SE448998B - PROCEDURE FOR PREPARING A MIXTURE OF POLYPROPENE, 1,2-POLYBUTADIA AND POLYETE - Google Patents

PROCEDURE FOR PREPARING A MIXTURE OF POLYPROPENE, 1,2-POLYBUTADIA AND POLYETE

Info

Publication number
SE448998B
SE448998B SE8207488A SE8207488A SE448998B SE 448998 B SE448998 B SE 448998B SE 8207488 A SE8207488 A SE 8207488A SE 8207488 A SE8207488 A SE 8207488A SE 448998 B SE448998 B SE 448998B
Authority
SE
Sweden
Prior art keywords
weight
polypropylene
mixture
temperature
foam
Prior art date
Application number
SE8207488A
Other languages
Swedish (sv)
Other versions
SE8207488D0 (en
SE8207488L (en
Inventor
E Lohmar
Original Assignee
Freudenberg Carl Fa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freudenberg Carl Fa filed Critical Freudenberg Carl Fa
Publication of SE8207488D0 publication Critical patent/SE8207488D0/en
Publication of SE8207488L publication Critical patent/SE8207488L/en
Publication of SE448998B publication Critical patent/SE448998B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

448 998 ha en god seghet och styvhet i ett temperaturomrade från -20 till+l30°C. 448 998 have a good toughness and stiffness in a temperature range from -20 to + 130 ° C.

Plattformade halvfabrikat av denna blandning skall genom användning av vakuumteknik vara omformbara. Den höggradigt fina cellstrukturen och släta ytan hos uppskummade utföringsformer skall inte i nagot hänseende vara sämre än de vid andra kända högvärdiga plastmaterial förekommande.Platformed semi-finished products of this mixture shall be reshapable using vacuum technology. The highly fine cellular structure and smooth surface of foamed embodiments should in no way be inferior to those found in other known high-quality plastic materials.

För detta ändamål avser uppfinningen ett förfarande av det inledningsvis omnämnda slaget, vid vilket den använda blandningen tillsätts 10-50 vikt%, räknat pà polypropenens vikt, lag- eller högtryckspolyeten.To this end, the invention relates to a process of the kind mentioned in the introduction, in which the mixture used is added 10-50% by weight, based on the weight of the polypropylene, of low or high pressure polyethylene.

Den i det föreslagna förfarandet använda blandningen består till övervägande del av polyeten och polypropen, samt en ringare andel av flytande 1,2-polybutadien.The mixture used in the proposed process consists predominantly of polyethylene and polypropylene, as well as a lower proportion of liquid 1,2-polybutadiene.

Den har överraskande nog nya egenskaper, som ligger utanför de specifika egenskaperna hos de använda substanserna. De nya egenskaperna visar sig inte heller i ett mellanomrâde och har såtillvida inte varit förutsebara.Surprisingly, it has new properties, which are outside the specific properties of the substances used. The new properties also do not show up in an intermediate area and have so far not been predictable.

Det föreslagna förfarandet medger framställning av konstruk- tionsdelar med god värmeformbeständighet. För bestämning av värmeform- beständigheten har enligt exempel l en skumplast med en bruttodensitet på 30 kg/m; framställts. Ur denna skumplast utskars en platta med en tjocklek av 10 mm och formades medelst en i handeln vanlig vakuumformningsmaskin till en cylindrisk hatt med en ytterdiameter av 120 mm och en höjd av 60 mm. Denna hatt underkastades en lagring i värme vid ISÜÜC under 24 timmar i en luftgenomströmningsugn, vilket medförde en minskning av diametern av 3,3% samt en minskning av höjden med 4,89”. Jämförbara resultat nåddes med användning av en skumplast med samma bruttodensitet av polypropen.The proposed method allows the production of structural parts with good thermal shape resistance. To determine the thermal resistance, according to Example 1, a foam has a gross density of 30 kg / m 2; produced. From this foam plastic a plate with a thickness of 10 mm was cut out and formed by means of a commercially available vacuum forming machine into a cylindrical cap with an outer diameter of 120 mm and a height of 60 mm. This hat was subjected to heat storage at ISÜÜC for 24 hours in an air flow oven, resulting in a diameter reduction of 3.3% and a height reduction of 4.89 ”. Comparable results were obtained using a foam with the same gross density of polypropylene.

I ett annat försök lagrades det ifrågavarande plattformade plastmaterialet enligt exempel 1 under en tid av 24 timmar vid en temperatur av 1500 i en luftgenomströmningsugn. Krympningen utgjorde omkring 1% i längd- och tvärriktning. Den jämförbara rena polypropenskumplasten uppvisade likaledes en krympning av omkring 1% i längd- och tvärriktning.In another experiment, the flattened plastic material of Example 1 was stored for a period of 24 hours at a temperature of 1500 in an air flow furnace. The shrinkage was about 1% in the longitudinal and transverse direction. The comparable pure polypropylene foam likewise showed a shrinkage of about 1% in the longitudinal and transverse directions.

Anslutande ökades i båda fallen temperaturen till lóüoC. Såväl den rena polypropenskumplasten som den föreslagna skumplasten krympte kraftigt.Subsequently, in both cases the temperature was increased to lóüoC. Both the pure polypropylene foam and the proposed foam shrank sharply.

Härav framgår att värmeformbeständigheten hos det föreslagna plastmaterialet trots avsevärd halt av lâgtryckspolyeten med en mjukningstemperatur pa l30°C i hög grad överensstämmer med den rena polypropenens värmeformbeständighet.It can be seen from this that, despite the considerable content of the low-pressure polyethylene with a softening temperature of 130 DEG C., the thermoformability of the proposed plastic material is very similar to the thermoformability of the pure polypropylene.

Anslutande underkastades skumplastproven enligt exempel l ett torsionssvängningsprov. Härvid visade det_ sig att ett maximum hos dämp- 448 998 dekrementet uppträdde vid 4,1 Hz, TÖ=-40°C (fig. 1). Detta dämprnaximum har varken det rena polypropenskummaterialet (fig. 2) eller den rena läg- tryckspolyetenen (fig. 3).Subsequently, the foam samples of Example 1 were subjected to a torsional oscillation test. Here it was found that a maximum of the attenuation decrement appeared at 4.1 Hz, TÖ = -40 ° C (Fig. 1). This cushioning maximum has neither the pure polypropylene foam material (Fig. 2) nor the pure low-pressure polyethylene (Fig. 3).

Dylika maxíma hos dämpdekrernentet möjliggör bedömning av egenskaperna hos materialen vid laga temperaturer. Det föreslagna plastma- terialet har enligt fig. l en övergangsternperatur vid -lt0° och försprödas sålunda först under denna temperatur, medan rent polypropenskummaterial försprödas redan vid en temperatur pa omkring +7°C. Satillvida är det föreslagna materialet överlägset det rena polypropenskummaterialet i närhe- ten av fryspunkten.Such maximums of the damping decenter enable assessment of the properties of the materials at low temperatures. According to Fig. 1, the proposed plastic material has a transition temperature at -lt0 ° and is thus embrittled only below this temperature, while pure polypropylene foam material is already embrittled at a temperature of about + 7 ° C. To that extent, the proposed material is superior to the pure polypropylene foam material in the vicinity of the freezing point.

I figurerna 4 och 5 visas dämpförhallandet hos de olika materialen som funktion av temperaturen. Kurvan A i fig. 4 visar dämpförhàllandet hos en skummaterialkropp av blandningen enligt exempel 1, kurvan B i fig. li dämpförhàllandet hos en jämförelsekropp med identiska dimensioner och samma bruttodensitet av ren polypropen. Förloppet hos de bada kurvorna är ' nära nog identiskt. Ett kraftigt fall uppträder först ovanför en temperatur av 1so°c.Figures 4 and 5 show the attenuation ratio of the different materials as a function of temperature. Curve A in Fig. 4 shows the attenuation ratio of a foam material body of the mixture according to Example 1, curve B in Fig. 1 shows the attenuation ratio of a comparison body with identical dimensions and the same gross density of pure polypropylene. The course of the two curves is almost identical. A sharp fall first occurs above a temperature of 1000 ° C.

Vid jämförelsekroppen av oskummad lagtryckspolyeten uppträder 'ett tendensiellt jämförbart fall redan vid en temperatur av IBOOC (fig. 5).In the comparative body of unfoamed low pressure polyethylene, a tendency comparable case occurs already at a temperature of IBOOC (Fig. 5).

Vid användning av làgtryckpolyeten som tillsatsmaterial i den föreslagna blandningen kan den erforderliga nätbildarmängden (peroxidhalt respektive stràldos) minskas med 10 till 20%, jämfört med en tillsats av högtryckpolyeten. Även ur ekonomisk synpunkt har urvalet sålunda en speciell betydelse.When using low pressure polyethylene as an additive in the proposed mixture, the required amount of mesh (peroxide content and radiation dose) can be reduced by 10 to 20%, compared with an addition of high pressure polyethylene. Also from an economic point of view, the selection thus has a special significance.

Det föreslagna förfarandet lämpar sig också för framställning av nätbildande, oskummade polyolefinmaterial. Dessa kan företrädesvis vidare- bearbetas till bärande konstruktionselernent. De utmärker sig i temperatur- omradet mellan -40 och +l50°C för egenskaper, som gör att de framträder markerat överlägsna de kända polyolefinmaterialen.The proposed process is also suitable for the production of net-forming, foamed polyolefin materials. These can preferably be further processed into load-bearing construction elements. They are distinguished in the temperature range between -40 and + 150 ° C for properties, which make them appear markedly superior to the known polyolefin materials.

Föremalet för föreliggande uppfinning framgår ytterligare av de följande exemplen: Exempel l 66,3 viktdelar lagtryckpolypropen (smältindex 230 / 59/10 min 10) och 18,7 viktdelar lagtryckpolyeten (smältindex 190 / 2,16 g/l0 min li,6;p=0,927-0,929 g/cm; och l5 viktdelar azodikarbonamid blandas i en dubbelsnäokpress med 5,5 viktdelar polybutadien (molekylvikt 3000, 1,2 halt 90 vikt-%). Masstemperaturen vid blandningen hålls vid 175-l85°C. Den i II 448 998 strängpressen homogeniserade blandningen formas med ett bredslitsmun- stycke till en materialbana och underkastas i anslutning därtill en nätbildning med elektronstralar i en ytdos av 7 Mrad.The object of the present invention is further illustrated by the following examples: Example 1 66.3 parts by weight of low pressure polypropylene (melt index 230 / 59/10 min 10) and 18.7 parts by weight of low pressure polyethylene (melt index 190 / 2.16 g / 10 min 11.6; p; = 0.927-0.929 g / cm 3 and 15 parts by weight of azodicarbonamide are mixed in a double snow compressor with 5.5 parts by weight of polybutadiene (molecular weight 3000, 1.2 content 90% by weight) The mass temperature of the mixture is maintained at 175-185 ° C. 448 998 the homogenized mixture of the extruder is formed with a wide slit nozzle into a web of material and is subsequently subjected to a mesh formation with electron beams in a surface dose of 7 Mrad.

Den pa detta sätt förnätade produkten transporteras därefter pa ett silband och uppskummas. Uppehallstiden i ugnen utgör 8 min vid en temperatur av ZISOC. Den bildade skumplastplattan har homogen cellstruktur och en densitet av 3D kg/mj.The product crosslinked in this way is then transported on a sieve belt and foamed. The residence time in the oven is 8 minutes at a temperature of ZISOC. The formed foam plastic plate has a homogeneous cell structure and a density of 3D kg / mj.

Gelandelen hos materialet bestäms pa följande sätt i kokande xylen: 1 g material kokas under 5 min i 100 ml xylen, filtreras och tvättas tre ganger med varje gang 50 ml het xylen. Efter 16 timmars torkning av det olösliga filtratet vid l05°C bestäms gelandelen hos det använda materialet genom Vägning av det olösliga filtratet. Gelandelen utgör 67% Provresultaten för materialet framgar av "figurerna l och 4, varvid i den sistnämnda referenskurvan är kurvan A.The gel portion of the material is determined as follows in boiling xylene: 1 g of material is boiled for 5 minutes in 100 ml of xylene, filtered and washed three times with 50 ml of hot xylene each time. After 16 hours of drying the insoluble filtrate at 105 ° C, the gel content of the material used is determined by weighing the insoluble filtrate. The gel part constitutes 67%. The test results for the material are shown in Figures 1 and 4, the latter reference curve being curve A.

Exempel 2 85 viktdelar lågtryckpolypropen (smältindex 230/5 g/ 10 min = lÜ) och 15 viktdelar azodikarbonamid blandas i en dubbelsnäcksträngpress med 5,6 viktdelar polybutadien (rnolekylvikt 3000, 1,2 halt 9091:). Masstemperatu- ren vid blandningen inställs pä l75-l85°C. Den i strängpressen homogenisera- de blandningen formas med ett bredslitsmunstycke till en materialbana och förnätas med elektronstralar med en ytdos av 8 Mrad. Den förnätade produkten transporteras pa ett silband genom en luftugn och uppskummas därvid. Uppehallstiden utgör 8 min vid en temperatur av ZlSOC. Den erhållna skumplastbanan har en homogen cellstruktur och en densitet av 30 kg/m3.Example 2 85 parts by weight of low pressure polypropylene (melt index 230/5 g / 10 min = 10) and 15 parts by weight of azodicarbonamide are mixed in a double-screw extruder with 5.6 parts by weight of polybutadiene (molecular weight 3000, 1.2 content 9091 :). The mass temperature of the mixture is set at 175-85 ° C. The mixture homogenized in the extruder is formed with a wide slit nozzle into a web of material and crosslinked with electron beams with a surface dose of 8 Mrad. The crosslinked product is transported on a screen belt through an air oven and thereby foamed. The residence time is 8 minutes at a temperature of ZlSOC. The resulting foam web has a homogeneous cell structure and a density of 30 kg / m 3.

Provresultaten för denna skumplast framgar av figurerna 2 och 4, i sistnämnda diagram är kurvan B referenskurva.The test results for this foam are shown in Figures 2 and 4, in the latter diagram the curve B is the reference curve.

Skillnaderna mellan de bada produkterna enligt exempel l och exempel 2 framgar klart. Skummaterialet enligt uppfinningen visar vid -QÛOC en övergangspunkt, som föreligger vare sig för ren polypropen (fig. 1 eller för ren lagtryckpolyeten (fig. 3).The differences between the bath products according to Example 1 and Example 2 are clear. The foam material according to the invention shows at -QÛOC a transition point, which is present neither for pure polypropylene (Fig. 1 nor for pure low-pressure polyethylene (Fig. 3).

Detta resultat bekräftas av de ytterligare exemplen.This result is confirmed by the additional examples.

Exempel 3 74,3 viktdelar polypropen (smältindex 230/5 g/l0 min = 10) och 20,7 viktdelar lagtryckpolyeten (smältindex l90/2,l6 g/l0 min = 4,6;/I = 0,927-0,929 g/cmz) och 5 viktdelar azodikarbonamid blandas i en dubbelaxel- strängpress med 5,3 vikt% polybutadien (molekylvikt 3000; 1,2 halt 90 viktfšb) och vidarebearbetas som i exempel 1. 448 998 Det erhållna skummaterialet har en bruttodensítet av 75 kg/m3.Example 3 74.3 parts by weight of polypropylene (melt index 230/5 g / 10 min = 10) and 20.7 parts by weight of low pressure polyethylene (melt index l90 / 2, 16 g / 10 min = 4.6; / I = 0.927-0.929 g / cm 2 ) and 5 parts by weight of azodicarbonamide are mixed in a double-axis extruder with 5.3% by weight of polybutadiene (molecular weight 3000; 1.2 content 90 wt.%) and further processed as in Example 1. 448 998 The resulting foam material has a gross density of 75 kg / m3.

Gelandelen utgör 69%.The gel portion is 69%.

Det logarítmiska dämpdekrementet enligt DIN 53445 framgår av fig. 6.The logarithmic attenuation decrement according to DIN 53445 is shown in Fig. 6.

Exemgel 4 95 viktdelar polypropen (smältindex 230/5 g/ 10 min = 10) och 5 viktdelar azodikarbonamid blandas i en dubbelaxelsträngpress med 5,3 víkt% polybutadien (molekylvikt 3000; 1,2 halt 90 ViktU/fi) och vidarebearbetas som i exempel 2. ' Det erhållna skummaterlalet har en bruttodensltet av 80 kg/m3.Example gel 4 95 parts by weight of polypropylene (melt index 230/5 g / 10 min = 10) and 5 parts by weight of azodicarbonamide are mixed in a double-axis extruder with 5.3% by weight of polybutadiene (molecular weight 3000; 1.2 content 90% by weight / fi) and further processed as in Example 2. The foam material obtained has a gross density of 80 kg / m3.

Gelandelen är 70%.The gel part is 70%.

Det logaritmlska dämpdekrementet enligt DIN 53445 framgår av fig. 7. 'The logarithmic attenuation decrement according to DIN 53445 is shown in Fig. 7. '

Claims (1)

1. 448 998 PATENTKRAV Förfarande för framställning av en polypropen innehållande, nät- bildande och eventuellt uppskummad blandning, vid vilken polypropen och 2- 20%, räknat på polypropenens vikt, av LZ-polybutadíen med en molekylvikt av 3500-10000 samt eventuellt ett nätbildnings- och/eller uppskumningsmedel blandas vid en temperatur under nätbildnings- respektive uppskumníngsmed- lets sönderdelningstemperatur och brlngas i önskad form och anslutande underkastas en behandling med energirik strålning i en dos av 0,5-20 Mrad och/under uppvärmning i en ugn för nätbildning och eventuell uppskumning, k ä n n e t e c k n a t därav, att den använda blandningen tillsätts lâg- eller högtryckpolyeten i en mängd av 10-50 vikt%, räknat pà polypropenens vikt. IJ'A process for the preparation of a polypropylene-containing, net-forming and optionally foamed mixture, in which polypropylene and 2-20%, by weight of polypropylene, of LZ-polybutadiene having a molecular weight of 3500-10000 and optionally a mesh formation and / or foaming agent is mixed at a temperature below the decomposition temperature of the meshing and foaming agent, respectively, and burned in the desired form and subsequently subjected to a treatment with high-energy radiation in a dose of 0.5-20 Mrad and / while heating in an oven for meshing and any foaming, characterized in that the mixture used is added to low or high pressure polyethylene in an amount of 10-50% by weight, based on the weight of polypropylene. IJ '
SE8207488A 1982-01-21 1982-12-29 PROCEDURE FOR PREPARING A MIXTURE OF POLYPROPENE, 1,2-POLYBUTADIA AND POLYETE SE448998B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19823201683 DE3201683C1 (en) 1982-01-21 1982-01-21 Process for the preparation of a mixture containing propylene

Publications (3)

Publication Number Publication Date
SE8207488D0 SE8207488D0 (en) 1982-12-29
SE8207488L SE8207488L (en) 1983-07-22
SE448998B true SE448998B (en) 1987-03-30

Family

ID=6153502

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8207488A SE448998B (en) 1982-01-21 1982-12-29 PROCEDURE FOR PREPARING A MIXTURE OF POLYPROPENE, 1,2-POLYBUTADIA AND POLYETE

Country Status (5)

Country Link
BE (1) BE895581A (en)
DE (1) DE3201683C1 (en)
FR (1) FR2519991B1 (en)
GB (1) GB2116987B (en)
SE (1) SE448998B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1252388B (en) * 1991-11-12 1995-06-12 Sviluppo Settori Impiego Srl PROPYLENE POLYMERS AND COPOLYMERS SEAMED WITH VINYL POLYBUTADIENE AND PREPARATION PROCEDURE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1800241A1 (en) * 1968-10-01 1970-05-14 Basf Ag Polypropylene molding compounds with improved stiffness
JPS5128114B2 (en) * 1971-11-12 1976-08-17
NL7403332A (en) * 1973-03-13 1974-09-17
JPS51132256A (en) * 1975-04-30 1976-11-17 Japan Synthetic Rubber Co Ltd Thermoplastic composition
DE2839733C2 (en) * 1978-09-13 1980-07-17 Fa. Carl Freudenberg, 6940 Weinheim Process for the production of cross-linked) u.gf. foamed polypropylene
JPS5540739A (en) * 1978-09-18 1980-03-22 Kanegafuchi Chem Ind Co Ltd Foamed polypropylene resin article and its manufacturing

Also Published As

Publication number Publication date
FR2519991A1 (en) 1983-07-22
FR2519991B1 (en) 1986-12-26
GB2116987A (en) 1983-10-05
DE3201683C1 (en) 1983-07-21
BE895581A (en) 1983-05-02
SE8207488D0 (en) 1982-12-29
GB2116987B (en) 1985-05-30
SE8207488L (en) 1983-07-22
GB8301531D0 (en) 1983-02-23

Similar Documents

Publication Publication Date Title
DE102015225454B4 (en) Polyolefin resin composition having excellent expandability and properties for direct metallization, and injection molded article manufactured by foam injection molding thereof.
CA2028147A1 (en) Oriented porous films
DE2222960C3 (en) Manufacture of microporous, open-cell polymer products
DE68911963T2 (en) Propylene resin foam particle and molded foam article.
DE60224372T2 (en) ETHEN POLYMER MIXTURES WITH IMPROVED MODULUS AND MELTING STRENGTH AND OBJECTS MANUFACTURED FROM THESE MIXTURES
KR100580802B1 (en) Process for making foam articles having good low temperature toughness from high melt strength propylene polymer materials
SE448998B (en) PROCEDURE FOR PREPARING A MIXTURE OF POLYPROPENE, 1,2-POLYBUTADIA AND POLYETE
SE446456B (en) PROCEDURE FOR THE MANUFACTURING OF FOUNDED AND EVEN FOAMED HIGH PRESSURE AND LOW PRESSURE POLYPROPENES
JP3694380B2 (en) Polyolefin foam particles
DE69931138T2 (en) Pre-expanded polypropylene resin particles and process for producing a molded article thereof by foaming in the mold
JPH062841B2 (en) Porous permeable polyethylene film
DE1803979A1 (en) Foamable polystyrene masses for the injection molding process, injection mold bodies and processes for their production
JP2024506674A (en) Expanded beads containing high melt strength polypropylene
EP0953964B1 (en) Foam-molded sound-absorbing articles
DE69929000T2 (en) Foamable and vulcanizable polyolefin resin composition, polyolefin resin foam and process for its preparation
JPH0668864A (en) Separator for battery
JP2663559B2 (en) Radiation-crosslinked polyolefin resin foam and method for producing the same
JPH0218224B2 (en)
JPH0257577B2 (en)
KR101928927B1 (en) Olefin block copolymer foam particle with excellent impact resistance
CN111363240B (en) High-foaming-ratio polypropylene foam material and preparation method thereof
JPH0257576B2 (en)
JPS5949243A (en) Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same
JPS6055290B2 (en) Method for manufacturing polyethylene foam
JPS636582B2 (en)

Legal Events

Date Code Title Description
NAL Patent in force

Ref document number: 8207488-1

Format of ref document f/p: F