SE514667C2 - Diamond coated cemented carbide body especially a tool insert - Google Patents

Diamond coated cemented carbide body especially a tool insert

Info

Publication number
SE514667C2
SE514667C2 SE9602815A SE9602815A SE514667C2 SE 514667 C2 SE514667 C2 SE 514667C2 SE 9602815 A SE9602815 A SE 9602815A SE 9602815 A SE9602815 A SE 9602815A SE 514667 C2 SE514667 C2 SE 514667C2
Authority
SE
Sweden
Prior art keywords
phase
cemented carbide
sintering
content
diamond
Prior art date
Application number
SE9602815A
Other languages
Swedish (sv)
Other versions
SE9602815L (en
SE9602815D0 (en
Inventor
Gregor Kullander
Ingrid Reineck
Tomas Hilding
Original Assignee
Sandvik Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Ab filed Critical Sandvik Ab
Priority to SE9602815A priority Critical patent/SE514667C2/en
Publication of SE9602815D0 publication Critical patent/SE9602815D0/en
Publication of SE9602815L publication Critical patent/SE9602815L/en
Publication of SE514667C2 publication Critical patent/SE514667C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Body of cemented carbide or cermet coated with a diamond layer has a surface zone of depth 2-10 micron, preferably about 8 micron, at the interface with the diamond coating where the average binder content is at least 20% preferably about 50% lower than the nominal content. The coercive force of the body is at least 10%, preferably at least 20%, and especially about 30% higher than that for a reference body of the same WC phase grain size and binder content subjected to standard sintering and has a saturation magnetisation at most 95%, preferably at most 85%, and especially at most 70% of that of the reference body. Method comprises post-sintering an eta-phase containing cemented carbide body at 1400-1510 deg C, preferably about 1450 deg C, in an H2-containing carburising atmosphere prior to diamond coating, so as to convert eta-phase in the surface zone to carbides and binder phase.

Description

30 35 2 514 667 en likaledes spröd kärna vilket visar sig vara otillräckligt för seghetskrävande skärtillämpningar. Ett mera radikalt sätt att bereda en hårdmetallkropp för diamantbeläggning är att an- vända ett mycket lågt bindefasinnehåll som beskrivits i WO 95/15258 men återigen är segheten hos en sådan kropp otillräck- lig i vissa tillämpningar. A similarly brittle core which proves to be insufficient for toughness demanding cutting applications. A more radical way of preparing a cemented carbide body for diamond coating is to use a very low binder phase content as described in WO 95/15258, but again the toughness of such a body is insufficient in some applications.

Det är väl accepterat i tekniken för diamantbeläggning av hårdmetall att det inte är möjligt att åstadkomma en väl vid- häftande beläggning utan att ta bort bindefasen, typiskt Co, från en ytzon av kroppen.It is well accepted in the technology for diamond coating of cemented carbide that it is not possible to achieve a well-adherent coating without removing the bonding phase, typically Co, from a surface zone of the body.

Den är därför överraskande att finna att ett väl vidhäftan- de diamantskikt utfällt på ett hårdmetallskär, genom att använda en hårdmetall som innehåller bindefas, kan erhållas typiskt Co, i en ytzon nära diamantbeläggningen. Detta åstadkommes genom en lätt reduktion av ytans bindefaskon- centration i kombination med en karburerande behandling.It is therefore surprising to find that a well-adhering diamond layer deposited on a cemented carbide insert, by using a cemented carbide containing binder phase, can typically be obtained Co, in a surface zone near the diamond coating. This is achieved by a slight reduction in the binder phase concentration of the surface in combination with a carburizing treatment.

Fig 1 visar i l2OOX mikrostrukturen hos en hårdmetall en- ligt uppfinningen.Fig. 1 shows in 120X the microstructure of a cemented carbide according to the invention.

Fig 2 visar koncentrationen av elementen Co, W och C som funktion av avståndet från kroppens yta i en diamantbelagd kropp enligt uppfinningen.Fig. 2 shows the concentration of the elements Co, W and C as a function of the distance from the surface of the body in a diamond-coated body according to the invention.

I Fig l och 2 A: koncentration i relativvärde B: avstånd från ytan D-E: Co utarmad zon Enligt föreliggande uppfinning innehåller hårdmetallen en- ligt uppfinningen bindefas med en koncentration nära den nominella i hela kroppen med undantag av en ytzon där det finns en utarmning av bindefas, se Fig 1 och 2.In Figs. 1 and 2 A: concentration in relative value B: distance from the surface DE: Co depleted zone According to the present invention, the cemented carbide according to the invention contains binder phase with a concentration close to the nominal in the whole body with the exception of a surface zone where there is a depletion of binding phase, see Figs. 1 and 2.

Mera speciellt föreligger enligt föreliggande uppfinning nu ett hårdmetallskär belagt med åtminstone ett diamantskikt.More particularly, according to the present invention, there is now a cemented carbide insert coated with at least one diamond layer.

Hårdmetallen består av WC och Co med ett innehåll av 3-8, företrädesvis 4-7 vikt-%. Zonen närmast mellanfasen av hàrdmetallskäret i kontakt med diamantskiktet är utarmad på bindefas till ett djup av åtminstone 2 um och maximum lO um.The cemented carbide consists of WC and Co with a content of 3-8, preferably 4-7% by weight. The zone closest to the intermediate phase of the cemented carbide insert in contact with the diamond layer is depleted in the binder phase to a depth of at least 2 μm and a maximum of 10 μm.

Bindefashalten i den här zonen är i genomsnitt 50% lägre än det nominella bindefasinnehållet. Bindefasinnehållet ökar i den här zonen till den nominella koncentrationen utan maximum. Kärnan 10 15 20 25 30 3 514 667 av skäret kan innehålla en eta-fas innehållande zon vid ett av- stånd från ytan av skäret av minimum 0.5 mm, men företrädesvis minimum 1 mm.The binder phase content in this zone is on average 50% lower than the nominal binder phase content. The binder phase content increases in this zone to the nominal concentration without maximum. The core 10 15 20 25 30 3 514 667 of the insert may contain an eta-phase containing zone at a distance from the surface of the insert of at least 0.5 mm, but preferably at least 1 mm.

Ett skär enligt uppfinningen visar en koercitivkraft åt- minstone 30% högre än ett skär preparerat enligt standardsint- ring, dvs med användning av en likadant tillverkad pulver- blandning med en kolhalt över gränsen för eta-fasbildning och sintring vid 1400-l5lO°C i en kolfri atmosfär.An insert according to the invention shows a coercive force at least 30% higher than an insert prepared according to standard sintering, ie using a similarly produced powder mixture with a carbon content above the limit for eta phase formation and sintering at 1400-115 ° C in a carbon-free atmosphere.

Den specifika mättnadsmagnetiseringen av ett skär enligt uppfinningen är högst 70% av den specifika mättnadsmagnetise- ringen av ett skär framställt enligt standardsintring.The specific saturation magnetization of an insert according to the invention is at most 70% of the specific saturation magnetization of an insert produced according to standard sintering.

Enligt en metod för att framställa det ovan beskrivna skäret innefattande en behandling efter sintring av ett sintrat skär innehållande eta-fas där efter-sintringssteget tillförs kol till skäret för att transformera eta-fas till karbid och bindefas. Kolet kan tillföras från sintringsatmosfären eller från stödjande anordningar av skären, till exempel grafittallrikar, zirkoniumoxid sprutade grafittallrikar eller kolat papper. Efter-sintringen utförs vid en temperatur över l400°C.According to a method of preparing the above-described insert comprising a treatment after sintering of a sintered insert containing eta phase where the post-sintering step adds carbon to the insert to transform eta phase to carbide and binder phase. The carbon can be supplied from the sintering atmosphere or from supporting devices of the inserts, for example graphite plates, zirconia sprayed graphite plates or carbonated paper. The post-sintering is carried out at a temperature above 140 ° C.

Exempel 1 Ett WC-6%Co hàrdmetallskär innehållande eta-fas likformigt fördelad i skäret, (l4lO°C, Ar atmosfär), och efter-behandlades sedan i en H2_sintring vid l450°C på gra- sintrades först enligt ett standardförfa- rande slipades därefter till slutform fittallrikar i en timme. Efter denna efter-sintring var mättnadsmagnetiseringen 80% av värdet för ett skär av samma geometriska form framställt från WC-6%Co utan eta-fas enligt standardsintring. Koercitivkraften för skäret enligt uppfin- 10 l5 20 30 35 514 667 lf ningen var 1.3 gånger den för referensskäret. Båda slagen av skär belades sedan med diamant med användning av standardpara- metrar i en mikrovåg plasma reaktor till en diamantbeläggning av tjocklek 10 um. Skäret enligt uppfinningen visade en väl vidhäftande diamantbeläggning medan för referensskäret diamant- beläggningen visade spontan flagning.Example 1 A WC-6% Co cemented carbide insert containing eta-phase uniformly distributed in the insert, (140 ° C, Ar atmosphere), and then post-treated in a H then to final shape pussy plates for an hour. After this post-sintering, the saturation magnetization was 80% of the value of an insert of the same geometric shape produced from WC-6% Co without eta phase according to standard sintering. The coercive force of the insert according to the invention was 1.3 times that of the reference insert. Both types of inserts were then coated with diamond using standard parameters in a microwave plasma reactor to a diamond coating 10 μm thick. The insert according to the invention showed a well-adhering diamond coating, while for the reference insert the diamond coating showed spontaneous flaking.

Exempel 2 Sex WC-6%Co hårdmetallskär innehållande eta-fas likformigt fördelad i kropparna, sintrades först enligt ett standardförfa- rande(l4l0°C, Ar-atmosfär), efter-behandlades sedan i en H2_sintring vid l450°C på grafit- slipades därefter till slutform och tallrikar i en timme. Kornstorleken hos kropparna efter efter- sintringen var 2-6 um. Skären belades sedan med diamant i en reaktor baserad högström DC-urladdning till en beläggnings- tjocklek av 6-8 um. 3 En ytterligare uppsättning skär med användning av ett eta- fas innehållande material framställda medelst standardsintring utsattes för en efter-sintring i l h vid l340°C i en CH4-H2 atmosfär varigenom en Co-utarmad ytzon på 100 um erhölls och en inre eta-fas kärna förelåg från ett avstånd av 0.3 mm från ytan av kroppen. Skären belades med diamant enligt samma procedur som skären beskrivna ovan.Example 2 Six WC-6% Co carbide inserts containing eta phase uniformly distributed in the bodies, first sintered according to a standard procedure (1410 ° C, Ar atmosphere), then post-treated in a H 2 sintering at 1450 ° C on graphite then to final form and plates for one hour. The grain size of the bodies after post-sintering was 2-6 μm. The inserts were then coated with diamond in a reactor based high current DC discharge to a coating thickness of 6-8 μm. An additional set of inserts using an eta phase containing material prepared by standard sintering was subjected to a post-sintering for 1 h at 134 ° C in a CH 4 -H 2 atmosphere to obtain a co-depleted surface zone of 100 μm and an inner eta phase core was present from a distance of 0.3 mm from the surface of the body. The inserts were coated with diamond according to the same procedure as the inserts described above.

Båda slagen av skär utsattes för ett svarvprov hos en slut- användare. Provet omfattade svarvning i en Al-8%Si legering med användning av följande skärdata: v = 1800 m/min f = 0.8 mm a = l-3 mm torrbearbetning Uppsättningen skär förbehandlad enligt uppfinningen ”varade” 100-150 komponenter i provet tills en otillräcklig yt- finhet uppnåddes på de bearbetade komponenterna. Haveriorsaken befanns vara likformig förslitning. Referensskären ”varade” inte längre än maximum 50 komponenter och hos en större del av skären fanns stora nosbrott. 10 |,..1 (fl 20 25 514 667 5 Exempel 3 Sex WC-6%Co hårdmetallskär innehållande eta-fas likformigt fördelad i kropparna, sintrades först enligt ett standardförfa- rande(14l0°C, Ar-atmosfär), och efter-behandlades sedan i en vakuumsintring vid l4l0°C på slipades därefter till slutlig form kolat papper på grafittallrikar i en timme. Kornstorleken hos kropparna efter efter-sintring var 1-3 um för en fraktion och 5-10 um för en andra fraktion. Skären belades sedan med diamant i en hög-ström DC-båge reaktor till en beläggningstjocklek av 10-12 um.Both types of inserts were subjected to a turning test by an end user. The sample comprised turning in an Al-8% Si alloy using the following cutting data: v = 1800 m / min f = 0.8 mm a = 1-3 mm dry working The set of pre-treated inserts according to the invention "lasted" 100-150 components in the sample until a insufficient surface finish was achieved on the machined components. The cause of the accident was found to be uniform wear. The reference inserts "lasted" no longer than a maximum of 50 components and in a larger part of the inserts there were large nose fractures. Example 3 Six WC-6% Co cemented carbide inserts containing eta phase uniformly distributed in the bodies were first sintered according to a standard procedure (1410 ° C, Ar atmosphere), and after was then treated in a vacuum sintering at 140 ° C and then ground to final form carbonated paper on graphite plates for one hour.The grain size of the bodies after post-sintering was 1-3 μm for one fraction and 5-10 μm for a second fraction. was then coated with diamond in a high current DC arc reactor to a coating thickness of 10-12 μm.

Ytterligare en uppsättning av skär tillverkades med använd- ning av en WC-2%Co sammansättning medelst standardsintring.Another set of inserts was manufactured using a WC-2% Co composition by standard sintering.

Skären utsattes för en efter-sintringsbehandling i lh vid l5lO°C i vakuum varigenom ytan Co-utarmades. Skären belades med diamant enligt samma procedur som för skären beskrivet ovan.The inserts were subjected to a post-sintering treatment for 1 h at 115 ° C in vacuo whereby the surface was co-depleted. The inserts were coated with diamond according to the same procedure as for the inserts described above.

Båda slagen av skär utsattes för ett svarvseghetsprov i SSl3l2 stål med användning av följande skärdata: v = 110 m/min f = 0.1 mm a = 1.5 mm torrbearbetning Den diamantbelagda uppsättningen skär förbehandlad enligt uppfinningen ”varade” 3 min i provet med endast mindre eggskada. För referensskären upptäcktes stora brott efter endast 0.2 min.Both types of inserts were subjected to a turning toughness test in SSl3l2 steel using the following cutting data: v = 110 m / min f = 0.1 mm a = 1.5 mm dry working The diamond-coated set of inserts pretreated according to the invention "lasted" 3 minutes in the test with only minor edge damage . For the reference inserts, large fractures were detected after only 0.2 min.

Claims (2)

l0 l5 20 514 667 6 EE:l0 l5 20 514 667 6 EE: 1. Skärverktygs-skär av hàrdmetall belagt med åtminstone ett diamantskikt k ä n n e t e c k n a t av, att man före diamantbeläggningen behandlat en eta-fas innehållande hàrdmetallkropp bestående av volframkarbid och kobolt med en halt av 3-8, av 2-6 um medelst en efter-sintringsbehandling vid minimum företrädesvis 4~7 vikt% samt en medelkornstorlek l400°C och maximum l5l0°C genom en karburerande sintring innehållande H2 varigenom eta-fasen i en ytzon av kroppen omvandlats till karbid och bindefas så att i ytzonen ett område av maximum 10 um bredd och minimum 2 um bredd i kroppen närmast diamantbeläggningen medelhalten av bindefas är 50% lägre än den nominella bindefashalten och att koercitivkraften hos kroppen är 30% högre än den för en referenskropp av samma WC- kornstorlek och bindefasinnehåll som skäret enligt uppfin- ningen, sintrat enligt en standardprocedur och en specifik mättnadsmagnetisering av högst 70% av den för referenskroppen.Carbide cutting tool inserts coated with at least one diamond layer, characterized in that before the diamond coating an eta-phase containing carbide body consisting of tungsten carbide and cobalt with a content of 3-8, of 2-6 μm was treated by means of a sintering treatment at a minimum preferably 4 ~ 7% by weight and an average grain size of 1400 ° C and a maximum of 1510 ° C by a carburizing sintering containing H2 whereby the eta phase in a surface zone of the body is converted to carbide and binder phase so that in the surface zone an area of maximum 10 μm width and minimum 2 μm width in the body closest to the diamond coating the average content of binder phase is 50% lower than the nominal binder phase content and that the coercive force of the body is 30% higher than that of a reference body of the same WC grain size and binder phase content as the insert sintered, sintered according to a standard procedure and a specific saturation magnetization of not more than 70% of that of the reference body. 2. Skär enligt krav l, k ä n n e t e c k n a t av, att kroppen har en etafaskärna på ett avstånd av minimum 0.5 mm, företrädesvis l mm fràn ytan av kroppen.Cutting according to claim 1, characterized in that the body has a stage core at a distance of at least 0.5 mm, preferably 1 mm from the surface of the body.
SE9602815A 1996-07-19 1996-07-19 Diamond coated cemented carbide body especially a tool insert SE514667C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE9602815A SE514667C2 (en) 1996-07-19 1996-07-19 Diamond coated cemented carbide body especially a tool insert

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9602815A SE514667C2 (en) 1996-07-19 1996-07-19 Diamond coated cemented carbide body especially a tool insert

Publications (3)

Publication Number Publication Date
SE9602815D0 SE9602815D0 (en) 1996-07-19
SE9602815L SE9602815L (en) 1998-01-20
SE514667C2 true SE514667C2 (en) 2001-04-02

Family

ID=20403428

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9602815A SE514667C2 (en) 1996-07-19 1996-07-19 Diamond coated cemented carbide body especially a tool insert

Country Status (1)

Country Link
SE (1) SE514667C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092866A3 (en) * 2001-05-16 2003-03-13 Widia Gmbh Composite material covered with a diamond layer and method for production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748709B (en) * 2020-07-10 2021-06-01 山东三钻硬质合金有限公司 Preparation method of ultra-coarse-grain high-strength hard alloy reclaimed material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092866A3 (en) * 2001-05-16 2003-03-13 Widia Gmbh Composite material covered with a diamond layer and method for production thereof

Also Published As

Publication number Publication date
SE9602815L (en) 1998-01-20
SE9602815D0 (en) 1996-07-19

Similar Documents

Publication Publication Date Title
US4843039A (en) Sintered body for chip forming machining
EP0584168B1 (en) Etching process
USRE35538E (en) Sintered body for chip forming machine
EP0603143A2 (en) Cemented carbide with binder phase enriched surface zone
US7544410B2 (en) Hard metal or cermet body and method for producing the same
EP3075476B1 (en) Diamond-coated cemented carbide cutting tool
JPWO2008026700A1 (en) Cutting tool, manufacturing method thereof and cutting method
EP1697551A1 (en) Cemented carbide tools for mining and construction applications and method of making the same
US6267797B1 (en) Sintering method
EP0910557B1 (en) Sintering method
US6660329B2 (en) Method for making diamond coated cutting tool
SE514667C2 (en) Diamond coated cemented carbide body especially a tool insert
CN102245801A (en) Method of making cutting tool inserts with high demands on dimensional accuracy
JP2014184551A (en) Diamond-coated cemented carbide cutting tool with improved cutting edge strength
US6071469A (en) Sintering method with cooling from sintering temperature to below 1200° C. in a hydrogen and noble gas atmosphere
Peng et al. Characterization and adhesion strength of diamond films deposited on silicon nitride inserts by dc plasma jet chemical vapour deposition
SE526601C2 (en) Cemented carbide tool for metal cutting or metal forming, has main body with surface portion having smaller Wc grain size than interior portion and lower binder phase content than interior portion
JP4543373B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
EP0912458B1 (en) Sintering method
JP4232198B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JPH06505303A (en) Method of manufacturing the composite
KR102298304B1 (en) Diamond coated cutting tool
EP4180155A1 (en) Diamond-coated tool
JP2009090398A (en) Diamond-coated cutting tool having excellent lubricity and machining accuracy
JP2006289573A (en) Surface-coated cemented carbide cutting tool having lubricating amorphous carbon-based coating film exhibiting superior abrasion resistance