SE507506C2 - Turbo compound engine with compression brake - Google Patents

Turbo compound engine with compression brake

Info

Publication number
SE507506C2
SE507506C2 SE9603618A SE9603618A SE507506C2 SE 507506 C2 SE507506 C2 SE 507506C2 SE 9603618 A SE9603618 A SE 9603618A SE 9603618 A SE9603618 A SE 9603618A SE 507506 C2 SE507506 C2 SE 507506C2
Authority
SE
Sweden
Prior art keywords
line
stage
exhaust
compressor
engine
Prior art date
Application number
SE9603618A
Other languages
Swedish (sv)
Other versions
SE9603618L (en
SE9603618D0 (en
Inventor
Nils Olof Haakansson
Original Assignee
Volvo Lastvagnar Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Lastvagnar Ab filed Critical Volvo Lastvagnar Ab
Priority to SE9603618A priority Critical patent/SE507506C2/en
Publication of SE9603618D0 publication Critical patent/SE9603618D0/en
Priority to DE19743751A priority patent/DE19743751B4/en
Publication of SE9603618L publication Critical patent/SE9603618L/en
Publication of SE507506C2 publication Critical patent/SE507506C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

A turbo-compound-IC engine has an intake pipe (9), an exhaust pipe (5), a turbo-compressor (3) whose first turbine stage is coupled to the exhaust so as to drive the compressor stage in the intake pipe and a second turbine stage downstream of the first stage, coupled by gearing 911) to the crankshaft. A compression brake device and valves (14) are located in the exhaust pipe upstream of the second turbine stage, used to reduce the gas flow to this second stage. The valves are in a pipe (19) on the suction side of the compressor in the intake pipe. There is a cooler on the intake side of the compressor for the exhaust gases coming through the valves.

Description

Un Bergs Syftet med föreliggande uppfinning är primärt att åstadkomma en turbocompound- motor av i inledningen angivet slag, som kan ge högre motorbromseffekt än den ovan beskrivna kända motorn. Un Bergs The object of the present invention is primarily to provide a turbo compound engine of the type stated in the introduction, which can give a higher engine braking power than the known engine described above.

Detta uppnås enligt uppfinningen genom att nämnda ventilorgan är anordnade i en ledning, som mynnar i insugningsledningen på kompressorstegets sugsida.This is achieved according to the invention in that said valve means are arranged in a line which opens into the suction line on the suction side of the compressor stage.

Genom den enkla åtgärden att ansluta ledningen från shuntventilen till insugnings- ledningen i stället för till avgasledningen uppnås liksom i det senare fallet en redu- cering av avgasflödet till kraftturbinen, men utan "by-pass" av kraftturbinen eftersom all gas som till slut lämnar motorn har passerat kraftturbinen. Genom att ansluta ledningen med ventilen till insugningsledningen erhålls ett lägre tryck än atmosfärs- tryck på kompressorturbinens nedströmssida, vilket ger ett större tryckfall över kompressorturbinen än vid det kända utförandet, eftersom det alltid råder ett avgas- mottryck i avgassystemet, så att trycket här alltid är något högre än atmosfärstrycket.By the simple measure of connecting the line from the shunt valve to the intake line instead of to the exhaust line, as in the latter case, a reduction of the exhaust flow to the power turbine is achieved, but without "by-pass" of the power turbine because all gas eventually leaves the engine has passed the power turbine. By connecting the line with the valve to the intake line, a lower pressure than atmospheric pressure is obtained on the downstream side of the compressor turbine, which gives a greater pressure drop across the compressor turbine than in the known embodiment, since there is always an exhaust back pressure in the exhaust system. slightly higher than atmospheric pressure.

Med större tryckfall följer högre laddeffekt hos kompressorn. Visserligen tillförs kolvama större arbete från gasen under insugningstakten vid bromsdrift, men arbetet som kolvarna måste utföra mot gasen under kompressionstakten blir så mycket större, att nettoeffekten blir högre bromseffekt.With a larger pressure drop follows a higher charging power of the compressor. Although the pistons are supplied with greater work from the gas during the intake stroke during braking operation, the work which the pistons must perform against the gas during the compression stroke becomes so much greater that the net effect becomes a higher braking effect.

Genom att ingen insprutning och förbränning av bränsle förekommer under motor- bromsning finns det inga förbränningsrester i gasen, som annars skulle kunna skada kompressorn och laddluftkylaren, men lämpligen kyls gasen innan den tillförs på insugningssidan.As there is no injection and combustion of fuel during engine braking, there are no combustion residues in the gas, which could otherwise damage the compressor and the charge air cooler, but it is advisable to cool the gas before it is supplied on the intake side.

Om även en stoftavskiljare anordnas i ledningen från ventilen kan ventilen utnyttjas som s k EGR-ventil och under motordrift styras, så att den öppnar för återcirkulation av avgaser inom det belastningsíntervall hos motorn där detta krävs för att reducera emissionerna. På detta sätt får arrangemanget enligt uppfinningen dubbel funktion. efí: 507 506 Uppfinningen beskrivs närmare med hänvisning till på bifogade ritning visade ut- föringsexempel, där figuren visar ett schema över en turbocompoundmotor enligt uppfinningen.If a dust collector is also arranged in the line from the valve, the valve can be used as a so-called EGR valve and controlled during engine operation, so that it opens for recirculation of exhaust gases within the load range of the engine where this is required to reduce emissions. In this way, the arrangement according to the invention has a double function. The invention is described in more detail with reference to exemplary embodiments shown in the accompanying drawing, in which the figure shows a diagram of a turbo compound engine according to the invention.

I figuren betecknar 1 en sexcylindrig turbocompoundmotor med en ansluten växel- låda 2. Ett generellt med 3 betecknat turbokompressoraggregat har ett första turbin- steg 4 anslutet till motorns avgasgrenrör 5 och ett andra turbinsteg 6 anslutet till en avgasledning 7 på turbinstegets 4 utloppssida. Det första turbinsteget 4 är ett litet högtryckssteg, som driver en kompressor 8 i en insugningsluftledning 9 innefattande en laddluftkylare 10, medan det andra turbinsteget 6 är ett större lågtryckssteg, vilket via en transmission 11 är kopplat till motorns vevaxel. Turbinsteget 6 är på utlopps- sidan anslutet till en avgasledning 12 innefattande en ljuddämpare 13. Via en inte visad steglöst reglerbar shuntventil (waste-gate-ventil) kan avgasflödet genom hög- trycksturbinen 4 regleras för reglering av kompressorns 8 uppladdningsgrad. En generellt med 14 betecknad tryckluftstyrd ventil har en i ett ventilhus 15 rörlig ventilkropp 16, som i öppet läge frilägger en öppning 17 i ledningen 7, så att gas kan strömma från ledningen 7 via ett utlopp 18 i ventilhuset 15 till en ledning 19, vilken mynnar i ett insugningsledníngsavsnjtt 20 mellan ett luftfilter 21 och kompressom 8.In the figure, 1 denotes a six-cylinder turbocompound engine with a connected gearbox 2. A turbocharger unit generally designated 3 has a first turbine stage 4 connected to the engine exhaust manifold 5 and a second turbine stage 6 connected to an exhaust line 7 on the outlet side of the turbine stage 4. The first turbine stage 4 is a small high-pressure stage, which drives a compressor 8 in an intake air line 9 comprising a charge air cooler 10, while the second turbine stage 6 is a larger low-pressure stage, which is connected via a transmission 11 to the engine crankshaft. The turbine stage 6 is connected on the outlet side to an exhaust line 12 comprising a muffler 13. Via a steplessly controllable shunt valve (waste-gate valve) not shown, the exhaust flow through the high-pressure turbine 4 can be regulated to control the degree of charge of the compressor 8. A compressed air controlled valve generally designated 14 has a valve body 16 movable in a valve housing 15, which in the open position exposes an opening 17 in the line 7, so that gas can flow from the line 7 via an outlet 18 in the valve housing 15 to a line 19, which opens into an intake line section 20 between an air filter 21 and the compressor 8.

Motorn är utrustad med en schematiskt antydd kompressionsbromsanordning 21, -~~ ~->/ f : f: -ïwï vilken kan vara av det slag, som visas och beskrivs i SE 466 3__2>0,goch medelst vilken motorns cylindrar under den senare delen av insugningstakten liksom under den senare delen av kompressionstakten kan förbindas med motorns avgasgrenrör för att öka motorbromseffekten. Kompressionsbromsanordningen 21 är elmanövrerad, medan ventilen 14 är tryckluftmanövrerad via en till en inte visad tryckluftkälla ansluten styrventilenhet 22. Både kompressionsbromsanordningen 21 och ventilen 14 styrs av en styrenhet 23, som företrädesvis är en mikroprocessor, vilken ger utsigna- ler för till- och frånslag av kompressionsbromsanordningen resp inställning av ven- tilen 14 i beroende av kommando från föraren, vilket innebär att när föraren UI 0"; c:- »a fïf/ U_í_-_ (H aktiverar kompressionsbromsen 21 öppnas samtidigt ventilen 14 för att leda gasen i ledningen 7 till insugningsledningen 20 och därigenom dels öka tryckfallet över turbinsteget 4 och dels reducera gastillförseln till kraftturbinen 6 med åtföljande reducering av dennas driveffekt.The engine is equipped with a schematically indicated compression brake device 21, - ~~ ~ -> / f: f: -ïwï which may be of the type shown and described in SE 466 3__2> 0, and by means of which the engine cylinders during the latter part of the intake stroke as well as during the latter part of the compression stroke can be connected to the engine exhaust manifold to increase the engine braking effect. The compression brake device 21 is electrically operated, while the valve 14 is compressed air actuated via a control valve unit 22 connected to a source of compressed air (not shown). Both the compression brake device 21 and the valve 14 are controlled by a control unit 23, which is preferably a microprocessor. the compression brake device or setting of the valve 14 depending on the command from the driver, which means that when the driver Ui 0 "; c: -» a fïf / U_í _-_ (H activates the compression brake 21, the valve 14 is simultaneously opened to direct the gas in the line 7 to the intake line 20 and thereby partly increase the pressure drop across the turbine stage 4 and partly reduce the gas supply to the power turbine 6 with a concomitant reduction of its drive power.

Ventilen 14 är företrädesvis steglöst inställbar i olika lägen mellan helt stängt och helt öppet läge för att även kunna utnyttjas för återcirkulation av avgaser vid normal motordrift under sådana driftförhållanden (lågfart, dellast m m), då avgasåtercirkula- tionen (EGR) krävs för att hålla avgasemissionema på tillåten låg nivå. Ventilen 14 styrs då av styrenheten 23 efter i och för sig känt mönster i beroende av olika i styrenheten inmatade fordonsdata och motordata.The valve 14 is preferably infinitely adjustable in different positions between fully closed and fully open position to also be used for recirculation of exhaust gases during normal engine operation under such operating conditions (low speed, partial load, etc.), as the exhaust recirculation (EGR) is required to keep the exhaust emissions at the permissible low level. The valve 14 is then controlled by the control unit 23 according to a pattern known per se in dependence on different vehicle data and engine data entered in the control unit.

För att i synnerhet vid avgasåtercirkulation skydda kompressorn 8 och laddluft- kylaren 10 mot överhettning och nedsmutsníng är en stoftavskiljare 24 och en kylare inkopplade i ledningen 19, genom vilka den återcirkulerade gasen strömmar för att renas och kylas.In order to protect the compressor 8 and the charge air cooler 10 against overheating and soiling, in particular during exhaust gas recirculation, a dust separator 24 and a cooler are connected in the line 19, through which the recirculated gas flows to be cleaned and cooled.

Claims (4)

10 20 PatentkravClaims 10 1. Förbränningsmotor av turbocompoundtyp, innefattande en insugningsledning (9,20) och en avgasledníng (5,7,l2), ett turbokompressoraggregat (3) med ett första turbinsteg (4), som är anslutet till avgasledningen och driver ett kompressorsteg (8) i insugningsledningen, och en i avgasledningen på det första turbinstegets nedströms- sida anordnat andra turbinsteg (6), som via en transmission (11) är anslutet till motorns vevaxel, en kompressionsbromsanordning samt i avgasledningen uppströms om det andra turbinsteget anordnade ventilorgan (14), som vid aktivering av kompressionsbromsanordningen är inställbara att reducera gasflödet till det andra turbinsteget, kännetecknad av att nämnda ventilorgan (14) är anordnade i en ledning (19), som mynnar i insugningsledningen (20) på kompressorstegets (8) sugsida.A turbocompound type internal combustion engine, comprising an intake line (9,20) and an exhaust line (5,7, 12), a turbocharger unit (3) with a first turbine stage (4), which is connected to the exhaust line and drives a compressor stage (8) in the intake line, and a second turbine stage (6) arranged in the exhaust line on the downstream side of the first turbine stage, which is connected via a transmission (11) to the engine crankshaft, a compression brake device and in the exhaust line upstream of the second turbine stage (14), which upon actuation of the compression brake device are adjustable to reduce the gas flow to the second turbine stage, characterized in that said valve means (14) are arranged in a line (19) which opens into the intake line (20) on the suction side of the compressor stage (8). 2. Motor enligt krav 1, kännetecknad av att en kylare (25) är anordnad på kompressorstegets (8) insugningssida för kylning av de genom nämnda ventilorgan (14) strömmande avgaserna.Engine according to claim 1, characterized in that a cooler (25) is arranged on the intake side of the compressor stage (8) for cooling the exhaust gases flowing through said valve means (14). 3. Motor enligt krav 2, kânnetecknad av att en stoftavskiljare (24) är anordnad mellan ventilorganen (14) och kylaren (25).Engine according to claim 2, characterized in that a dust separator (24) is arranged between the valve means (14) and the radiator (25). 4. Motor enligt något av kraven 1-3, kännetecknad av att kompressionsbroms- anordningen (21) och ventilorganen (14) är styrda av en gemensam elektronisk styr- enhet (23).Engine according to one of Claims 1 to 3, characterized in that the compression brake device (21) and the valve means (14) are controlled by a common electronic control unit (23).
SE9603618A 1996-10-03 1996-10-03 Turbo compound engine with compression brake SE507506C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE9603618A SE507506C2 (en) 1996-10-03 1996-10-03 Turbo compound engine with compression brake
DE19743751A DE19743751B4 (en) 1996-10-03 1997-10-02 Turbo-compound internal combustion engine with engine brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9603618A SE507506C2 (en) 1996-10-03 1996-10-03 Turbo compound engine with compression brake

Publications (3)

Publication Number Publication Date
SE9603618D0 SE9603618D0 (en) 1996-10-03
SE9603618L SE9603618L (en) 1998-04-04
SE507506C2 true SE507506C2 (en) 1998-06-15

Family

ID=20404121

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9603618A SE507506C2 (en) 1996-10-03 1996-10-03 Turbo compound engine with compression brake

Country Status (2)

Country Link
DE (1) DE19743751B4 (en)
SE (1) SE507506C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016694A1 (en) * 2001-08-20 2003-02-27 Volvo Lastvagnar Ab Turbocompound internal combustion engine arrangement
US9759128B2 (en) 2015-06-16 2017-09-12 Pratt & Whitney Canada Corp. Compound engine assembly with exhaust pipe nozzle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842084A1 (en) * 1998-09-15 2000-03-16 Paul Stolzer Transport device for storing and retrieving motor vehicles in a rack warehouse

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639901B2 (en) * 1987-10-28 1994-05-25 いすゞ自動車株式会社 Turbo compound engine
SE466320B (en) * 1989-02-15 1992-01-27 Volvo Ab PROCEDURES AND DEVICE FOR ENGINE BRAKING WITH A FIREWORKS ENGINE
US5119633A (en) * 1990-09-25 1992-06-09 Cummins Engine Company, Inc. Power turbine bypass for improved compression braking
SE502721C2 (en) * 1994-05-13 1995-12-18 Scania Cv Ab Combustion engine of turbocompound type with exhaust brake

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016694A1 (en) * 2001-08-20 2003-02-27 Volvo Lastvagnar Ab Turbocompound internal combustion engine arrangement
US7240491B2 (en) 2001-08-20 2007-07-10 Volvo Lastvagnar Ab Turbocompound internal combustion engine arrangement
US9759128B2 (en) 2015-06-16 2017-09-12 Pratt & Whitney Canada Corp. Compound engine assembly with exhaust pipe nozzle
US10393014B2 (en) 2015-06-16 2019-08-27 Pratt & Whitney Canada Corp. Engine assembly with exhaust pipe nozzle

Also Published As

Publication number Publication date
DE19743751B4 (en) 2008-09-04
SE9603618L (en) 1998-04-04
DE19743751A1 (en) 1998-04-09
SE9603618D0 (en) 1996-10-03

Similar Documents

Publication Publication Date Title
US7752844B2 (en) Engine braking method for an internal combustion engine having two serially arranged exhaust-gas turbochargers
US10107180B2 (en) Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
EP0622533B1 (en) Supercharged internal combustion engine with EGR
JP2008546946A (en) Supercharged diesel engine
GB2418012A (en) Working fluid circuit for a turbocharged engine having exhaust gas recirculation
GB2352272A (en) Forced exhaust gas recirculation (EGR) system for i.c. engines
SE506515C2 (en) Supercharged internal combustion engine, preferably diesel type, equipped with an exhaust gas recirculation device
JP2009523961A (en) Diesel engine with supercharger
SE517844C2 (en) Combustion engine arrangement and procedure for reducing harmful emissions
JP2008513653A (en) Exhaust gas recirculation device and method of operating the exhaust gas recirculation device
JPS6325320A (en) Internal combustion engine equipped with at least one turbo overcharger
US6868824B2 (en) System and method of gas recirculation in an internal combustion engine
JPS5982526A (en) Supercharger for internal-combustion engine
WO2005042940A2 (en) Exhaust pressure restriction device
EP2250355B1 (en) Arrangement for exhaust braking of a combustion engine
JP2005009314A (en) Supercharger for engine
KR20120015386A (en) Operation controling system of waste gate unit for turbocharger
SE507506C2 (en) Turbo compound engine with compression brake
JP2835999B2 (en) Exhaust gas recirculation system for turbocharged engine
JP2005188359A (en) Internal combustion engine with supercharger
JP5067268B2 (en) Supercharging pressure control device for turbocharged engine
JP2018184870A (en) Control device for engine
JP5760382B2 (en) Engine supercharger
JP6784325B2 (en) Internal combustion engine control method and internal combustion engine control device
JP7226945B2 (en) exhaust gas recirculation system

Legal Events

Date Code Title Description
NUG Patent has lapsed