SE187328C1 - - Google Patents

Info

Publication number
SE187328C1
SE187328C1 SE187328DA SE187328C1 SE 187328 C1 SE187328 C1 SE 187328C1 SE 187328D A SE187328D A SE 187328DA SE 187328 C1 SE187328 C1 SE 187328C1
Authority
SE
Sweden
Prior art keywords
titanium
autoclave
aluminum
alloy
halogen
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE187328C1 publication Critical patent/SE187328C1/sv

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Uppfinnare: G Natta, G Mazzanti och P Longi Prioritet begard Iran den 15 juli 1955 (Holten) Framstallningen av lampliga katalysatorer for bildning av lineara hOgmolekylara polymerisat med regelbunden struktur ur a-olefiner genom omsattning av titanhalogenider med aluminiumalkylfOreningar eller med aluminiumlegeringar, isynnerhet aluminium-magnesiumlegeringar, ha redan beskrivits. Inventors: G Natta, G Mazzanti and P Longi Priority requested Iran on 15 July 1955 (Holten) The preparation of suitable catalysts for the formation of linear high molecular weight polymers with regular structure from α-olefins by reacting titanium halides with aluminum alkyl compounds or with aluminum alloys, in particular magnesium alloys, have already been described.

Anvandningen av aluminiumalkylfOreningar medfor emellertid i praktiken vissa svarighater, eftersom dessa foreningar aro mycket lattoxiderade, sa att de antandas, och bade i forsokslaboratorier och i forsoksanlaggningar, vid vilka aluminiumalkylforeningar anvants flir framstallning av sadana katalysatorer, ha redan manga olyckor intraf fat. Vid reduktion av titanhalogeniderna med aluminium-magnesiumlegeringar kan man undvika anvandningen av de farliga aluminiumalkylforeningarna. En nackdel ar emellertid, att de bildade polymerisaten knappast aro kristalliniska. Oin sma mangder ieke omsatt titantetraklorid kvarblir efter omsattningen, bildas oljeartade flytande polymerisat, liknande dem som erhallas med Friedel-Grafts-katalysatorer. However, the use of aluminum alkyl compounds in practice entails certain responsibilities, since these compounds are very easily oxidized, so that they ignite, and both in test laboratories and in test plants, in which aluminum alkyl compounds are used for the production of such catalysts, many accidents have already occurred. By reducing the titanium halides with aluminum-magnesium alloys, the use of the dangerous aluminum alkyl compounds can be avoided. A disadvantage, however, is that the polymers formed are hardly crystalline. No small amounts of unreacted titanium tetrachloride remain after the reaction, oily liquid polymers are formed, similar to those obtained with Friedel-Grafts catalysts.

Det har visat sig att for framstallning av kristalliniska polymerisat ur a-olefiner lampliga katalysatorer erhallas, om man omsatter titanlegeringar, isynnerhet aluminium-titanlegeringar, med foreningar med den allmanna formeln RX, dar X betyder halogen och R betyder en alkyl- eller aralkylrest. Det Er mojligt att omsatta organiska halogenider med aluminium-titanlegeringar och erhalla reaktionsbenfigna foreningar av icke noggrant bestamd struktur (i vilka aluminium och titan sannolikt aro bundna vid kolatomer), vilka kunna anvandas som katalysatorer vid polymerisationen av a-olefiner till i huvadsak lineara hogmolekylara polymerisat med regelbunden struktur. It has been found that suitable catalysts for the preparation of crystalline polymers from α-olefins are obtained by reacting titanium alloys, in particular aluminum-titanium alloys, with compounds of the general formula RX, where X represents halogen and R represents an alkyl or aralkyl radical. It is possible to react organic halides with aluminum-titanium alloys and to obtain reactive compounds of a precisely defined structure (in which aluminum and titanium are likely to be bonded to carbon atoms), which can be used as catalysts in the polymerization of α-olefins to substantially linear high molecular weight polymeric polymers. with regular structure.

Dupl. kl. 39 c: 25/01 Detta ron dr i alla hanseenden overraskande, eftersom det tidigare varit kant, att metalliskt titan kan reagera med alkylhalogenider eller med aluminiumhalogeniderna eller aluminium-alkylhalogeniderna, som bildas genom omsattning av aluminium (det starkast elektropositiva elementet i de anvanda legeringama) med alkylhalogeniderna. Det kunde ej heller forutses, att organiska titanfOreningar bildas vid de enligt uppfinningen anvanda reaktionsbetingelserna. Sfivitt tidigare var kant arc sadana foreningar t. o. m. vid ga temperaturer ytterst instabila, sasom framgar av publikationerna av Hermann och Nelson (J. Amer. Chem. Soc. 74 (1952) 2693 och 75 (1953) 3877, 3882) betraffande titantrihalogenid-monoalkylforeningar och titantrialkoholat-monoalkylforeningar, vilka enligt ett all-mint forfarande for framstallning av metallalkylforeningar framstalles genom omsattning av titantetrahalogenider eller -tetraalkoholat med Grignard-foreningar eller litiumarylforeningar vid mycket laga temperaturer. Genom iakttagelsen, att det ãr mOjligt att omsatta det I aluminium-titanlegeringar ingaende titanet med alkylhalogenider, kom man fram till forfarandet enligt uppfinningen enligt vilket katalysatorer for olefinpolymerisationen framstallas genom oxidation av titan sadant det 10- religger i de anvanda legeringarna till titanderivat, i vilka metallen uppvisar hogre valenser (elementet i metallstadium anses harvid ha valensen noll), medan titanforeningar vid de tidigare kanda forfarandena for framstallfling av sadana katalysatorer reduceras. Dupl. at 39 c: 25/01 This is surprising in all respects, since there has previously been an edge that metallic titanium can react with alkyl halides or with the aluminum halides or aluminum alkyl halides formed by the reaction of aluminum (the strongest electropositive element in the alloys used). ) with the alkyl halides. Nor could it be predicted that organic titanium compounds would be formed under the reaction conditions used according to the invention. As before, edge compounds of such compounds, even at high temperatures, were extremely unstable, as evidenced by the publications of Hermann and Nelson (J. Amer. Chem. Soc. 74 (1952) 2693 and 75 (1953) 3877, 3882) concerning titanium trihalide monoalkyl compounds and titanium trialcoholate monoalkyl compounds which, according to a general process for the preparation of metal alkyl compounds, are prepared by reacting titanium tetrahalides or tetraalcoholates with Grignard compounds or lithium aryl compounds at very low temperatures. By observing that it is possible to react the titanium-containing aluminum titanium alloy with alkyl halides, it has been found that the process of the invention according to which catalysts for the olefin polymerization are prepared by oxidizing titanium so that the 10 alloys used in the titanium derivatives in which the metal exhibits higher valencies (the metal stage element is considered to have zero valence), while titanium compounds in the prior art processes for producing such catalysts are reduced.

I den belgiska patentskriften 538 782 beskrivas katalysatorer, vilka framstallas ur titantetraklorid och magnesium-aluminiumlegeringar. Fran dessa, katalysatorer skilj a sig de enligt uppfhmingen framstallda katalysatorer- 2— 1— na ytterligare darigenom, att de vid polymerisationen ge produkter, som aro rikare pa kristalliniska polymerisat. Belgian Pat. No. 538,782 describes catalysts which are prepared from titanium tetrachloride and magnesium-aluminum alloys. From these catalysts, the catalysts prepared according to the invention differ further in that in the polymerization they give products which are richer in crystalline polymers.

Omsattningen enligt uppfinningen mellan legering och alkylhalogenid forloper lattare, om legeringen foreligger mycket finfordelad och darigenom uppvisar en stor yta. Legeringens yta skall dessutom vara sa oxidfri som mojligt. Man anvander darfor som legeringar i fint tillstand legeringar, som exempelvis erUnits genom mekanisk malning i en syrgasfri atmosfar eller genom insprutning av small legering i en inert gasatmosfar. Enligt uppfinningen anvandas i synnerhet mekaniskt malda legeringar, varvid legeringen foretradesvis under malningen i en kvarn, ur vilken all syrgas avlagsnats i forvag, omsattes med alkylhalogeniden. The reaction according to the invention between alloy and alkyl halide proceeds more easily, if the alloy is very finely divided and thereby has a large surface area. The surface of the alloy must also be as oxide-free as possible. Alloys in the fine state are therefore used as alloys which have been formed, for example, by mechanical grinding in an oxygen-free atmosphere or by injecting small alloys into an inert gas atmosphere. According to the invention, mechanically ground alloys are used in particular, the alloy preferably being reacted with the alkyl halide during the milling in a mill, from which all oxygen has been removed in advance.

Legeringar anvandas, 1 vilka forhallandet mellan titanatomer och aluminiumatomer, dvs. forhallandet Ti: Al varierar mellan 1: 1,2 och 1: 9. Alloys are used, in which the ratio between titanium atoms and aluminum atoms, i.e. the ratio Ti: Al varies between 1: 1.2 and 1: 9.

De basta resultaten ha erhallits med legeringar, vid vilka forhallandet Ti: Al varit 1: 3. Som alkylhalogenider ha isynnerhet anvants bromider och klorider. Vid for ovrigt lika betingelser vid forfarandet ha de basta resultaten erhallits vid anvandning av klorider, isynnerhet etylklorid. De erhallna produkterna innehallo aluminium- och titanforeningar, vilka sanderdelas av vatten under bildning av mat-fade kolvaten. Polymerisationen av a-olefiner med dessa katalysatorer forloper praktiskt som polymerisationen i narvaro av katalysatorer av aluminiumalkylforeningar och titansalter. De efter sanderdelning av katalysatorerna erhallna produkterna kunna pa kant satt renas, antingen genom enkel tvattning eller genom behandling med syror och svallande losningsmedel. I det senare fallet kan polymerisatet darefter koaguleras fullstandigt med metanol. Det har emellertid i praktiken visat sig Tara wart att ur polymerisatet avlagsna sma mangder av legeringen, isynnerhet metalliskt titan, som bildas vid den ofullstandiga omsattningen mellan legering och halogenid under framstallningen av katalysatorerna. Denna nackdel kan overvinnas, om man efter framstallningen av katalysatorerna avdekanterar den icke omsatta legeringen ur en suspension av katalysatorn i en inert organisk vatska (jfr exempel 2). Det erhallna polymerisatet kan da lattare renas och innehaller ej langre nagon metall. The best results have been obtained with alloys in which the ratio Ti: Al has been 1: 3. Bromides and chlorides have been used in particular as alkyl halides. Under otherwise similar conditions in the process, the best results have been obtained with the use of chlorides, in particular ethyl chloride. The resulting products contained aluminum and titanium compounds, which are sand-divided by water to form fed-fed carbonates. The polymerization of α-olefins with these catalysts proceeds practically as the polymerization in the presence of catalysts of aluminum alkyl compounds and titanium salts. The products obtained after sand division of the catalysts can be purified on the edge, either by simple washing or by treatment with acids and swelling solvents. In the latter case, the polymer can then be completely coagulated with methanol. In practice, however, it has been found that small amounts of the alloy, in particular metallic titanium, are formed from the polymer, which is formed during the incomplete conversion between alloy and halide during the preparation of the catalysts. This disadvantage can be overcome if, after the preparation of the catalysts, the unreacted alloy is decanted from a suspension of the catalyst in an inert organic liquid (cf. Example 2). The resulting polymer can then be more easily purified and no longer contains any metal.

Uppfinningen forklaras genom foljande exempel, dar alla procenthalter hanfora sig till vikt, savitt ej annat speciellt anges, och alla temperaturer arc angivna i °C. The invention is explained by the following examples, in which all percentages are by weight unless otherwise indicated, and all temperatures are given in ° C.

Exempel 1. 10 g ay en aluminium-titanlegering med en halt av 37,2 % titan (atomforhallande Ti: Al = 1: 3), som malts i farvag under kvavgas, infordes under kvavgas i en roterande autoklav med en kapacitet av orakring 2 liter, vilken verkade som kulkvarn och innehall 12 kulor av rostfritt stal med en diameter av 25 mm. Darefter insprutades 35 g etylklorid i autoklaven. Blandrtingen maldes vid en temperatur av 0 Over natten och darefter avlagsnades den kvarvarande etylkloriden vid ett vakuum av 20 mm fullstandigt. Darefter tillsattes 600 ml n-heptan och omedelbart darefter infordes i autoklavens etylen till ett tryck av 30 atmosfarer. Temperaturen steg spontant till 103°, medan trycket hastigt foll till 20 atmosfarer. Genom ytterligare etylen bringades trycket ater till 30 atmosfarer och detta forfarande upprepades flera ganger, medan temperaturen forblev vid 1000, utan att autoklaven varmdes ytterligare. Omkring 7 timmar efter forfarandets borjan avslutades etylentillforseln, autoklaven kyldes, den kvarvarande gasen avleddes och reaktionsprodukten, vilken bestod av en nastan vit pulverformig massa, uttogs. Polymerisatet renades atminstone partiellt frau de oorgarriska produkterna genom suspension I van m metanol, som surgjorts med saltsyra, samt avskildes genom filtrering, tvattades med metanol och torkades 1 vakuum i varme. Pa detta satt erholls 570 g polyetylen, vilken pa rantgenbilden visade sig hagkristallinisk oda hade en gransviskositet i tetrahydronaftalin vid 135° av 0,80 (pois) och en molekylvikt av 23000. Example 1. 10 g of an aluminum-titanium alloy with a content of 37.2% titanium (atomic ratio Ti: Al = 1: 3), which was ground in color under nitrogen, was introduced under nitrogen into a rotating autoclave with a capacity of ora ring 2 liters, which acted as a ball mill and contained 12 balls of stainless steel with a diameter of 25 mm. Then 35 g of ethyl chloride were injected into the autoclave. The mixture was ground at a temperature of 0 overnight and then the remaining ethyl chloride was completely deposited at a vacuum of 20 mm. Then 600 ml of n-heptane were added and immediately afterwards the ethylene of the autoclave was introduced to a pressure of 30 atmospheres. The temperature rose spontaneously to 103 °, while the pressure rapidly rose to 20 atmospheres. Through additional ethylene, the pressure was brought back to 30 atmospheres and this process was repeated several times, while the temperature remained at 1000, without further heating the autoclave. About 7 hours after the start of the process, the ethylene feed was terminated, the autoclave was cooled, the residual gas was drained and the reaction product, which consisted of an almost white powdery mass, was removed. The polymer was purified at least in part from the non-gnaric products by suspension I of methanol, acidified with hydrochloric acid, and separated by filtration, washed with methanol and dried in vacuo in heat. In this way, 570 g of polyethylene were obtained, which on the X-ray image was found to be crystalline and had a spruce viscosity in tetrahydronaphthalene at 135 ° of 0.80 (pois) and a molecular weight of 23,000.

Exempel 2. 10 g av en aluminium-titanlegering med en halt av 37,2 % titan och omedelbart darefter 40 g etylklorid infordes under kvavgas i en noterande autoklav med en kapacitet av omkring 2 liter, vilken verkade som kulkvarn och innehall 12 kulor av rostfritt stal. Blandningen maldes i flera timmar vid en temperatur av 600 och darefter avdunstades icke omsatt etylklorid under ett vakuum av 20 mm. Slutligen infardes 500 ml n-heptan i autoklaven. Autoklavlocket avlagsnades, autoklaven stalldes uppratt och en med en glassifon och en ventil for inforande av kvavgas forsedd propp anbringades i autoklavens inlopp. Efter kort tid bortsags omkring 350 ml av en brun suspension, som icke inneholl nagon pulverformig legering, och uppfangades i en glasflaska. Katalysatorsuspensionen infordes darefter i en skakautoklav med en kapacitet av 2000 ml ay rostfritt stal, som i forvag fyllts med luft, och darefter tillsattes 300 ml n-heptan. Vid ternperaturer av 40° infordes etylen till ett tryck av omkring 20 atmosfarer. Etylenpolymerisationen borjade genast och darvid intraffade ett hastigt tryckfall, medan temperaturen spontant steg till 80°. Vidare infordes etylen till ett tryck av 30 atmosfarer, medan omsattningen fortgick autotermiskt vid temperaturen 80°. Polymerisationen genomfordes vid tryck mellan 20 och 30 atmosfbirer, varvid ytterligare etylen infordes under omkring 6 tiramar. Dar- —3. efter tomdes autoklaven, som redan var nästan helt fylld med ett pulverformigt fast polymerisat med rodaktigt brun farg. Produkten suspenderades i metanol, filtrerades, tvattades med metanol och torkades i vakuum i varme. Det erholls 466 g polyetylen med en askhalt av 0,9 % och en gransviskositet av 7,3 i tetrahydronaftalinlosning av 135°, vilket motsvarade en molekylvikt av omkring 670000. Example 2. 10 g of an aluminum-titanium alloy with a content of 37.2% titanium and immediately thereafter 40 g of ethyl chloride were introduced under nitrogen gas into a notable autoclave with a capacity of about 2 liters, which acted as a ball mill and contained 12 balls of stainless steel. stal. The mixture was ground for several hours at a temperature of 600 and then unreacted ethyl chloride was evaporated under a vacuum of 20 mm. Finally, 500 ml of n-heptane were introduced into the autoclave. The autoclave cap was removed, the autoclave was set upright and a plug provided with a glass siphon and a valve for introducing nitrogen gas was placed in the inlet of the autoclave. After a short time, about 350 ml of a brown suspension containing no powdered alloy was discarded and collected in a glass bottle. The catalyst suspension was then introduced into a shake autoclave with a capacity of 2000 ml of stainless steel, which was pre-filled with air, and then 300 ml of n-heptane were added. At temperatures of 40 °, ethylene was introduced to a pressure of about 20 atmospheres. The ethylene polymerization started immediately, causing a rapid drop in pressure, while the temperature spontaneously rose to 80 °. Furthermore, ethylene was introduced to a pressure of 30 atmospheres, while the reaction proceeded autothermally at a temperature of 80 °. The polymerization was carried out at a pressure of between 20 and 30 atmospheres, with additional ethylene being introduced over about 6 frames. Dar- —3. after the autoclave was emptied, which was already almost completely filled with a powdery solid polymer with a reddish brown color. The product was suspended in methanol, filtered, washed with methanol and dried in vacuo in heat. 466 g of polyethylene having an ash content of 0.9% and a spruce viscosity of 7.3 in tetrahydronaphthalene solution of 135 ° were obtained, which corresponded to a molecular weight of about 670000.

Exempel 3. 10 g av en titan-aluminiumlegering med en halt av 37,2 % titan och 14 g etylbromid infordes i den ovan beskrivna autoklaven. Efter omkring 20 timmars malning vid temperaturer mellan 50 och 60° avlagsnades den icke omsatta etylbromiden fullstandigt och 600 ml n-heptan infordes i autoklaven. Darefter infordes etylen till ett tryck av 40 atmosfarer och temperaturen hojdes till 90°. Sedan trycket fallit till 20 atmosfarer infordes ytterligare etylen till ett tryck av 40 atmosfarer i autoklaven och detta tillvagagangssatt upprepades flera ganger mom 10 timmar. Darefter avtappades det erhallna polymerisatet, vilket hade samma utseende som polymerisatet i forega.- ende exempel. Efter reningen erholl man 395 g polyetylen, som pa rontgenbilden visade sig hagkristallinisk och hade en gransviskositet av 9,2 och en molekylvikt av 960000. Example 3. 10 g of a titanium-aluminum alloy with a content of 37.2% titanium and 14 g of ethyl bromide were introduced into the autoclave described above. After about 20 hours of grinding at temperatures between 50 and 60 °, the unreacted ethyl bromide was completely removed and 600 ml of n-heptane were introduced into the autoclave. Then ethylene was introduced to a pressure of 40 atmospheres and the temperature was raised to 90 °. After the pressure dropped to 20 atmospheres, additional ethylene was introduced to a pressure of 40 atmospheres in the autoclave and this procedure was repeated several times for 10 hours. Then, the obtained polymer was drained, which had the same appearance as the polymer in the previous example. After purification, 395 g of polyethylene were obtained, which on the X-ray image showed hag crystalline and had a spruce viscosity of 9.2 and a molecular weight of 960000.

Exempel 4. 25 g av en aluminium-titanlegering med en halt av 37,2 % titan, som i forvag malts under kvavgas, infordes under kvavgas i en roterande autoklav med en kapacitet av omkring 2 liter, vilken verkade som en kulkvarn och mile-Will 10 kulor av rostfritt stal. Darefter inf5rdes 90 g etylbromid i autoklaven och forfarandet fortsattes ph samma satt som i foregaende exempel, varvid emellertid den icke omsatta etylbromiden icke avlagsnades yid malningsfOrfarandets avslutande. Darefter infordes etylen i autoklaven till ett tryck av atmosfarer. Temperaturen steg hastigt till 90°, medan trycket loll till 20 atmosfarer. Genom tillsats av ytterligare etylen installdes trycket ater ph 40 atmosfarer. Detta f5rfarande upprepades flera ganger inom 5 timmar. Autoklaven lamnades darefter att kallna, reaktionsprodukten, som bestod av en starkt kompakt polymerisatmassa, uttogs och renades Iran de foreliggande oorganiska bestandsdelarna genom en varm syrabehandling. Det erholls 272 g fast polyetylen med mycket hog kristallisationsgrad, som i tetrahydronaftalinl5sning vid 135° ha-de en gransviskositet av 2,03 motsvarande en molekylvikt av omkring 95000. Example 4. 25 g of an aluminum-titanium alloy with a content of 37.2% of titanium, which was pre-ground under nitrogen, was introduced under nitrogen into a rotating autoclave with a capacity of about 2 liters, which acted as a ball mill and millet. Will 10 bullets of stainless steel. Thereafter, 90 g of ethyl bromide were introduced into the autoclave, and the process was continued in the same manner as in the previous example, but the unreacted ethyl bromide was not deposited at the end of the milling process. Then ethylene was introduced into the autoclave to a pressure of atmospheres. The temperature rose rapidly to 90 °, while the pressure loll to 20 atmospheres. By adding additional ethylene, the pressure was restored to pH 40 atmospheres. This procedure was repeated several times within 5 hours. The autoclave was then left to cool, the reaction product, which consisted of a strongly compact polymer mass, was removed and the present inorganic constituents were purified in Iran by a hot acid treatment. 272 g of solid polyethylene with a very high degree of crystallization were obtained, which in tetrahydronaphthalene solution at 135 ° had a granular viscosity of 2.03 corresponding to a molecular weight of about 95,000.

Exempel 5. Example 5.

Pa samma salt som i foregaende exempel behandlades 12 g av en aluminium-titanlegering med en halt av 60 % titan (atomforhallande Ti: Al = 5: 6) med 40 g etylklorid ge nom malning i en kvavgasatmosfar. Den icke omsatta etylkloriden avlagsnades darefter fullstandigt, heptan infordes i autoklaven och darefter infordes etylen till ett tryck av 20 atmosfarer. Temperaturen steg till 100° och autoklaven holls i rorelse nagra timmar. Ur reakionsprodukten avskildes sma mangder polyetylen. On the same salt as in the previous example, 12 g of an aluminum-titanium alloy with a content of 60% titanium (atomic ratio Ti: Al = 5: 6) were treated with 40 g of ethyl chloride by grinding in a nitrogen gas atmosphere. The unreacted ethyl chloride was then completely removed, the heptane was introduced into the autoclave and then the ethylene was introduced to a pressure of 20 atmospheres. The temperature rose to 100 ° and the autoclave was stirred for a few hours. Small amounts of polyethylene were separated from the reaction product.

Exempel 6. 10 g av en aluminium-titanlegering med en. halt av 37,2 % titan, som i forvag malts under kvavgas inf6rdes tillsammans med 12 kulor av rostfritt stal med en diameter av 25 mm och 40 g etylklorid i den ovan beskrivna malningsautoklaven. Blandningen maldes vid temperaturer mellan 40 och 50° och den icke omsatta etylkloriden avlagsnades under vakuum. I autoklaven infordes darefter 150 ml n-heptan och 300 g av en propylen-propanblandning med en halt av 91 % propylen och autoklavtemperaturen hojdes pa 30 minuter till 90°. Vid denna temperatur intraffade polymerisationsreaktionen oak temperaturen steg pa kort tid spontant till 120° oak foil darefter langsamt Ater till 100°. Omkring 4 timmar efter inforandet av propylenen utslapptes den aterstaende gasen och metanol inpumpades i autoklaven. Reaktionsprodukten uttogs och renades genom behandling med eter och saltsyra i varme, fullstandig koagulering med metanol samt filtrering och tvattning med metanol. Den erhallna polypropylenen torkades darefter i -dime i vakuum. Det avskildes 218 g fast polypropylen, som fraktionerades genom extrahering med varmt losningsmedel i en Kumagawa-extraheringsapparat, sâ att det extraherade polymerisatet forelag vid koktemperaturen fOr det vid extraheringen anvanda losningsmedlet. Acetonextraktet motsvarade 16,6 % av det erhallna polymerisatet och bestod av oljeartade pro dukter med lag molekylvikt. Eterextraktet motsvarade 14,7 % ()eh bestod av fast polypropylen, som pa rontgenbilden visade sig amorf och hade en gransviskositet av 0,55 i tetrahydronaftalinlosning av 135°. Heptanextraktet motsvarade 26,5 % och bestod air polypropylen, som pa rontgenbilden visade sig partiellt kristallinisk. Denna fraktion hade en gransviskositet av 0,74. Extraktionsaterstoden motsvarade 42,2 % av det erhallna polymerisatet och bestod av polypropylen, som pa rontgenbilden visade sig hogkristallinisk och hade en gransviskositet av 3,60 I tetrahydronaftalinlosning av 135°, motsvarande en molekylvikt av omkring 230000. Example 6. 10 g of an aluminum-titanium alloy with a. The content of 37.2% of titanium, which was pre-milled under nitrogen, was introduced together with 12 balls of stainless steel with a diameter of 25 mm and 40 g of ethyl chloride into the grinding autoclave described above. The mixture was ground at temperatures between 40 and 50 ° and the unreacted ethyl chloride was removed in vacuo. 150 ml of n-heptane and 300 g of a propylene-propane mixture with a content of 91% propylene were then introduced into the autoclave and the autoclave temperature was raised to 90 ° in 30 minutes. At this temperature the polymerization reaction also occurred and the temperature rose spontaneously to 120 ° in a short time and then slowly returned to 100 °. About 4 hours after the introduction of the propylene, the residual gas was released and methanol was pumped into the autoclave. The reaction product was taken out and purified by treatment with ether and hydrochloric acid in heat, complete coagulation with methanol and filtration and washing with methanol. The resulting polypropylene was then dried in dime in vacuo. 218 g of solid polypropylene were separated, which was fractionated by hot solvent extraction in a Kumagawa extractor, so that the extracted polymer was present at the boiling temperature of the solvent used in the extraction. The acetone extract corresponded to 16.6% of the obtained polymer and consisted of low molecular weight oily products. The ether extract corresponded to 14.7% () eh consisting of solid polypropylene, which on the X-ray image was found to be amorphous and had a spruce viscosity of 0.55 in tetrahydronaphthalene solution of 135 °. The heptane extract corresponded to 26.5% and consisted of air polypropylene, which on the X-ray image was partially crystalline. This fraction had a granule viscosity of 0.74. The extraction residue corresponded to 42.2% of the obtained polymer and consisted of polypropylene, which on the X-ray image was highly crystalline and had a clear viscosity of 3.60 l of tetrahydronaphthalene solution of 135 °, corresponding to a molecular weight of about 230,000.

Exempel 7. 25 g av en aluminium-titanlegering med en halt ay 37,2 % titan och 30 ml etylbromid infOrdes under kvavgas i den i de ovanstaende exemplen beskrivna anordningen. Innehallet i autoklaven maldes genom rotation av autaklayen vid temperaturer ay 50°. Darefter WIRT- 4— 187 323 — des 90 g av en propylen-propanblandning med en halt av 82 % propylen och blandningen varmdes till 85°. Efter nagra timmar tillsattes annu en gang 160 g propylen-propanblandning och autoklaven roterades i ytterligare 15 timmar vid temperaturer mellan 80 och 90°. Den icke omsatta propylenen avlagsnades och reaktionsprodukten, som bestod av en klibbig fast massa, uttomdes och behandlades forst med metanol och darefter med syror for att s8nderdela den foreliggande legeringen. Det avskildes 25,5 g fast polypropylen, Denna produkt fraktionerades genom extrahering med varma losningsmedel. Acetonextraktet motsvarade 39 % av det erhallna polymerisatet och bestod av fasta produkter med lag molekylvikt. Eterextraktet motsvarade 13,5 % och bestod av amorf fast propylen med en gransviskositet av 0,55 i tetrahydronaftalinlosning av 135°. Heptanextraktet motsvarade 20,3 % och bestod av partiellt kristallinisk polypropylen med en gransviskositet av 0,83. Extraktionsaterstoden motsvarade 27,2 Vo av det erhallna polymerisatet och bestod av hogkristallinisk polypropylen med en gransviskositet av 2,35, motsvarande en molekylvikt av omkring 110000. Example 7. 25 g of an aluminum-titanium alloy having a content of 37.2% titanium and 30 ml of ethyl bromide were introduced under nitrogen into the apparatus described in the above examples. The contents of the autoclave were ground by rotating the autoclave at temperatures of 50 ° C. Then 90 g of a propylene-propane mixture with a content of 82% propylene were heated and the mixture was heated to 85 °. After a few hours, 160 g of propylene-propane mixture were added again and the autoclave was rotated for a further 15 hours at temperatures between 80 and 90 °. The unreacted propylene was removed and the reaction product, which consisted of a sticky solid, was emptied and treated first with methanol and then with acids to decompose the present alloy. 25.5 g of solid polypropylene were separated. This product was fractionated by extraction with hot solvents. The acetone extract corresponded to 39% of the obtained polymer and consisted of low molecular weight solid products. The ether extract corresponded to 13.5% and consisted of amorphous solid propylene with a spruce viscosity of 0.55 in tetrahydronaphthalene solution of 135 °. The heptane extract corresponded to 20.3% and consisted of partially crystalline polypropylene with a spruce viscosity of 0.83. The extraction residue corresponded to 27.2 Vo of the obtained polymer and consisted of highly crystalline polypropylene having a spruce viscosity of 2.35, corresponding to a molecular weight of about 110,000.

Exempel 8. 12 stalkulor och 10 g nyss framstallda span av en titan-aluminiumlegering med en halt av 111,9 % titan (atomforhallande Ti: Al = 1: 9) infordes i den ovan beskrivna malningsautoklaven. Autoklaven tillslOts och evakuerades, darefter infordes 40 g etylklorid och hela massan maldes vid temperaturer Indian 40 och 50°. Den joke ornsatta etylkloriden avlagsnades darefter under vakuum och 400 ml n-heptan ocb. 240 g propylen infOrdes i autoklaven. Temperaturen hojdes till 100° och autoklaven roterades i omkring 5 timmar. Darefter extraherades reaktionsprodukten och renades pa samma sat som i de foregaende exemplen. Man erholl 45 g vitt fast pulverformig propylen. Example 8. 12 steel beads and 10 g of freshly prepared titanium-aluminum alloy spans with a content of 111.9% titanium (atomic ratio Ti: Al = 1: 9) were introduced into the grinding autoclave described above. The autoclave was sealed and evacuated, then 40 g of ethyl chloride was introduced and the whole mass was ground at Indian temperatures of 40 and 50 °. The joke-treated ethyl chloride was then removed in vacuo with 400 ml of n-heptane ocb. 240 g of propylene were introduced into the autoclave. The temperature was raised to 100 ° and the autoclave was rotated for about 5 hours. Then the reaction product was extracted and purified in the same manner as in the previous examples. 45 g of white solid powdered propylene were obtained.

Exempel 9. 10 g av en titan-aluminiumlegering med en halt av 37,2 % titan och 40 g etylklorid infordes under kvavgas i den ovan beskrivna malningsautoklaven och hela massan maldes vid temperaturer mellan 60 och 70°. All etylkloriden avlagsnades darefter under ett vakuum av 20 mm och 100 ml n-heptan och 160 g penten-1 (Philipps, ren) infordes. Autoklaven roterades vid en temperatur av 95° i omkring 5 timmar. Darefter pumpades 100 ml metanol in i autoklaven, denna oppnades och en starkt viskos produkt uttogs. Denna produkt renades genom losning i en eter-heptanblandning, be-handling med saltsyra och efterfOljande fullstandig koagulering med metanol. Den erhallna vita fasta produkten avfiltrerades och torkades under vakuum i varme. Man erholl 135 g fast polypenten med en askhalt av 0,06 %, som darefter fraktionerades genom extrahering med varma losningsmedel. Example 9. 10 g of a titanium-aluminum alloy with a content of 37.2% titanium and 40 g of ethyl chloride were introduced under nitrogen into the grinding autoclave described above and the whole mass was ground at temperatures between 60 and 70 °. All the ethyl chloride was then removed under a vacuum of 20 mm and 100 ml of n-heptane and 160 g of penten-1 (Philipps, pure) were introduced. The autoclave was rotated at a temperature of 95 ° for about 5 hours. Then, 100 ml of methanol was pumped into the autoclave, which was opened and a highly viscous product was taken out. This product was purified by dissolving in an ether-heptane mixture, treating with hydrochloric acid and following complete coagulation with methanol. The resulting white solid product was filtered off and dried under vacuum in heat. 135 g of solid polypentene with an ash content of 0.06% were obtained, which was then fractionated by extraction with hot solvents.

Acetonextraktet motsvarade 41,6 % av det totala erhallna polymerisatet och bestod av oljeartade produkter med lag molekylvikt. Det med etylaeetat erhallna extraktet motsvarade 16,7 % och bestod av en vaxartad fast produkt. Eterextraktet motsvarade 32,9 % av he-la polymerisatet och bestod av partiellt kristallinisk polypenten. Heptanextraktet motsvarade 8,75 % och bestod av polypenten, som pa rOntgenbilden visade sig hogkristallinisk. The acetone extract corresponded to 41.6% of the total polymer obtained and consisted of low molecular weight oily products. The extract obtained with ethyl acetate corresponded to 16.7% and consisted of a waxy solid product. The ether extract corresponded to 32.9% of the whole polymer and consisted of partially crystalline polypentene. The heptane extract corresponded to 8.75% and consisted of polypropylene, which on the X-ray image proved to be highly crystalline.

Claims (5)

1. Patentansprals: 1, Forfarande for framstallning av katalysatorer for polymerisation av etylen och hogre a-olefiner till i huvudsak lineara hOgmolekyBra polyrnerisat med regelbunden struktur, kannetecknat darav, att halogenhaltiga organiska foreningar omsattas med aluminiumtitanlegeringar. 1. Forfarande enligt patentanspraket 1, kannetecknat darav, att man anvander halogenhaltiga foreningar med den allmanna formeln RX, i vilken X betecknar halogen och R betecknar en alkyl- eller aralkylrest, sasom alkyl- eller aralkylklorid, isynnerhet etylklorid.1. A process for the preparation of catalysts for the polymerization of ethylene and higher α-olefins to substantially linear high molecular weight polymers having a regular structure, characterized in that halogen-containing organic compounds are reacted with aluminum titanium alloys. Process according to Claim 1, characterized in that halogen-containing compounds of the general formula RX are used, in which X represents halogen and R represents an alkyl or aralkyl radical, such as alkyl or aralkyl chloride, in particular ethyl chloride. 2. Forfarande enligt patentanspraken 1 och 2, kannetecknat darav, att legeringen males med den halogenhaltiga foreningen i en inert dasatmosfar vid temperaturer under 60'.Process according to Claims 1 and 2, characterized in that the alloy is ground with the halogen-containing compound in an inert atmosphere at temperatures below 60 '. 3. Forfarande enligt patentanspraken i----3, kannetecknat darav, att aluminium och titan i den anvanda legeringen foreligger i ett atomforhallande mellan 1: 1 och 10: 1.Process according to the patent claims in ---- 3, characterized in that aluminum and titanium in the alloy used are present in an atomic ratio between 1: 1 and 10: 1. 4. FOrfarande enligt patentanspraken 1-4, kannetecknat darav, att omsattningen avslutas fOre den slutgiltiga forbrukningen av den halogenhaltiga fOreningen och att overskottet av denna forening avlagsnas efter reaktionens avslutande.4. A process according to claims 1-4, characterized in that the reaction is terminated before the final consumption of the halogen-containing compound and that the excess of this compound is deposited after the completion of the reaction. 5. Forfarande enligt patentanspraken 1-5, kannetecknat darav, att reaktionsprodukten avskilj es fran ieke omsatt legering genom suspendering i en inert vbitska och efterfoljande dekantering. Anforda publikationer:5. Process according to claims 1-5, characterized in that the reaction product is separated from unreacted alloy by suspension in an inert vbitic and subsequent decantation. Request publications:
SE187328D SE187328C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE187328T

Publications (1)

Publication Number Publication Date
SE187328C1 true SE187328C1 (en) 1963-01-01

Family

ID=41974471

Family Applications (1)

Application Number Title Priority Date Filing Date
SE187328D SE187328C1 (en)

Country Status (1)

Country Link
SE (1) SE187328C1 (en)

Similar Documents

Publication Publication Date Title
EP1621542B1 (en) Purification method of crude trimethylaluminum
JP2501024B2 (en) Catalyst component
JPS5952166B2 (en) Method for manufacturing polyolefin
JP2002506893A (en) Catalyst system suitable for use in ethylene polymerization or copolymerization and process for preparing the catalyst system
US2905646A (en) Catalysts for the polymerization of olefines and process for preparing said catalysts
US3014016A (en) Process for preparing crystalline high polymers of unsaturated hydrocarbons
SE187328C1 (en)
US5084429A (en) Catalysts for polymerization of olefins
NO823382L (en) PROCEDURE FOR THE PREPARATION OF ORGANOMETAL HALOGENIDES
JP2624578B2 (en) Olefin polymerization catalyst component and method for producing polyolefin
EP2644627A1 (en) Catalyst for polymerization of olefins comprising thienyl-substituted silanes
KR970007238B1 (en) Process for producing olefin polymerization catalyst component and poly0lefin
CA2704992C (en) Method for manufacturing dialkylaluminum monohalide
US6476271B2 (en) Process for the preparation of ether-free salts of tetrakis(pentafluorophenyl) borate
JP2609277B2 (en) Polymerization catalyst
US2682445A (en) Process for the production of purified anhydrous zirconium tetrahalide
CN111825545B (en) Method for separating 2-alkyl anthracene from products containing alkyl anthracene and preparing 2-alkyl anthraquinone by adopting catalytic oxidation process
JPS6342643B2 (en)
EP0100550B1 (en) Method for the purification of propylene polymers
NO750158L (en)
JPH09194440A (en) Purification of crude n,n'-diphenyl-para-phenylenediamine and apparatus therefor, and stabilizer consisting of the compound for organosilane
US4256874A (en) Process for separating isotactic and atactic polypropylenes
US2916350A (en) Method of purifying zirconium tetrahalide
US3100218A (en) Purification of diethylaluminum chloride with crystalline titanium trichloride
US3769323A (en) Process for refining bis-(beta-hydroxy-ethyl)terephthalate