SE468583B - YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE - Google Patents

YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE

Info

Publication number
SE468583B
SE468583B SE9002070A SE9002070A SE468583B SE 468583 B SE468583 B SE 468583B SE 9002070 A SE9002070 A SE 9002070A SE 9002070 A SE9002070 A SE 9002070A SE 468583 B SE468583 B SE 468583B
Authority
SE
Sweden
Prior art keywords
weight
powder
sintering
addition
iron
Prior art date
Application number
SE9002070A
Other languages
Swedish (sv)
Other versions
SE9002070L (en
SE9002070D0 (en
Inventor
P Engdahl
C Lindberg
Original Assignee
Hoeganaes Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoeganaes Ab filed Critical Hoeganaes Ab
Priority to SE9002070A priority Critical patent/SE468583B/en
Publication of SE9002070D0 publication Critical patent/SE9002070D0/en
Priority to BR919106546A priority patent/BR9106546A/en
Priority to ES91911997T priority patent/ES2075961T3/en
Priority to EP91911997A priority patent/EP0533812B1/en
Priority to AT91911997T priority patent/ATE126461T1/en
Priority to CA002084679A priority patent/CA2084679C/en
Priority to JP51115991A priority patent/JP3280377B2/en
Priority to PCT/SE1991/000404 priority patent/WO1991019582A1/en
Priority to DE69112214T priority patent/DE69112214T2/en
Publication of SE9002070L publication Critical patent/SE9002070L/en
Priority to KR1019920703140A priority patent/KR100189234B1/en
Publication of SE468583B publication Critical patent/SE468583B/en
Priority to US08/302,088 priority patent/US5728238A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

An iron-based powder for producing impact-resistant components by powder compacting and sintering contains, in addition to Fe, 0.3-0.7 % by weight of P, 0.3-3.5 % by weight of Mo, and not more than 2 % by weight of other alloying elements. A method of powder-metallurgically producing impact-resistant steel components comprises using an iron-based powder which, in addition to Fe, contains 0.3-0.7 % by weight of P, preferably 0.35-0.65 % by weight of P, 0.3-3.5 % by weight of Mo, preferably 0.5-2.5 % by weight of Mo, and not more than 2 % by weight, preferably not more than 1 % by weight, of other alloying elements; compacting the powder into the desired shape; and sintering the compact.

Description

146 10 15 20 25 30 35 5 åšš 2 de rundare porerna till att öka slagsegheten. Alternativt kan en aktivare sintring uppnås genom tillsats av P, _ som också höjer hållfasthet och duktilitet samt rundar ; av porerna redan vid lägre sintringstemperaturer, dvs under 11so°c._ ' * Sammanfattningsvis kan en ökad slagseghet i sintrade material uppnås genom att anvisningsverkan från porerna reduceras. Detta kan åstadkommas genom smältfassintring, högtemperaturssintring, sintring av ett ferritiskt ma- terial, dubbelpressning och tillsättning av legerings- ämnen med en krympande effekt. 146 10 15 20 25 30 35 5 åšš 2 the rounder pores to increase the impact resistance. Alternatively, a more active sintering can be achieved by the addition of P, _ which also increases strength and ductility as well as rounds; of the pores already at lower sintering temperatures, ie below 110 ° C. In summary, an increased impact strength in sintered materials can be achieved by reducing the instruction effect from the pores. This can be achieved by melt phase sintering, high temperature sintering, sintering of a ferritic material, double pressing and addition of alloying elements with a shrinking effect.

Tillräcklig slagseghet uppnås dock i många fall först genom utnyttjande av en kombination av de ovan angivna åtgärderna och därmed krävs vanligen ett om- fattande och dyrbart processande vid användning av idag kända legeringssystem inom den pulvermetallurgiska tek- niken. Ändamålet med föreliggande uppfinning är därför att åstadkomma ett järnbaserat pulver, vilket förenklar processandet men ändå ger tillräckligt slagsega komponenter genom pulverpressning och sintring.However, in many cases sufficient impact resistance is achieved only by utilizing a combination of the above-mentioned measures, and thus extensive and expensive processing is usually required when using currently known alloy systems in powder metallurgical technology. The object of the present invention is therefore to provide an iron-based powder, which simplifies the processing but still provides sufficiently tough components by powder pressing and sintering.

Det är vidare ett önskemål att enkel pulverpressning kan tillämpas liksom sintring i en bandugn, dvs vid lägre temperaturer än ung ll50°C.It is further desired that simple powder pressing can be applied as well as sintering in a belt furnace, i.e. at lower temperatures than about 150 ° C.

Det har visat sig att detta ändamål kan uppnås medelst ett järnbaserat pulver, vilket förutom Fe inne- fattar Mo och P och där halten av övriga legeringsämnen, hålles på en låg nivå. Utmärkande för detta material är bl a att redan vid sintring under l150°C en slagseg- het uppnås som är högre än den hos idag kända pulver- metallurgiska material, vilka sintrats vid högre tem- peraturer. Materialet har god pressbarhet och förmåga r\ till stor krympning, så att det sintrade materialet får en hög densitet. Vid en och samma densitet har dess- utom materialet enligt uppfinningen en väsentligt högre slagseghet än idag kända pulvermetallurgiska material.It has been found that this object can be achieved by means of an iron-based powder, which in addition to Fe includes Mo and P and where the content of other alloying substances is kept at a low level. Characteristic of this material is, among other things, that even when sintering below 150 ° C, a impact property is achieved which is higher than that of powder metallurgical materials known today, which are sintered at higher temperatures. The material has good compressibility and the ability to shrink greatly, so that the sintered material has a high density. In addition, at one and the same density, the material according to the invention has a significantly higher impact resistance than powder metal metallurgical materials known today.

Den ingående mängden Mo skall ligga i intervallet 10 15 20 25 30 35 468 583 3 0,1-3,5 vikt-%, företrädesvis i intervallet 0,25-2,5 vikt-%. Den ingående mängden P skall vara 0,3¿0,7 vikt-%, företrädesvis 0,35-0,65 vikt-% och allra helst 0,4-0,6 vikt-%. Den ingående mängden av övriga legeringsämnen skall högst vara 0,5 vikt-%. Härvid kan C ingå med högst 0,1 vikt-%, företrädesvis högst 0,07 vikt-%.The constituent amount of Mo should be in the range of 0.1-3.5% by weight, preferably in the range of 0.25-2.5% by weight. The constituent amount of P should be 0.3 ° 0.7% by weight, preferably 0.35-0.65% by weight and most preferably 0.4-0.6% by weight. The constituent amount of the other alloying elements must not exceed 0.5% by weight. In this case, C can be present with a maximum of 0.1% by weight, preferably a maximum of 0.07% by weight.

Pulvret kan framställas genom tillverkning av ett baspulver, som består av rent Fe.eller Fe med Mo i fast lösning. Detta kan framställas som ett vattenatomiserat pulver eller som ett svamppulver. Baspulvret glödgas lämpligen i en reducerande atmosfär för sänkning av halten av föroreningsämnen. Därefter blandas pulvret med P respektive Mo och P och kompakteras till önskad form, varefter sintring sker vid en temperatur, som med fördel kan ligga under ll50°C.The powder can be prepared by making a base powder, which consists of pure Fe or Fe with Mo in solid solution. This can be prepared as a water atomized powder or as a sponge powder. The base powder is suitably annealed in a reducing atmosphere to lower the level of contaminants. The powder is then mixed with P and Mo and P, respectively, and compacted to the desired shape, after which sintering takes place at a temperature which can advantageously be below 115 ° C.

Exempel Ett baspulver av Fe med 1,5 vikt-% Mo framställdes genom vattenatomisering. Därefter tillsattes 0,5 vikt-% P. Provkroppar framställdes genom kompaktering vid tryck i området 4-8 ton/cmz. Provkropparna sintrades vid ll20°C under 30 minuter. Resulterande densiteter och slagsegheter framgår av den övre kurvan i fig 1, där kompakterings- trycket i ton/cm2 utgör parameter. Exempelvis erhölls en slagseghet på 180 J och en densitet av 7,46 g/cm3 vid ett kompakteringstryck på 8 ton/cmz.Example A base powder of Fe with 1.5% by weight of Mo was prepared by water atomization. Then 0.5% by weight of P. was added. Samples were prepared by compaction at a pressure in the range 4-8 tons / cm 2. The specimens were sintered at 120 ° C for 30 minutes. The resulting densities and impact strengths are shown in the upper curve in Fig. 1, where the compaction pressure in tonnes / cm2 is a parameter. For example, an impact strength of 180 J and a density of 7.46 g / cm 3 were obtained at a compaction pressure of 8 tons / cm 2.

En provkropp, som framställdes på samma sätt som ovan beskrivits men med uteslutande av Mo, fick en be- tydligt lägre slagseghet, vilket åskådliggöres av den undre kurvan i fig 1.A specimen, which was prepared in the same manner as described above but excluding Mo, had a significantly lower impact strength, as illustrated by the lower curve in Fig. 1.

Vid högtemperaturssintring krymper materialet mer, vilket ger högre densitet och därmed högre slagseghet.At high temperature sintering, the material shrinks more, which gives higher density and thus higher impact resistance.

Detta åskådliggöres av punkten A på den övre kurvan i fig. 1, som erhölls vid ett presstryck av 6 ton/cmz och sintring vid l250°C under 30 min.This is illustrated by point A on the upper curve in Fig. 1, which was obtained at a compression pressure of 6 tons / cm 2 and sintering at 220 ° C for 30 minutes.

Det skall noteras, att tillsatskombinationen P och Mo resulterar i en högre sintrad densitet jämfört med ett binärt system av Fe och P, även om detta dubbel- 468 583 10 15 20 25 30 4 pressas. Vid en och samma densitet ger dessutom materialet enligt uppfinningen en väsentligt högre slagseghet, vilket sannolikt är att hänföra till en mer aktiv sintring. samt en positiv växelverkan mellan Mo och P.It should be noted that the additive combination P and Mo results in a higher sintered density compared to a binary system of Fe and P, even if this is double-pressed. In addition, at one and the same density, the material according to the invention gives a significantly higher impact strength, which is likely to be attributed to a more active sintering. and a positive interaction between Mo and P.

Ett pulver enligt uppfinningen framställdes med ett innehåll av 1,5 vikt-% Mo samt varierande mängder P i intervallet 0-0,8 vikt-%. Provkroppar framställdes genom komprimering vid 589 MPa och sintring vid l120°C.A powder according to the invention was prepared with a content of 1.5% by weight of Mo and varying amounts of P in the range 0-0.8% by weight. Samples were prepared by compression at 589 MPa and sintering at 120 ° C.

Erhållen slagseghet i J framgår av fig 2. Såsom fig 2 visar uppnås ett maximivärde för P = 0,5 vikt-%, goda värden erhålles inom intervallet 0,3-0,7 vikt-% P, ännu bättre värden inom området 0,35-0,65 vikt-% P och de bästa värdena inom området 0,4-0,6 vikt-% P.The impact strength obtained in J is shown in Fig. 2. As Fig. 2 shows, a maximum value of P = 0.5% by weight is achieved, good values are obtained in the range 0.3-0.7% by weight P, even better values in the range 0, 35-0.65% by weight P and the best values in the range 0.4-0.6% by weight P.

På motsvarande sätt framställdes provkroppar med ett innehåll av 0,5 vikt-% P och ett varierande innehåll inom området 0-4 vikt-% Mo. Provkroppar framställdes genom pressning vid 589 MPa och dessa sintrades vid l120°C. Erhållna värden på slagsegheten framgår av fig 3. Denna figur visar ett användbart intervall på 0,1-3,5 vikt-% Mo och ett föredraget intervall på 0,25-2,5 vikt-% Mo.Correspondingly, specimens were prepared with a content of 0.5% by weight of P and a varying content in the range 0-4% by weight of Mo. Samples were prepared by pressing at 589 MPa and these were sintered at 120 ° C. The values obtained for the impact strength are shown in Fig. 3. This figure shows a useful range of 0.1-3.5% by weight Mo and a preferred range of 0.25-2.5% by weight Mo.

Det är troligt, att de uppnådda resultaten bl a beror på följande. Tillsatsen av P medför att en smält- fas uppnås under sintringen vid en relativt låg tempera- tur, vilket ger en bättre fördelning av P i materialet.It is probable that the results achieved are partly due to the following. The addition of P means that a melting phase is achieved during sintering at a relatively low temperature, which gives a better distribution of P in the material.

P diffunderar in i järnpartiklarna och en viss transfor- mering kommer att ske från austenit till ferrit. Diffu- sionen av Mo kommer därmed att underlättas. Både P och Mo är ferritstabilisatorer och den uppnådda transfor- meringen till ferrit höjer självdiffusionen av Fe. Detta ger en aktiv sintring med krympning och runda porer som följd.P diffuses into the iron particles and some transformation will take place from austenite to ferrite. The diffusion of Mo will thus be facilitated. Both P and Mo are ferrite stabilizers and the achieved transformation to ferrite increases the self-diffusion of Fe. This provides an active sintering with shrinkage and round pores as a result.

Lämpligen ingår P_i form av en fosforförening, företrädesvis järnfosfid, exempelvis Fe3P. 'xSuitably P 2 is in the form of a phosphorus compound, preferably iron phosphide, for example Fe 3 P. 'x

Claims (8)

10 15 20 25 30 468 583 PATENTKRAV10 15 20 25 30 468 583 PATENT REQUIREMENTS 1. Järnbaserat pulver för framställning av slag- sega komponenter genom pulverpressning och sintring, k ä n n e t e c k n a t därav, att pulvret utöver Fe innefattar 0,3-0,7 vikt-% P, 0,1-3,5 vikt-% Mo, och högst 0,5 vikt-% av andra legeringsämnen.Iron-based powder for the production of impact-resistant components by powder pressing and sintering, characterized in that the powder comprises, in addition to Fe, 0.3-0.7% by weight of P, 0.1-3.5% by weight of Mo, and not more than 0.5% by weight of other alloying elements. 2. Pulver enligt patentkravet 1, k ä n n e t e c k - n a t därav, att mängden Mo är 0,25-2,5 vikt-%.Powder according to claim 1, characterized in that the amount of Mo is 0.25-2.5% by weight. 3. Pulver enligt patentkravet l eller 2, k ä n n e - t e c k n a t därav, att mängden P är 0,35-0,65 vikt-%.Powder according to claim 1 or 2, characterized in that the amount P is 0.35-0.65% by weight. 4. Pulver enligt patentkravet l eller 2, k ä n n e - t e c k n a t därav, att mängden P är 0,4-0,6 vikt-%.Powder according to Claim 1 or 2, characterized in that the amount of P is 0.4-0.6% by weight. 5. Pulver enligt något av patentkraven l-4, k ä n - n e t e c k n a t därav, att P ingår i form av en järn- fosfid, företrädesvis Fe3P. P 5.Powder according to one of Claims 1 to 4, characterized in that P is present in the form of an iron phosphide, preferably Fe 3 P. P 5. 6. Pulver enligt något av patentkraven l-51 k ä n - n e t e c k n a t därav, att det innefattar högst 0,1 vikt-% C, företrädesvis högst 0,07 vikt-% C.Powder according to any one of claims 1-51, characterized in that it comprises at most 0.1% by weight of C, preferably at most 0.07% by weight of C. 7. Pulvermetallurgiskt framställd komponent, k ä n - n e t e c k n a d därav, att den utöver Fe innefattar 0,3-0,7 vikt-% P, 0,1-3,5 vikt-% Mo, och högst 0,5 vikt-% av andra legeringsämnen.7. A powder metallurgically manufactured component, characterized in that in addition to Fe it comprises 0.3-0.7% by weight of P, 0.1-3.5% by weight of Mo, and not more than 0.5% by weight. of other alloying elements. 8. Sätt att pulvermetallurgiskt framställa slag- sega stålkomponenter, k ä n n e t e c k n a t därav, att ett järnbaserat pulver utnyttjas, vilket utöver Fe innefattar 0,3-0,7 vikt-% P, företrädesvis 0,35-0,65 vikt-% P, o,1-3,s“vikt-% Mo, företrädesvis 0,25-2,5 vikt-% Mo, och högst 0,5 vikt-% av andra legeringsämnen, att pulvret komprimeras till önskad form samt att press- kroppen sintras.8. A method of powder metallurgically producing slag-resistant steel components, characterized in that an iron-based powder is used, which in addition to Fe comprises 0.3-0.7% by weight of P, preferably 0.35-0.65% by weight of P , o, 1-3, s “% by weight Mo, preferably 0.25-2.5% by weight Mo, and not more than 0.5% by weight of other alloying elements, that the powder is compressed to the desired shape and that the compression body sintras.
SE9002070A 1990-06-11 1990-06-11 YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE SE468583B (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SE9002070A SE468583B (en) 1990-06-11 1990-06-11 YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE
DE69112214T DE69112214T2 (en) 1990-06-11 1991-06-07 IRON BASE POWDER, MIXTURE THEREOF AND PRODUCTION OF THIS MIXTURE.
AT91911997T ATE126461T1 (en) 1990-06-11 1991-06-07 IRON BASE POWDER, MIXTURE THEREOF AND PRODUCTION OF THIS MIXTURE.
ES91911997T ES2075961T3 (en) 1990-06-11 1991-06-07 IRON BASED POWDER, COMPONENT PRODUCED FROM THE SAME AND METHOD TO PRODUCE THE COMPONENT.
EP91911997A EP0533812B1 (en) 1990-06-11 1991-06-07 Iron-based powder, component produced therefrom, and method of producing the component
BR919106546A BR9106546A (en) 1990-06-11 1991-06-07 IRON BASE, COMPONENT PRODUCED FROM THE SAME, AND METHOD FOR PRODUCING THE COMPONENT
CA002084679A CA2084679C (en) 1990-06-11 1991-06-07 Iron-based powder, component produced therefrom, and method of producing the component
JP51115991A JP3280377B2 (en) 1990-06-11 1991-06-07 Iron-based powder, component manufactured therefrom, and method of manufacturing the component
PCT/SE1991/000404 WO1991019582A1 (en) 1990-06-11 1991-06-07 Iron-based powder, component produced therefrom, and method of producing the component
KR1019920703140A KR100189234B1 (en) 1990-06-11 1992-12-08 Iron-based powder, component produced therefrom, and method of producing the component
US08/302,088 US5728238A (en) 1990-06-11 1994-09-06 Iron based powder, component produced therefrom and method of producing the component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9002070A SE468583B (en) 1990-06-11 1990-06-11 YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE

Publications (3)

Publication Number Publication Date
SE9002070D0 SE9002070D0 (en) 1990-06-11
SE9002070L SE9002070L (en) 1991-12-12
SE468583B true SE468583B (en) 1993-02-15

Family

ID=20379728

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9002070A SE468583B (en) 1990-06-11 1990-06-11 YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE

Country Status (10)

Country Link
EP (1) EP0533812B1 (en)
JP (1) JP3280377B2 (en)
KR (1) KR100189234B1 (en)
AT (1) ATE126461T1 (en)
BR (1) BR9106546A (en)
CA (1) CA2084679C (en)
DE (1) DE69112214T2 (en)
ES (1) ES2075961T3 (en)
SE (1) SE468583B (en)
WO (1) WO1991019582A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331938A1 (en) * 1993-09-16 1995-03-23 Mannesmann Ag Molybdenum-containing iron base powder
SE9401823D0 (en) * 1994-05-27 1994-05-27 Hoeganaes Ab Nickel free iron powder
JP4616220B2 (en) * 2006-07-18 2011-01-19 Jfeテクノリサーチ株式会社 Method for producing hollow metal body
JP4641010B2 (en) * 2006-07-25 2011-03-02 Jfeテクノリサーチ株式会社 Hollow metal body
JP6040163B2 (en) * 2010-12-30 2016-12-07 ホガナス アクチボラグ (パブル) Iron powder for powder injection molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE372293B (en) * 1972-05-02 1974-12-16 Hoeganaes Ab
DE2613255C2 (en) * 1976-03-27 1982-07-29 Robert Bosch Gmbh, 7000 Stuttgart Use of an iron-molybdenum-nickel sintered alloy with the addition of phosphorus for the production of high-strength workpieces

Also Published As

Publication number Publication date
KR100189234B1 (en) 1999-06-01
CA2084679C (en) 2003-04-01
BR9106546A (en) 1993-06-01
ATE126461T1 (en) 1995-09-15
DE69112214T2 (en) 1996-01-04
EP0533812B1 (en) 1995-08-16
EP0533812A1 (en) 1993-03-31
JPH05507967A (en) 1993-11-11
KR930700243A (en) 1993-03-13
SE9002070L (en) 1991-12-12
DE69112214D1 (en) 1995-09-21
CA2084679A1 (en) 1991-12-12
SE9002070D0 (en) 1990-06-11
JP3280377B2 (en) 2002-05-13
ES2075961T3 (en) 1995-10-16
WO1991019582A1 (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US4483905A (en) Homogeneous iron based powder mixtures free of segregation
CA2082922C (en) Iron-based powder, component made thereof, and method of making the component
US5784681A (en) Method of making a sintered article
CA2205869C (en) Manganese containing materials having high tensile strength
SE468583B (en) YEAR-BASED POWDER, SHIPPING STEEL COMPONENTS OF THE POWDER AND WERE MADE TO MANUFACTURE THESE
Mocarski et al. Master alloys to obtain premixed hardenable powder metallurgy steels
KR980000713A (en) Powder for low alloy steel production by sinter hardening
EP0779847A1 (en) Iron-based powder containing chromium, molybdenum and manganese
US4702772A (en) Sintered alloy
US5505760A (en) Powder-metallurgical composition having good soft magnetic properties
Lal et al. Effect of phosphorus and silicon addition on the sintered properties of 316L austenitic stainless steel and its composites containing 4 vol% yttria
US5918293A (en) Iron based powder containing Mo, P and C
GB1560626A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JP3658465B2 (en) Iron-based sintered sliding member and manufacturing method thereof
Igharo et al. Development of sintered high speed steel alloys for wear applications
Bertilsson et al. Dynamic Properties of Phosphorous-Alloyed Sintered Steel
Tengzelius et al. Means to improve the dimensional tolerances of PM steel components
Pieczonka et al. Dimensional changes occurring during sintering of Astaloy CrM powder compacts with boron and carbon additions
Heyde et al. Carbon Black as a Carbon Source for Sintered PM-Steels
US3418105A (en) Iron powder for forming sintered articles of improved strength
SU449971A1 (en) Iron Sintered Material
Rodrigues et al. PM high nitrogen martensitic stainless steel produced with nitrided chromium powders
Bergmark Influence of MnS on the fatigue properties of Distaloy AE+ 0. 5% C
Hamiuddin Effect of Sintering Temperatures on Mechanical Properties of Fe—P—Mo Powder Premixes
Ramakrishnan et al. Preparation and evaluation of P/M grade iron powder from cast iron swarf

Legal Events

Date Code Title Description
NAL Patent in force

Ref document number: 9002070-2

Format of ref document f/p: F

NUG Patent has lapsed