SE463397B - PROCEDURE FOR ENRICHMENT OF SULPHID ORE - Google Patents
PROCEDURE FOR ENRICHMENT OF SULPHID OREInfo
- Publication number
- SE463397B SE463397B SE8700828A SE8700828A SE463397B SE 463397 B SE463397 B SE 463397B SE 8700828 A SE8700828 A SE 8700828A SE 8700828 A SE8700828 A SE 8700828A SE 463397 B SE463397 B SE 463397B
- Authority
- SE
- Sweden
- Prior art keywords
- conditioning
- ore
- copper
- flotation
- during
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 230000003750 conditioning effect Effects 0.000 claims description 28
- 238000005188 flotation Methods 0.000 claims description 23
- 238000000227 grinding Methods 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 229910052976 metal sulfide Inorganic materials 0.000 claims 2
- 229910052786 argon Inorganic materials 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 26
- 239000010949 copper Substances 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052725 zinc Inorganic materials 0.000 description 14
- 239000011701 zinc Substances 0.000 description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 238000000926 separation method Methods 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical class [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- JCBJVAJGLKENNC-UHFFFAOYSA-M potassium ethyl xanthate Chemical compound [K+].CCOC([S-])=S JCBJVAJGLKENNC-UHFFFAOYSA-M 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- XOCUXOWLYLLJLV-UHFFFAOYSA-N [O].[S] Chemical compound [O].[S] XOCUXOWLYLLJLV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- -1 copper silica Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910001656 zinc mineral Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
- 235000009529 zinc sulphate Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B1/00—Conditioning for facilitating separation by altering physical properties of the matter to be treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/002—Inorganic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/012—Organic compounds containing sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/02—Froth-flotation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/02—Froth-flotation processes
- B03D1/06—Froth-flotation processes differential
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
465 397 2 - aktiverande reagens, som förstärker samlarens verkan. 465 397 2 - activating reagent, which enhances the action of the collector.
Alla reagensen tillsätts i allmänhet i ett kärl som kallas konditionerare, och som är beläget uppströms flo- tationscellerna, under ett förfarande som kallas konditio- nering.All of the reagents are generally added to a vessel called a conditioner, which is located upstream of the flotation cells, during a process called conditioning.
Tekniken för selektiv separation av malmer genom kon- ditionering-flotation kan endast tillämpas effektivt för malmer vars partiklar är tillräckligt finfördelade, sà att de närvarande mineralerna frigöres. Under malningen, som i allmänhet genomförs i närvaro av en vätskefas och atmo- sfärsluft, àstadkoms nya ytor genom fragmentering av kor- nen. Emellertid har man konstaterat att pá grund av att dessa förfaranden genomföres i atmosfärsluft, blir de genom sönderdelning nyligen bildade ytorna säte för ett antal reaktioner. Pà dessa pà så sätt modifierade ytor kommer de olika reagensen att verka under konditionerings- och flotationsfasen. 7 Vid t ex separation av kopparsulfider, huvudsakligen kopparkis, ur blände möjliggör en okontrollerad bildning av ett kopparsulfidskikt pà ytan av kornen i bländet flo- tation av dessa (aktiveringsfenomen i bländet), trots att bländet inte floteras vid annars för flotation av koppar- kis normala betingelser. För att undertrycka dessa effek- ter tillföres till massan "deaktiveringsmedel", som mot- verkar bildning av kopparsulfidytskikt, t ex ZnS04, S02, NaCN, S2-, varvid varje "deaktiveringsmedel" verkar enligt en särskilt mekanism. Detta krver däremot användning av ganska dyraíreagens och skapar miljöproblem.The technique for selective separation of ores by conditioning flotation can only be applied effectively to ores whose particles are sufficiently atomized so that the minerals present are released. During grinding, which is generally carried out in the presence of a liquid phase and atmospheric air, new surfaces are created by fragmentation of the grains. However, it has been found that because these processes are carried out in atmospheric air, the newly formed surfaces become the site of a number of reactions. On these surfaces modified in this way, the various reagents will act during the conditioning and flotation phase. When separating copper sulphides, mainly copper silica, from the ore, for example, an uncontrolled formation of a copper sulphide layer on the surface of the grains enables floating of these (activation phenomena in the orifice), even though the orifice is not floated otherwise for copper ore flotation normal conditions. To suppress these effects, "deactivating agent" is added to the pulp, which counteracts the formation of copper sulphide surface layers, eg ZnSO 4, SO 2, NaCN, S 2 -, each "deactivating agent" acting according to a special mechanism. However, this requires the use of quite expensive animal reagents and creates environmental problems.
Med hjälp av föreliggande uppfinning àstadkoms ett förfarande av inledningsvis nämnt slag, vilket därutöver har de i det efterföljande patentkravets 1 kännetecknande del angivna särdragen. Föredragna utföringsformer anges i de efterföljande underkraven.By means of the present invention, a method of the kind mentioned in the introduction is achieved, which in addition has the features stated in the characterizing part of the appended claim 1. Preferred embodiments are set out in the appended subclaims.
Med förfarandet enligt uppfinningen undanröjs dessa nackdelar. I detta syfte kännetecknas uppfinningen av att ett malningsförfarande genomförs i inert skydds- atmosfär för undvikande av oxidation av de under detta 3 465 597 förfarande nybildade ytorna, och av att massans redox- potential under konditioneringen hålls huvudsakligen konstant.With the method according to the invention these disadvantages are eliminated. To this end, the invention is characterized in that a grinding process is carried out in an inert protective atmosphere in order to avoid oxidation of the newly formed surfaces during this process, and in that the redox potential of the pulp during the conditioning is kept substantially constant.
Företrädesvis hålls redoxpotentialen konstant genom insprutning av kväve och/eller en oxiderande gas.Preferably, the redox potential is kept constant by injecting nitrogen and / or an oxidizing gas.
Användning av en gasatmosfär av annat slag än luft såväl i malningsanordningen som i konditionerings- anordningen, medger tillförsel till konditionerings- och flotationscellerna av en malm vars yta skiljer sig från det som förekommer under konventionella förfa- randen i luft. Denna gas används för förbättring av separationen malmerna sinsemellan.The use of a gas atmosphere other than air both in the grinding device and in the conditioning device allows the supply to the conditioning and flotation cells of an ore whose surface differs from that which occurs during conventional procedures in air. This gas is used to improve the separation of the ores between them.
En bättre reglering av malnings-, konditionerings- och flotationsförfarandena uppnås sålunda genom åtgärden att noggrannare kontrollera malmytornas oxidationstill- stånd.A better control of the grinding, conditioning and flotation processes is thus achieved by the measure of more accurately controlling the oxidation state of the ore surfaces.
Förutom det faktum att man i vissa fall förfogar över en ytterligare möjlighet att variera en parameter som möjliggör inom teknikens ståndpunkt hittills omöjli- ga separationer, är fördelarna med detta förfarande att man har åstadkommit en förbättrad selektivitet vid separation av malmer, en reduktion av reagensför- brukningen och sålunda en minskning av föroreningar beroende på vätskeformiga utsläpp.In addition to the fact that in some cases there is an additional possibility to vary a parameter which enables hitherto impossible separations in the state of the art, the advantages of this method are that an improved selectivity has been achieved in the separation of ores, a reduction of reagent availability. use and thus a reduction in pollutants due to liquid emissions.
Företrädesvis används inert atmosfär under malningen, varigenom varje oxidationsfenomen hos de nybildade ytorna elimineras eller reduceras kraftigt under detta förfarande. Under det senare konditioneringsförfarandet regleras massans redoxpotential genom insprutning av omväxlande kväve och/eller syre eller kväve och/eller en qasblandning innehållande syre för att erhålla de âV bästa betingelserna för selektiviteten vid separation malmerna.Preferably, an inert atmosphere is used during grinding, whereby any oxidation phenomenon of the newly formed surfaces is eliminated or greatly reduced during this process. During the latter conditioning process, the redox potential of the pulp is controlled by injecting alternating nitrogen and / or oxygen or nitrogen and / or a gas mixture containing oxygen to obtain the best conditions for the selectivity in separating the ores.
En ytterligare fördel är minskningen av förbrukning- en av mald massa (i allmänhet kulor) till följd av minskad korrosion. 463 397 4 Även om i fallet med blände basreaktionen vid dess aktivering är en jonbytesreaktion, menar sökanden att oxidationsmekanismerna därav reglerar utvecklingen, #1 t ex beträffande bildningen av Cu2+-joner, vilka härrör från utlösningen av koppar ur kopparkis, vilken beror på oxidationen därav.An additional advantage is the reduction in the consumption of ground pulp (generally pellets) due to reduced corrosion. 463 397 4 Although in the case of the aperture the base reaction upon its activation is an ion exchange reaction, the applicant believes that its oxidation mechanisms regulate its development, # 1 for example in the formation of Cu .
Användningen i detta bestämda fall av reglerad atmosfär leder till en förbättrad selektivitet vid separation av koppar-zink, medan samtidigt förbruk- ningen av reagens reduceras.The use in this particular case of controlled atmosphere leads to an improved selectivity in the separation of copper-zinc, while at the same time the consumption of reagents is reduced.
Förfarandet enligt föreliggande uppfinning inbegri- per vid våtmalning av malm bibehållande av en inert atmosfär i malningsanordningen genom insprutning av kväve. Vid behov kan denna insprutning likaså äga rum i vatten, som är avsett att tillföras massan i syfte att avlufta denna.The process of the present invention involves in wet grinding of ore maintaining an inert atmosphere in the grinding device by injecting nitrogen. If necessary, this injection can also take place in water which is intended to be supplied to the mass in order to vent it.
Denna inerthet bibehålls under överföringen av massan till konditioneringsanordningen. Under konditio- neringen hålls massans redoxpotential huvudsakligen konstant vid en önskvärd nivå medelst successiva till- sättningar av kväve (i syfte att sänka redoxpotentialen) och syre, eller en oxiderande gas (i syfte att öka densamma). Samma förfarande kan användas vad beträffar flotationen i egentlig bemärkelse.This inertness is maintained during the transfer of the pulp to the conditioner. During conditioning, the redox potential of the pulp is kept substantially constant at a desired level by successive additions of nitrogen (in order to lower the redox potential) and oxygen, or an oxidizing gas (in order to increase it). The same procedure can be used with regard to flotation in the true sense.
Uppfinningen kan generellt sett tillämpas industri- ellt vid behandling av sulfidinnehållande malmer.The invention can generally be applied industrially in the treatment of sulphide-containing ores.
Ett särskilt intressant område är förbättring av selek- tiviteten koppar kontra zink. Uppfinningen hänför sig även tillfbehandling av komplexa svavelinnehållande och svavel-syreinnehållande malmer såsom silver- eller guldinnehållande malmer med svavelinnehållande gångart.A particularly interesting area is the improvement in the selectivity of copper versus zinc. The invention also relates to the treatment of complex sulfur-containing and sulfur-oxygen-containing ores such as silver- or gold-containing ores with sulfur-containing gait.
Föreliggande uppfinning förstås bättre med hjälp ^ av följande utföringsexempel, som dock inte är avsedda att vara begränsande.The present invention will be better understood by means of the following working examples, which, however, are not intended to be limiting.
Försöken har utförts i laboratorium på blandningar av svavelinnehållande koppar- (prov huvudsakligen sammansatta av kopparkis med närvaro av kopparglans .fä Ch CN (N C) *J eller digenit) och zinkmineraler (zinkblände) med hjälp av de ovannämnda förfarandena.The experiments have been carried out in a laboratory on mixtures of sulfur-containing copper (samples composed mainly of copper ice with the presence of copper luster .f. Ch CN (N C) * J or digenite) and zinc minerals (zinc alloy) by means of the above procedures.
Malningsförfarandet: I en kulkvarn mals en provblandning av kopparkis (18 g), zinkblände (32 g) och bränd kalk (1 g) med kvarts (ca 500 g) i närvaro av 250 ml vatten. Förfaran- det varar 50 minuter. Efter malningen erhålls en massa vars fastämnen har ett d50-värde understigande 64 pm och d80-värde understigande 96 pm (dso < 64 pm betyder att minst 50% av fastämnena har en diameter understigande 64 pm, och d80 < 96 pm att minst 80% har en diameter understigande 96 pm).The grinding process: In a ball mill, grind a sample mixture of copper ice (18 g), zinc blend (32 g) and burnt lime (1 g) with quartz (approx. 500 g) in the presence of 250 ml of water. The procedure lasts 50 minutes. After grinding, a pulp is obtained whose solids have a d50 value of less than 64 μm and a d80 value of less than 96 μm (dso <64 μm means that at least 50% of the solids have a diameter of less than 64 μm, and d80 <96 μm that at least 80% has a diameter of less than 96 μm).
Konditioneringsförfarandet: Efter dekantering i konditioneringsanordningen återbringas volymen av den massa som lämnar malningsanord- ningen till 1 liter.Conditioning procedure: After decanting in the conditioning device, the volume of the mass leaving the grinding device is reduced to 1 liter.
Massan konditioneras genom tillsättning av följande reagens vid ett pH~värde av 8,5: samlarreagens : kaliumetylxantat, 70 mg/kg skumbildare : metylisobutylkarbinol, 2 mg/kg Konditioneringstiden bestäms till 15 min.The pulp is conditioned by adding the following reagents at a pH of 8.5: collector reagent: potassium ethyl xanthate, 70 mg / kg foaming agent: methyl isobutylcarbinol, 2 mg / kg The conditioning time is determined to be 15 minutes.
Under konditioneringen bibehålls redoxpotentialen i exempel 2-5 genom reglering av densamma till ett bestämt värde medelst successiva tillsättningar av kväve och syre. I exempel l genomförs ingen insprutning av gas.During conditioning, the redox potential of Examples 2-5 is maintained by controlling it to a certain value by successive additions of nitrogen and oxygen. In Example 1, no injection of gas is performed.
Första flotationen Denna genomförs i en cell av typ DENVER D 12.First flotation This is performed in a cell of type DENVER D 12.
Under denna första flotation utvinns kopparkisen i det koncentrerade floterade materialet som skummats under tre minuter. Det i pumphjulets axel insprutade gasflödet (kväve i exempel 2-5) har en hastighet av 180 1/h. Pumphjulets varvtal är 1200 rpm.During this first flotation, the copper ice is extracted in the concentrated flotated material which has been foamed for three minutes. The gas flow injected into the impeller shaft (nitrogen in Examples 2-5) has a speed of 180 1 / h. The speed of the impeller is 1200 rpm.
Andra konditioneringen Massan aktiveras här genom tillsättning av 0,25 g CuSO4.5 H2 tion av Cu2+ O för flotation av bländet. Tiden för absorp- är bestämd till 5 min. 42: LN Cßl xß *<1 6 Man fortsätter sedan med en andra konditionering med samma samlarreagens och skumbildare som vid den första konditioneringen.Second conditioning The pulp is activated here by adding 0.25 g of CuSO4.5 H2 ion of Cu2 + O to flotate the mixture. The time for absorption is set at 5 min. 42: LN Cßl xß * <1 6 You then continue with a second conditioning with the same collector reagent and foamer as in the first conditioning.
Andra flotationen Under denna flotation måste zinkbländet som aktive- rats under den andra konditioneringen utvinnas. De hydrodynamiska betingelserna är identiska med dem vid den första flotationen.Second flotation During this flotation, the zinc ore activated during the second conditioning must be recovered. The hydrodynamic conditions are identical to those of the first flotation.
EXEMPEL l Malning i luft - Ej reglerad potential i massan under konditione- ringen och flotationen pH 8,5 Tillsättning av 500 g ZnSO4 per ton under den första konditioneringen Koppar Zink Ursprunglig halt (%) Halt i det floterade materialet l (%) Fördelning i det floterade materialet 1 (%) Halt i det floterade materialet 2 (%) Fördelning i det floterande materialet 2 (%) 0,85 11,31 93,77 2,01 27,37 96,48 0,69 0,68 3,11 1,30 I det floterade materia1et,l"påträffades samma proportion mellan koppar och zink som i den ursprungliga malmen, d v s ingen separation hade ägt rum. Detta så kallade referensförsök kânnetecknades av att olika malnings-, konditionerings- och flotationsförfaranden i luft genomfördes, och att redoxpotentialen under konditioneringen inte reglerades.EXAMPLE 1 Grinding in air - Unregulated potential in the pulp during conditioning and flotation pH 8.5 Addition of 500 g ZnSO4 per tonne during the initial conditioning Copper Zinc Initial content (%) Content in the flotated material l (%) Distribution in the floating material 1 (%) Content in the floating material 2 (%) Distribution in the floating material 2 (%) 0.85 11.31 93.77 2.01 27.37 96.48 0.69 0.68 3 In the flotated material, the same proportion between copper and zinc was found as in the original ore, ie no separation had taken place. This so-called reference experiment was characterized by different grinding, conditioning and flotation procedures in air being carried out. , and that the redox potential during conditioning was not regulated.
Under den första konditioneringen tillsattes förutom samlarreagenset (kaliumetylxantat) och skumbilda- ren (metylisobutylkarbinol) en stor mängd zinksulfat 7 465 397 (500 g/ton) för att på så sätt undvika eller dämpa aktivering av zinkbländet.During the first conditioning, in addition to the collector reagent (potassium ethyl xanthate) and the foaming agent (methyl isobutylcarbinol), a large amount of zinc sulfate (46 g / ton) was added to avoid or attenuate activation of the zinc blend.
EXEMPEL 2 OCH 3 - Malning i luft - Massans redoxpotential under konditioneringen reglerades till -350 mV med en standardkalomel- ïelektrod (S.C.E.) genom insprutning av kväve och syre i massan Exempel 2 Koppar Zink Ursprunglig halt (%) 1,03 2,20 Halt i det floterade materialet 1 (%) 8,32 29,72 Fördelning i det floterade materialet 43,65 73,15 1 (%) Halt i det floterade materialet 12,21 15,63 2 (%) Fördelning i det floterade materialet 28,62 17,19 2 (%) En liten ökning av andelen zink i det floterade materialet 1 i förhållande till koppar konstaterades, varvid det motsatta förhållandet rådde i det floterade materialet 2. .2 1 (%) Exempel 3 Å 1 M Koppar Zink I Ursprunglig halt (%) 0,96 2,24 Halt i det floterade materialet l (%) 11,39 31,00 Fördelning i det floterande materialet 76,87 89,64 l (%) Halt i det floterade materialet 8,66 16,46 2 (%) Fördelning i det floterade materialet 8,67 7,66 463 397 8 Dessa försök genomfördes med malning i luft och reglering av redoxpotentialen.EXAMPLES 2 AND 3 - Grinding in air - The redox potential of the pulp during conditioning was regulated to -350 mV with a standard calomel electrode (SCE) by injecting nitrogen and oxygen into the pulp Example 2 Copper Zinc Initial content (%) 1.03 2.20 Content in the flotation material 1 (%) 8.32 29.72 Distribution in the flotation material 43.65 73.15 1 (%) Content in the flotation material 12.21 15.63 2 (%) Distribution in the flotation material 28 , 62 17,19 2 (%) A small increase in the proportion of zinc in the flotated material 1 in relation to copper was found, the opposite ratio prevailing in the flotated material 2. .2 1 (%) Example 3 Å 1 M Copper Zinc I Initial content (%) 0.96 2.24 Content in the flotation material l (%) 11.39 31.00 Distribution in the floating material 76.87 89.64 l (%) Content in the flotation material 8.66 16.46 2 (%) Distribution in the flotated material 8.67 7.66 463 397 8 These experiments were carried out by grinding in air and regulating the redox potential.
Konditioneringsförfarandena genomfördes med reglering av massans potential genom tillsättning av kvävgas eller syrgas såväl som med tillsättning av samlarreagens (kaliumetylxantat) och skumbildare (metylisobuty1- karbinol), såsom tidigare beskrivits. Flotationsförfa- randena genomfördes med insprutning av kväve i pumphjuls- axeln.The conditioning processes were carried out by regulating the potential of the pulp by adding nitrogen or oxygen as well as by adding collector reagents (potassium ethyl xanthate) and foaming agents (methyl isobutylcarbinol), as previously described. The flotation procedures were carried out by injecting nitrogen into the impeller shaft.
Den förväntade selektiviteten vid separation av koppar i förhållande till zink erhölls inte. Samtidigt visade det sig t o m att zink anrikades\i det flotera- de materialet 1. Fördelningarna av koppar och zink förblev i alla fall nästan lika.The expected selectivity in the separation of copper from zinc was not obtained. At the same time, it even turned out that zinc was enriched in the flotated material 1. In any case, the distributions of copper and zinc remained almost the same.
EXEMPEL 4 OCH 5 - Finfördelning i kväve - potential i massan under konditioneringen reglerad till -350 mV med en S.C.E. genom insprutning av kväve och syre - pH = 8,5 Exempel 4 Koppar Zink Ursprunglig halt (%) 0,91 2,02 Halt i det floterade materialet 1 (%) 8,83 6,70 Fördelning i det floterade materialet 59,81 20,63 l (%) Halt i det ffletetaae materialet m2 (t) 7,90 31,12 Fördelning i det floterade materialet 32,25 57,08 2 (%) (i förhållande till ursprungshalten) Man konstaterade att i det floterade materialet l anrikades koppar (förhållandet mellan koppar- och zinkhalten var 1,3 jämfört med 0,45 i den ursprungliga malmen). Man utvann ca 60% koppar och endast 21% zink 9 465 597 vid dessa halter i sligen 1. Man erhöll sålunda en utmärkt separation av zink- och kopparsulfider.EXAMPLES 4 AND 5 - atomization in nitrogen - potential in the mass during conditioning regulated to -350 mV with an S.C.E. by injection of nitrogen and oxygen - pH = 8.5 Example 4 Copper Zinc Initial content (%) 0.91 2.02 Content in the flotated material 1 (%) 8.83 6.70 Distribution in the flotated material 59.81 20.63 l (%) Content in the floating material m2 (t) 7.90 31.12 Distribution in the flotated material 32.25 57.08 2 (%) (in relation to the original content) It was found that in the flotated material copper was enriched (the ratio of copper to zinc was 1.3 compared to 0.45 in the original ore). Approximately 60% of copper and only 21% of zinc were recovered at these levels in scale 1. Thus, an excellent separation of zinc and copper sulfides was obtained.
Exempel 5 Koppar Zink Ursprunglig halt (%) 0,96 2,08 Halt i det floterade materialet l (%) 22,46 17,70 Fördelning i det floterade materialet 48,97 17,84 1 (%) Halt i det floterade materialet 2 (%) 7,46 35,81 Fördelning i det floterade materialet 31,54 69,99 2 (%) Man konstaterade att samma fördelar som i exempel 4 erhölls. Halterna i sligen l var mycket högre än i exempel 4, varvid förhållandet mellan Cu- och Zn-halter- na uppgick till nära 1,3. Man erhöll sålunda en utmärkt separation av zink- och kopparsulfider.Example 5 Copper Zinc Initial content (%) 0.96 2.08 Content in the flotated material 1 (%) 22.46 17.70 Distribution in the flotated material 48.97 17.84 1 (%) Content in the flotated material 2 (%) 7.46 35.81 Distribution in the flotated material 31.54 69.99 2 (%) It was found that the same advantages as in Example 4 were obtained. The levels in sligen 1 were much higher than in Example 4, the ratio between the Cu and Zn levels being close to 1.3. An excellent separation of zinc and copper sulphides was thus obtained.
Dessa försök genomfördes med malning i kväve och reglering av redoxpotentialen.These experiments were performed with milling in nitrogen and regulating the redox potential.
Arbetsgången var samma som i exempel 2 och 3 för konditioneringarna och flotationerna. Malningen genomfördes däremot i kväveatmosfär.The workflow was the same as in examples 2 and 3 for the conditionings and flotations. The grinding, on the other hand, was carried out in a nitrogen atmosphere.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8602784A FR2595058B1 (en) | 1986-02-28 | 1986-02-28 | PROCESS FOR ENRICHMENT OF A SULFUR ORE |
Publications (3)
Publication Number | Publication Date |
---|---|
SE8700828D0 SE8700828D0 (en) | 1987-02-27 |
SE8700828L SE8700828L (en) | 1987-08-29 |
SE463397B true SE463397B (en) | 1990-11-19 |
Family
ID=9332623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE8700828A SE463397B (en) | 1986-02-28 | 1987-02-27 | PROCEDURE FOR ENRICHMENT OF SULPHID ORE |
Country Status (7)
Country | Link |
---|---|
AU (1) | AU593065B2 (en) |
CA (1) | CA1323115C (en) |
ES (1) | ES2004246A6 (en) |
FR (1) | FR2595058B1 (en) |
PT (1) | PT84380B (en) |
SE (1) | SE463397B (en) |
ZA (1) | ZA871336B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPM969194A0 (en) * | 1994-11-25 | 1994-12-22 | Commonwealth Industrial Gases Limited, The | Improvements to copper mineral flotation processes |
AU691358B2 (en) * | 1994-11-25 | 1998-05-14 | Boc Gases Australia Limited | Improvements to base metal mineral flotation processes |
US6210648B1 (en) | 1996-10-23 | 2001-04-03 | Newmont Mining Corporation | Method for processing refractory auriferous sulfide ores involving preparation of a sulfide concentrate |
US6170669B1 (en) | 1998-06-30 | 2001-01-09 | The Commonwealth Of Australia Commonwealth Scientific And Industrial Research Organization | Separation of minerals |
US7219804B2 (en) | 2003-08-26 | 2007-05-22 | Newmont Usa Limited | Flotation processing including recovery of soluble nonferrous base metal values |
RS58143B1 (en) | 2009-12-04 | 2019-02-28 | Barrick Gold Corp | Separation of copper minerals from pyrite using air-metabisulfite treatment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1706293A (en) * | 1929-03-19 | Concentration oe copper ores | ||
US1960459A (en) * | 1932-08-23 | 1934-05-29 | Ruth Company | Method of ore separation |
US4283017A (en) * | 1979-09-07 | 1981-08-11 | Amax Inc. | Selective flotation of cubanite and chalcopyrite from copper/nickel mineralized rock |
GB2086768B (en) * | 1980-03-21 | 1983-02-23 | Inco Ltd | Selective flotation of nickel sulphide ores |
FI65025C (en) * | 1982-11-02 | 1984-03-12 | Outokumpu Oy | FOERFARANDE FOER ATT FLOTATINSANRIKA KOMPLEXA METALLFOERENINGAR |
-
1986
- 1986-02-28 FR FR8602784A patent/FR2595058B1/en not_active Expired - Fee Related
-
1987
- 1987-02-24 ZA ZA871336A patent/ZA871336B/en unknown
- 1987-02-26 AU AU69283/87A patent/AU593065B2/en not_active Ceased
- 1987-02-26 ES ES8700508A patent/ES2004246A6/en not_active Expired
- 1987-02-27 CA CA000530798A patent/CA1323115C/en not_active Expired - Fee Related
- 1987-02-27 PT PT84380A patent/PT84380B/en not_active IP Right Cessation
- 1987-02-27 SE SE8700828A patent/SE463397B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FR2595058A1 (en) | 1987-09-04 |
AU6928387A (en) | 1987-09-03 |
AU593065B2 (en) | 1990-02-01 |
FR2595058B1 (en) | 1992-06-05 |
SE8700828D0 (en) | 1987-02-27 |
PT84380A (en) | 1987-03-01 |
CA1323115C (en) | 1993-10-12 |
ES2004246A6 (en) | 1988-12-16 |
ZA871336B (en) | 1987-09-30 |
SE8700828L (en) | 1987-08-29 |
PT84380B (en) | 1989-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111804440B (en) | Method for regulating and controlling sulfide ore flotation through dissolved oxygen content in ore pulp | |
US10258996B2 (en) | Separation of copper minerals from pyrite using air-metabisulfite treatment | |
CN111804441B (en) | Method for regulating and controlling flotation of high-sulfur iron-containing sulfide ore by adding oxygen producing agent in ore grinding process | |
CN112246445B (en) | Foam sorting activator and application thereof | |
Sun et al. | Separation of sulfide lead-zinc-silver ore under low alkalinity condition | |
CA2299904C (en) | Separation of minerals | |
Conejeros et al. | Novel treatment for mixed copper ores: Leaching ammonia–Precipitation–Flotation (LAPF) | |
Hintikka et al. | Potential control in the flotation of sulphide minerals and precious metals | |
SE463397B (en) | PROCEDURE FOR ENRICHMENT OF SULPHID ORE | |
CA2518047C (en) | Method for controlling oxygen when separating minerals from a slurry | |
CA2116276C (en) | Flotation processes | |
CN112547312B (en) | Flotation method for silver, lead and zinc ores mainly based on sphalerite | |
Uribe-Salas et al. | Metallurgical improvement of a lead/copper flotation stage by pulp potential control | |
CA2498327A1 (en) | Improved recovery of valuable metals | |
US10434521B2 (en) | Differential flotation of sulfide ores for recovering refractory gold | |
Ndoro | Optimisation of the froth flotation process of Chingola refractory ores (CRO) by release analysis | |
US1483270A (en) | Combined sulphidation and flotation of ores, etc. | |
CN114798182B (en) | Activator for improving tennantite floating rate and application method thereof | |
AU775403B2 (en) | Separation of minerals | |
RU2034664C1 (en) | Method for flotation of sulfide zinc bearing ores | |
CN114074030A (en) | Method for separating chalcopyrite and molybdenite by simulated seawater immersion flotation | |
CN116943873A (en) | Sulfide ore surface oxidation degree control system, method and device and flotation system | |
CN115228615A (en) | Lead-zinc oxide ore separation method | |
CN117960365A (en) | Dressing and smelting combined treatment method for copper cobalt oxide ore | |
REFRACTORY et al. | MICROBIOLOGICAL OXIDATION PROCESS FOR RECOVERING MINERAL VALUES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NAL | Patent in force |
Ref document number: 8700828-0 Format of ref document f/p: F |
|
NUG | Patent has lapsed |
Ref document number: 8700828-0 Format of ref document f/p: F |