401456A SE 0401456 A SE0401456 A SE 0401456A SE 527338 C2 SE527338 C2 SE 527338C2
- Authority
- SE
- Sweden
- Prior art keywords
- base metal
- metal
- metal powder
- powder
- alloying
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 47
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 38
- 239000002184 metal Substances 0.000 title claims abstract description 38
- 239000000446 fuel Substances 0.000 title claims abstract description 8
- 239000010953 base metal Substances 0.000 claims abstract description 51
- 238000000576 coating method Methods 0.000 claims abstract description 33
- 239000011248 coating agent Substances 0.000 claims abstract description 31
- 238000005275 alloying Methods 0.000 claims abstract description 25
- 239000000126 substance Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910052796 boron Inorganic materials 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- -1 platinum metals Chemical class 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000002360 explosive Substances 0.000 claims description 2
- 239000003380 propellant Substances 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- 238000007747 plating Methods 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000007772 electroless plating Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical compound OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 3
- 229910001463 metal phosphate Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 101100503252 Streptomyces wedmorensis fom1 gene Proteins 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/18—Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
- C06B45/30—Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06D—MEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
- C06D5/00—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
- C06D5/06—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
Abstract
Description
00 0 OI IC ICO O 'ICO 0 0 0 000 0000 0 00 0 I 0 00 I O Q 00 I 0 0 0 00 000 10 15 20 25 30 35 2 samma sätt som dagens metallpulverbränslen och ersätta dessa i kända komposi- tioner för att förbättra kompositionemas prestanda. 00 0 OI IC ICO O 'ICO 0 0 0 000 0000 0 00 0 I 0 00 IOQ 00 I 0 0 0 00 000 10 15 20 25 30 35 2 in the same way as today's metal powder fuels and replace them in known compositions to improve the performance of the compositions.
Detta uppnås genom ett sätt och ett metallpulver som definieras i patentkraven.This is achieved by a method and a metal powder as claimed in the claims.
Enligt uppfinningen förses en pulverformig basmetall vald bland Al, Mg, B, Ti Zr, Hf och legeringar av två eller flera av dessa med en ytbeläggning innehållande ett legeringsämne som reagerar exotennt med basmetallen vid antändning av metall- pulvret. Ytbeläggningen kan bestå av legeringsåmnet eller utgöras av en legering som till väsentlig del innehåller ett eller flera av legeringsämnena eller innehålla t.ex. metallsulfid eller metallfosfid när legeringsåmnet är S respektive P. Hur mycket exotermt reagerande legeringsämne som krävs i ytbeläggningen för att ge en påtaglig förhöjning av metallpulvrets brinnhastighet och antändbarhet, varierar med legeringsentalpin mellan aktuell basmetall och legeringsämne och viktförhållandet ytbelåggning/basmetall. För vissa kombinationer av basmetall och legenngsämne kan en positiv verkan uppnås redan vid ca. 3 vikts% legeringsämne i ytbelägg- ningen. Normalt är halten 10-100 vikts%.According to the invention, a powdered base metal selected from Al, Mg, B, Ti Zr, Hf and alloys of two or more of these is provided with a coating containing an alloying substance which reacts exotinically with the base metal upon ignition of the metal powder. The surface coating can consist of the alloy blank or consist of an alloy which essentially contains one or more of the alloy blanks or contain e.g. metal sulphide or metal phosphate när d when the alloy blank is S and P. The amount of exothermic alloying element required in the surface coating to give a significant increase in the metal powder's burn rate and flammability varies with the alloy enthalpy between the actual base metal and the alloy and the weight ratio surface coating / base metal. For certain combinations of base metal and alloying substance, a positive effect can be achieved already at approx. 3% by weight of alloying element in the surface coating. Normally the content is 10-100% by weight.
Ytbeläggningen anbringas på kemisk våg på pulver av basmetallen, dvs. genom beläggningsmetoder som inte kräver någon yttre strömkälla utan beläggningsmate- rialet reduceras från jonform i lösning till en fast beläggning genom kemisk reaktion med basmetallen eller med ett reduktionsmedel i behandlingslösnlngen. Ett stort antal varianter av sådana beläggningsmetoder är kända och benämns kemisk plätering eller strömlös plätering. Metodema lämpar sig för beläggning av pulver eftersom de ger en likforrnig beläggning av alla ytor oberoende av formen hos substratet. Beläggningsmaterialet är löst i pläteringsbadet, ofta bundet till något kelaterande eller komplexbindande medel. Ett reduktionsmedel kan ingå i badet, t.ex. hypofosfit, fonnaldehyd m.fl. Vid autokatalytisk plätering katalyseras redoxre- aktionen mellan reduktionsmedlet och beläggningsmaterialet av den utfällda beläggningsmetallen. När reaktionen startas kan den katalytiska verkan utövas av basmetallen själv eller genom att basmetallen förbehandlats föratt få denna verkan. Ett stort antal pläteringsbad av denna typ är kommersiellt tillgängliga. l en annan typ av strömlös plätering utgör basmetallen reduktionsmedlet och en del av i basmetallen gåri lösning samtidigt som beläggningsmaterialet reduceras och faller ut på basmetallen. Denna typ av strömlös plätering benämns ofta "immersion plating" eller "replacement plating" och pläteringsbaden är enklare till sin 10 15 20 25 30 35 5 2 7 Z É 'I §II= . - . 0000 0000 0 0 I Q u oo QIIO Q 0400 ut 0 0 I 0 I 0 0 no Q 3 sammansättning än de reduktionsmedelsinnehållande baden. Båda typerna av bad kan användas enligt uppfinningen och väljs beroende på vilken kombination av basmetall och legeringsämne som är aktuell. l den senare metoden krävs att basmetallen har en högre oxidationspotential än legeringsämnet. l det modifierade metallpulvret enligt uppfinningen utgör ytbeläggningen företrädes- vis 1-10 % av basmetallens vikt. Tjocka beläggningsskikt kan åstadkommas med autokatalytiska pläteringsprocesser eftersom reaktionen katalyseras av det utfällda legeringsämnet. Vid ”replacement plating" avstannar däremot reaktionen när basmetallen är helt täckt av legeringsämnet.The surface coating is applied on a chemical scale to the base metal powder, ie. by coating methods that do not require an external power source but the coating material is reduced from ionic form in solution to a solid coating by chemical reaction with the base metal or with a reducing agent in the treatment solution. A large number of variants of such coating methods are known and are called chemical plating or electroless plating. The methods are suitable for coating powders because they give a uniform coating of all surfaces regardless of the shape of the substrate. The coating material is dissolved in the plating bath, often bound to some chelating or complexing agent. A reducing agent may be included in the bath, e.g. hypophos fi t, fonnaldehyde m. fl. In autocatalytic plating, the redox reaction between the reducing agent and the coating material is catalyzed by the precipitated coating metal. When the reaction is started, the catalytic action can be exerted by the base metal itself or by pretreating the base metal to obtain this effect. A large number of plating baths of this type are commercially available. In another type of electroless plating, the base metal constitutes the reducing agent and a part of the base metal goes into solution at the same time as the coating material is reduced and precipitates on the base metal. This type of electroless plating is often referred to as "immersion plating" or "replacement plating" and the plating baths are simpler to their 10 15 20 25 30 35 5 2 7 Z É 'I §II =. -. 0000 0000 0 0 I Q u oo QIIO Q 0400 ut 0 0 I 0 I 0 0 no Q 3 composition than the reducing agent-containing baths. Both types of baths can be used according to the invention and are selected depending on which combination of base metal and alloying material is relevant. In the latter method, the base metal is required to have a higher oxidation potential than the alloying substance. In the modified metal powder according to the invention, the surface coating preferably constitutes 1-10% of the weight of the base metal. Thick coating layers can be achieved with autocatalytic plating processes because the reaction is catalyzed by the precipitated alloy blank. In "replacement plating", on the other hand, the reaction stops when the base metal is completely covered by the alloying element.
Den exoterma reaktionen mellan basmetallen och legeringsämnet startar när metallpulvret hettas upp till relativt hög temperatur, som uppstår när pulvret antänds i en drivämnes- eller sprängämneskomposition. Vid normal temperatur fungerar ytbeläggningen däremot som ett extra skydd mot oxidation av basmetallen. Detta gör att ett ytbelagt metallpulver enligt uppfinningen kan göras kemiskt stabilare än ett obehandlat pulver av basmetallen. Eftersom basmetallens hela yta är täckt av beläggningsmetallen blir det beläggningsmetallen som bestämmer pulvrets kemiska uppträdande vid normal temperatur. Många av de möjliga beläggningsmetallema är mycket korrosionsbestândiga och inerta material, som gör att det belagda pulvret kan användas i kompositioner där basmetallen nonnalt inte skulle passa.The exothermic reaction between the base metal and the alloy starts when the metal powder is heated to a relatively high temperature, which occurs when the powder is ignited in a propellant or explosive composition. At normal temperature, on the other hand, the surface coating acts as an extra protection against oxidation of the base metal. This means that a coated metal powder according to the invention can be made chemically more stable than an untreated powder of the base metal. Since the entire surface of the base metal is covered by the coating metal, it becomes the coating metal that determines the chemical behavior of the powder at normal temperature. Many of the possible coating metals are highly corrosion resistant and inert materials, which means that the coated powder can be used in compositions where the base metal would not normally fit.
När basmetallen är Al kan legeringsämnet vara valt från Ni, Co, Fe, Mn, S, P, Cr, Mo, B, Ce, Nb och platinametallema. S och P kan anbringas på basmetallen i form av en sulfid respektive fosfid av någon lämplig beläggningsmetall, t.ex. Ni, Co, Fe, Mn, Cr, Mo, Ce och Nb. Alkalimetallsulfit eller alkalimetallsulfid kan även tillsättas pläteringslösningar för olika metaller och ger då upphov till metallsulfid i den bildade ytbeläggningen. Pläteringsbad som innehåller hypofosfit som reduktionsmedel ger nonnalt en viss procent metallfosfid i den bildade beläggningen. Nickel och jâmskikt som påförts med pläteringsbad innehållande hypofosfit kan t.ex. innehålla 540% nickel- respektive jâmfosfid. Halten metallfosfid i belâggningsskiktet kan enkelt ökas till ca. 50% enbart genom att öka halten hypofosfiti pläteringsbadet. De mekaniska egenskapema hos ytskiktet blir då sämre men kan vara tillräckliga för ett metallpul- verbränsle.When the base metal is Al, the alloying substance may be selected from Ni, Co, Fe, Mn, S, P, Cr, Mo, B, Ce, Nb and the platinum metals. S and P can be applied to the base metal in the form of a sul fi d and phosphide, respectively, of any suitable coating metal, e.g. Ni, Co, Fe, Mn, Cr, Mo, Ce and Nb. Alkali metal sulphite or alkali metal sulphide can also be added to plating solutions for different metals and then gives rise to metallic sulphide in the formed surface coating. Plating baths containing hypophosphate as a reducing agent normally give a certain percentage of metal phosphate in the formed coating. Nickel and even layers applied with plating baths containing hypophosphate can e.g. contain 540% nickel and comparable fi d. The content of metal phosphate in the coating layer can easily be increased to approx. 50% only by increasing the content of hypophosphate in the plating bath. The mechanical properties of the surface layer then become worse but may be sufficient for a metal powder fuel.
OIÛO Il I I I O 000 OQO OÛÛI I IIII I I I I III I O II I I I II o I I In I I I I OO ICO I I II II II O I I o I I II 10 15 20 25 30 35 527 38 4 När basmetallen är Mg kan legeringsämnet vara valt från samma grupp som ovan samt från Sn, Pb, Ag och Au.OIÛO Il IIIO 000 OQO OÛÛI I IIII IIII III IO II III II o II In IIII OO ICO II II II II II OII o II II 10 15 20 25 30 35 527 38 4 and from Sn, Pb, Ag and Au.
När basmetallen är B kan legeringsämnet vara valt från Ti, Zr, Mo, Al och Nb.When the base metal is B, the alloying substance may be selected from Ti, Zr, Mo, Al and Nb.
När basmetallen är Ti, Zr eller Hf kan legeringsämnet vara valt från C, B, S. och P.When the base metal is Ti, Zr or Hf, the alloying substance may be selected from C, B, S. and P.
På motsvarande sätt som beskrivits ovan kan S och P anbringas i forrn av en sulfid respektive fosfid av en valfri metall, som enkelt kan beläggas på basmetallen.In the same way as described above, S and P can be applied in the form of a sul f d or fos fi d of any metal, which can be easily coated on the base metal.
Uppfinningen skall i det följande belysas med några typexempel på tillvägagångs- sätt vid beläggning av basmetallen med legeringsämnet.The invention will be elucidated in the following with some typical examples of procedures for coating the base metal with the alloying substance.
Den hastighet med vilken det ytbelagda metallpulvret omsattes med syre mättes genom 'PGA-experiment och jämfördes med obehandlat pulver av samma kom- storlek och komforrn. En provmängd på 1012 mg placerades i en aluminiumoxid- degel och mättes i en termovåg i en syrgasström med en uppvännningshastíghet av 20°Clmin i intervallet 100-1100°C. Viktökningen på grund av oxidationen registrera- des som funktion av temperaturen till 1100°C och denna temperatur hölls sedan konstant i ytterligare 10 minuter för att komplettera oxidationen av provet till en stationär nivå. Dessa data, jämförda med motsvarande data för obehandlat pulver, ligger till grund för nedanstående bedömningar av hur mycket snabbare det ytbelagda pulvret brinner.The rate at which the coated metal powder reacted with oxygen was measured by PGA experiments and compared with untreated powder of the same grain size and comfort. A sample amount of 1012 mg was placed in an alumina crucible and measured in a thermal wave in an oxygen stream with a recovery rate of 20 ° Clmin in the range of 100-1100 ° C. The weight gain due to the oxidation was recorded as a function of the temperature to 1100 ° C and this temperature was then kept constant for another 10 minutes to complete the oxidation of the sample to a stationary level. These data, compared with the corresponding data for untreated powder, form the basis for the following assessments of how much faster the coated powder burns.
Exempel 1.Example 1.
BeläqggLgg av aluminiur_n_gl_ilver medjä Aluminiumpulver suspenderas i rent vatten och en liten mängd saltsyra eller svavel- syra tillsätts. Mängden syra kan vara från 0.01 till 10 mol% av mängden basmetall.Coating of aluminum with silver Aluminum powder is suspended in pure water and a small amount of hydrochloric acid or sulfuric acid is added. The amount of acid can be from 0.01 to 10 mol% of the amount of base metal.
Företrädesvis används 0.01 till 1 mol% och helst 0.1 till 0.5 mol%. Syrans uppgift är att ta bort oxider och aktivera aluminiumet för jämbeläggningen. Efter några minuter filtreras metallpulvret av eller lösningen dekanteras bort, men pulvret torkas inte.Preferably 0.01 to 1 mol% and preferably 0.1 to 0.5 mol% are used. The acid's task is to remove oxides and activate the aluminum for the coating. After a few minutes, the metal powder is filtered off or the solution is decanted off, but the powder is not dried.
Det syrafuktiga pulvret blandas därefter med ett icke-elektrolytiskt jämbad. Badet rörs om så att varje partikel blirjämt belagd med jäm. Skikttjocklekar på mellan 0.01 och 10 um kan framställas genom reglering av temperatur och behandlingstid.The acid-moist powder is then mixed with a non-electrolytic iron bath. The bath is stirred so that each particle is evenly coated evenly. Layer thicknesses of between 0.01 and 10 μm can be produced by regulating temperature and treatment time.
Företrädesvis väljs en skikttjocklek på 0.1 till 5 um och helst 0.1 till 1 um. Ett stort antal jämbad för strömlös plätering av aluminium finns kommersiellt tillgängliga och IOII OI O U 000 lot 0900 000 I 0 c I 000 I! 10 15 20 25 30 35 5 2 7 71 2 2 §II= = gïï ;ïï; 5 innehåller anvisningar om hur det skall handhas för att ge olika skikttjocklekar av jäm.Preferably, a layer thickness of 0.1 to 5 μm and preferably 0.1 to 1 μm is selected. A large number of iron baths for electroless plating of aluminum are commercially available and IOII OI O U 000 lot 0900 000 I 0 c I 000 I! 10 15 20 25 30 35 5 2 7 71 2 2 §II = = gïï; ïï; 5 contains instructions on how to handle to give different layer thicknesses of iron.
Aluminiumpulver som behandlats på detta sätt brinner 10-20 gånger snabbare än obehandlat pulver av samma komstorlek och komform.Aluminum powder treated in this way burns 10-20 times faster than untreated powder of the same grain size and grain shape.
Exempel 2.Example 2.
Beläggning av aluminiumpulver med nickel.Coating of aluminum powder with nickel.
Tillvägagångssättet är lika som i exempel 1 men i stället för ett icke-elektrolytiskt jämbad används ett icke-elektrolytiskt nickelbad.The procedure is the same as in Example 1, but instead of a non-electrolytic even bath, a non-electrolytic nickel bath is used.
Aluminiumpulver som behandlats på detta sätt brinner 50-100 gånger snabbare än obehandlat pulver av samma komstorlek och komform.Aluminum powder treated in this way burns 50-100 times faster than untreated powder of the same grain size and grain shape.
Exempel 3.Example 3.
Fâllnin@n_ickel i fi_nkomig fom1 på alfllinitmlgilver.FÃllnin @ n_ickel i fi_nkomig fom1 på al fl linitmlgilver.
Aluminiumpulvret suspenderas i utspädd syra på samma sätt som i exempel 1.The aluminum powder is suspended in dilute acid in the same manner as in Example 1.
Därefter tillsätts en koncentrerad lösning av ett nickelsalt, t.ex. nickelsulfat eller nickelklond, till samma suspension. Mängden nickel väljs mellan 0.01 och 5 mol% av den molära mängden aluminium. Företrådesvis används från 0.05 till 2 mol% och helst mellan 0.5 och 2 mol%. Lösningen av nickelsalt har en grönaktig färg och allt eftersom nickeljonema reduceras och fälls ut som finkomigt metalliskt nickel på aluminiumpulvret avtar den gröna färgen. När lösningen inte längre har en grönaktig färg, filtreras pulvret av och torkas.Then a concentrated solution of a nickel salt, e.g. nickel sulphate or nickel clond, to the same suspension. The amount of nickel is selected between 0.01 and 5 mol% of the molar amount of aluminum. Preferably from 0.05 to 2 mol% and preferably between 0.5 and 2 mol%. The solution of nickel salt has a greenish color and as the nickel ions are reduced and precipitated as non-metallic nickel on the aluminum powder, the green color decreases. When the solution no longer has a greenish color, the powder is filtered off and dried.
Aluminiumpulver som behandlats på detta sätt brinner 100-200 gånger snabbare än obehandlat pulver av samma komstorlek och komform.Aluminum powder treated in this way burns 100-200 times faster than untreated powder of the same grain size and grain shape.
Exempel 4.Example 4.
Fällninggv nickel i finkom_ig form gå magnesiumgulver eller gå pulver av magne- sium-aluminiumlegering.Precipitating nickel in fine form go magnesium floor or go powder of magnesium-aluminum alloy.
Tillvägagångssättet är lika som i exempel 3 men i ställer för aluminiumpulver som basmetall används magnesiumpulver eller pulver av magnesium-aluminiumlegering.The procedure is the same as in Example 3, but instead of aluminum powder as base metal, magnesium powder or magnesium-aluminum alloy powder is used.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0401456A SE527338C2 (en) | 2004-06-08 | 2004-06-08 | Modified Metal Powder Fuel and Ways to Increase Burning Speed and Flammability of Metal Powder Fuel |
PCT/SE2005/000865 WO2005121055A1 (en) | 2004-06-08 | 2005-06-08 | Modified metal powder and method of increasing the bum rate and ignitability of a metal powder fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0401456A SE527338C2 (en) | 2004-06-08 | 2004-06-08 | Modified Metal Powder Fuel and Ways to Increase Burning Speed and Flammability of Metal Powder Fuel |
Publications (3)
Publication Number | Publication Date |
---|---|
SE0401456D0 SE0401456D0 (en) | 2004-06-08 |
SE0401456L SE0401456L (en) | 2005-12-09 |
SE527338C2 true SE527338C2 (en) | 2006-02-14 |
Family
ID=32653553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE0401456A SE527338C2 (en) | 2004-06-08 | 2004-06-08 | Modified Metal Powder Fuel and Ways to Increase Burning Speed and Flammability of Metal Powder Fuel |
Country Status (2)
Country | Link |
---|---|
SE (1) | SE527338C2 (en) |
WO (1) | WO2005121055A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090090440A1 (en) * | 2007-10-04 | 2009-04-09 | Ensign-Bickford Aerospace & Defense Company | Exothermic alloying bimetallic particles |
SE532026C2 (en) * | 2008-02-14 | 2009-10-06 | Totalfoersvarets Forskningsinstitut | Ways to increase the burning rate, flammability and chemical stability of an energy fuel and energy fuel |
US20220041523A1 (en) * | 2020-08-05 | 2022-02-10 | Spectre Enterprises, Inc. | Passivated Fuel |
WO2022178007A1 (en) | 2021-02-16 | 2022-08-25 | Spectre Materials Sciences, Inc. | Primer for firearms and other munitions |
CN115200420B (en) * | 2022-07-22 | 2023-09-01 | 萍乡市金坪烟花制造有限公司 | Environment-friendly airport high-altitude bird-expelling bomb and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4202691A (en) * | 1978-11-21 | 1980-05-13 | Eutectic Corporation | Metallo-thermic powder |
US5030301A (en) * | 1990-09-28 | 1991-07-09 | Honeywell, Inc. | Oxidizer coated metal fuels with means to prevent auto-ignition |
-
2004
- 2004-06-08 SE SE0401456A patent/SE527338C2/en not_active IP Right Cessation
-
2005
- 2005-06-08 WO PCT/SE2005/000865 patent/WO2005121055A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
SE0401456D0 (en) | 2004-06-08 |
SE0401456L (en) | 2005-12-09 |
WO2005121055A1 (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6979082B2 (en) | Methods for Producing Reduced Graphene Oxide from Quiche Graphite | |
JP2002173732A (en) | High entropy multicomponent alloy | |
JP2006199982A (en) | Method for producing metallic fine powder | |
KR20150035805A (en) | Composite copper particles, and method for producing same | |
Liu et al. | Understanding corrosion mechanism of Sn–Zn alloys in NaCl solution via corrosion products characterization | |
SE527338C2 (en) | Modified Metal Powder Fuel and Ways to Increase Burning Speed and Flammability of Metal Powder Fuel | |
JP2015533193A (en) | Solvent-free synthesis of silver and silver product produced thereby | |
US3966463A (en) | Oxidation and sinter-resistant metal powders and pastes | |
JP5599060B2 (en) | Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion | |
JPH02303686A (en) | Metal alloy used as resistance welding electrode | |
Singh et al. | Corrosion characteristics of some aluminum alloys in nitric acid | |
JPWO2014045579A1 (en) | Molten salt bath for melting WC-Co cemented carbide, and method for separating and recovering tungsten and cobalt | |
JPH01139710A (en) | Manufacture of fine granular alloy powder | |
CN114309593B (en) | Preparation method of multielement transition metal coated micron aluminum composite fuel | |
JPH01502202A (en) | Titanium-based alloy composition and anode structure | |
US1792262A (en) | Method of preparing finely-divided metals or metal-metal compounds and resulting product | |
JPH05287305A (en) | Nickel powder for internal electrode of multilayered ceramic capacitor | |
US1186217A (en) | Metal-coated iron or steel article. | |
CN102066593A (en) | Aluminium-based grain refiner | |
JP5542378B2 (en) | Platinum separation solution and platinum separation and recovery method | |
JP2629080B2 (en) | Raw material for anode of fuel cell and method for producing the same | |
JP4164010B2 (en) | Inorganic ultrafine particle coated metal powder and method for producing the same | |
US4036634A (en) | Oxidation and sinter-resistant metal powders | |
Xu et al. | Wetting of liquid Zinc-aluminum-magnesium alloy on steel substrate during hot-dipping: Understanding the role of the flux | |
JP6163021B2 (en) | Method for producing composite fine particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |