JPS5952166B2 - Method for manufacturing polyolefin - Google Patents

Method for manufacturing polyolefin

Info

Publication number
JPS5952166B2
JPS5952166B2 JP51076085A JP7608576A JPS5952166B2 JP S5952166 B2 JPS5952166 B2 JP S5952166B2 JP 51076085 A JP51076085 A JP 51076085A JP 7608576 A JP7608576 A JP 7608576A JP S5952166 B2 JPS5952166 B2 JP S5952166B2
Authority
JP
Japan
Prior art keywords
group
titanium
compound
halogen
electron donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51076085A
Other languages
Japanese (ja)
Other versions
JPS532580A (en
Inventor
修治 南
典夫 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP51076085A priority Critical patent/JPS5952166B2/en
Priority to ZA00773671A priority patent/ZA773671B/en
Priority to AU26339/77A priority patent/AU505148B2/en
Priority to GB26417/77A priority patent/GB1554340A/en
Priority to FR7719819A priority patent/FR2356676A1/en
Priority to BE178838A priority patent/BE856189A/en
Priority to DE19772729196 priority patent/DE2729196A1/en
Priority to AT457177A priority patent/AT350257B/en
Priority to CA281,521A priority patent/CA1082846A/en
Priority to ES460188A priority patent/ES460188A1/en
Priority to PT66733A priority patent/PT66733B/en
Priority to BR7704220A priority patent/BR7704220A/en
Priority to NO772287A priority patent/NO150721C/en
Priority to SE7707468A priority patent/SE435518B/en
Priority to NLAANVRAGE7707220,A priority patent/NL169324C/en
Priority to IT25201/77A priority patent/IT1081505B/en
Priority to PH19928A priority patent/PH14174A/en
Publication of JPS532580A publication Critical patent/JPS532580A/en
Publication of JPS5952166B2 publication Critical patent/JPS5952166B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Medicinal Preparation (AREA)

Description

【発明の詳細な説明】 本発明は、オレフインの高活性重合方法に関する。[Detailed description of the invention] The present invention relates to a method for highly active polymerization of olefins.

さらに詳しくは、炭素数3以上のα−ォレフィンの重合
に適用した場合、高立体規則性の重合体を高収率で得る
ことが可能なポリオレフィンの製造方法に関する。ハロ
ゲン化マグネシウムに担持されたオレフイン重合用高活
性チタン触媒成分のラち、特に炭素数3以上のα−オレ
フィンの高立体規則性重合に適したものは、たとえば特
開昭48−16986号、特開昭50−108385号
、特開昭50一126590号、特開昭51−2029
7号、特開昭51−28189号の各公報に提案されて
いる。
More specifically, the present invention relates to a method for producing a polyolefin that can produce a highly stereoregular polymer in high yield when applied to the polymerization of an α-olefin having 3 or more carbon atoms. Among the highly active titanium catalyst components for olefin polymerization supported on magnesium halide, those particularly suitable for the highly stereoregular polymerization of α-olefins having 3 or more carbon atoms are disclosed in, for example, JP-A-48-16986; 1977-108385, JP-A-50-126590, JP-A-51-2029
No. 7 and Japanese Unexamined Patent Publication No. 51-28189.

これら各提案においては、ハロゲン含有マグネシウム化
合物、好ましくはマグネシウムジハライド、特に好まし
くは塩化マグネシウムを原料に用いてチタン触媒を製造
するものである。従来、・・ロゲン不含マグネシウム化
合物を原料に用いてチタン触媒を製造しオレフィンを重
合する方法においては、特公昭46−34098、特公
昭47−42137等の提案がなされているが、これら
諸提案の方法は、後記比較例に示したごとく炭素数3以
上のα−オレフィンの高活性高立体規則性重合に適切な
ものではなかつた。
In each of these proposals, a titanium catalyst is produced using a halogen-containing magnesium compound, preferably magnesium dihalide, particularly preferably magnesium chloride. Conventionally, proposals such as Japanese Patent Publication No. 46-34098 and Japanese Patent Publication No. 47-42137 have been made regarding methods for producing titanium catalysts using rogen-free magnesium compounds as raw materials and polymerizing olefins. As shown in the Comparative Example below, this method was not suitable for highly active and highly stereoregular polymerization of α-olefins having 3 or more carbon atoms.

本発明者らは、かかるハロゲン不含マグネシウム化合物
を用いる担体付触媒の製造およびその重合方法について
鋭意検討の結果、特に炭素数3以上のα−オレフィンの
高活性、高立体規則性重合方法を見出すにいたつた。
As a result of intensive studies on the production of supported catalysts using such halogen-free magnesium compounds and their polymerization methods, the present inventors found a method for polymerizing α-olefins with high activity and high stereoregularity, especially for α-olefins having 3 or more carbon atoms. I arrived.

本発明で使用されるハロゲン不含マグネシウム化合物は
、塩化マグネシウムがきわめて吸湿性であり原料保存、
触媒製造上の留意が必要であるに反し、これらの操作が
容易であり、とくに水分による触媒性能のばらつき等が
きわめて少ない利点を有している。すなわち本発明によ
れば、アルコキシ基又はアリロキシ基含有ハロゲン不含
マグネシウム化合物A、電子供与体B及びテタンのハロ
ゲン化合物Cから導かれる、ハロゲン/チタン(モル比
)が6以上、電子供与体/テタン(モル比)が0.1以
上、チタン/マグネシウム(重量比)が0.05ないし
0.5の固体触媒成分aと周期律表第1族ないし第3族
金属の有機金属化合物bとの組合せ触媒を用いて、オレ
フインを重合もしくは共重合することを特徴とするポリ
オレフィンの製造方法が提供される。
The halogen-free magnesium compound used in the present invention is characterized by the fact that magnesium chloride is extremely hygroscopic.
Although care must be taken in producing the catalyst, these operations are easy, and in particular, it has the advantage of extremely little variation in catalyst performance due to moisture. That is, according to the present invention, a halogen-free magnesium compound A containing an alkoxy group or an allyloxy group, an electron donor B, and a tethane halogen compound C having a halogen/titanium (molar ratio) of 6 or more and an electron donor/tethane. A combination of a solid catalyst component a having a molar ratio of 0.1 or more and a titanium/magnesium weight ratio of 0.05 to 0.5 and an organometallic compound b of a metal from Group 1 to Group 3 of the periodic table. A method for producing a polyolefin is provided, which comprises polymerizing or copolymerizing an olefin using a catalyst.

本発明で用いられるアルコキシ基又はアリロキシ基含有
・・ロゲン不含マグネシウム化合物Aの代表的なものは
、実験式Mg(0R)n(0R′)2 −n (但し、R,R’はアルキル基又はアリール基で、Rと
R’は同一であつても異なつていてもよい。
A representative example of the alkoxy group- or allyloxy group-containing, rogen-free magnesium compound A used in the present invention has the empirical formula Mg(0R)n(0R')2-n (where R and R' are alkyl groups). Or in an aryl group, R and R' may be the same or different.

nはo≦n≦2を示す数である。)で示されるマグネシ
ウム化合物を例示することができる。
n is a number representing o≦n≦2. ) can be exemplified.

しかしながら、上記式のような簡単な式で示されない化
合物であつてもよく、たとえば上記式中の0R基及び又
は0R’の一部が他の有機基、たとえばアシロキシ基、
アルキル基などで置換されたものであつてもよい。さら
にアルミニウム、ケイ素、スズ、ゲルマニウムのような
他の元素を含むものであつてもよい。前記式で示される
マグネシウム化合物は、たとえば金属マグネシウムある
いはアルキルマグネシウムと分子内に水酸基をもつ化合
物たとえば、脂肪族アルコール類、芳香族アルコール類
、フエノール類、もしくはこれらの化合物にアルミニウ
ム、ケイ素、スズ、ゲルマニウムのような他の元素を含
むもの、あるいはこれら化合物の混合物との反応によつ
て得られる化合物である。
However, the compound may not be represented by a simple formula such as the above formula, for example, a part of the 0R group and/or 0R' in the above formula may be another organic group, such as an acyloxy group,
It may be substituted with an alkyl group or the like. Furthermore, it may contain other elements such as aluminum, silicon, tin, and germanium. The magnesium compound represented by the above formula is, for example, metal magnesium or alkylmagnesium and a compound having a hydroxyl group in the molecule, such as aliphatic alcohols, aromatic alcohols, phenols, or these compounds combined with aluminum, silicon, tin, or germanium. It is a compound obtained by reaction with other elements such as or a mixture of these compounds.

さらには、前記式のマグネシウム化合物と上記の分子内
に水酸基をもつ化合物との反応による交換反応によつて
も得ることが可能である。前記マグネシウム化合物とし
て、とくにアルァルコキシ基又はアリロキシ基を含有す
る化合物を用いると高性能の触媒が得られるので好まし
い。
Furthermore, it can be obtained by an exchange reaction between the magnesium compound of the above formula and the above compound having a hydroxyl group in the molecule. It is particularly preferable to use a compound containing an aralkoxy group or an allyloxy group as the magnesium compound since a high performance catalyst can be obtained.

好適なマグネシウム化合物を具体的に示すと、Mg(0
CH3)(0C6H,)、Mg(0CH,)(0C6H
,CH3)、Mg(0CH3)( 0C6H,C21−
Ll )、Mg(0CH3)(0C6H,C3H7)、
Mg(0CH3)〔0C6H3(CH3),〕、Mg(
0CH3)(0C6H4C4H,)、Mg(0C2H,
)( 0C.H,)、Mg(0C,H,)(0C.H4
CH3)、Mg(0C2H,)(0C6H4C2H5)
、Mg(0C2H,)(0C.H.C3H,)、Mg(
0C,H5)〔0C.H3(CH3),〕、Mg(0C
,H,)( 0C.H4C.H9)、Mg(0C3H,
)(0C.H4CH3)、Mg(0CH,)(0C6H
4C1)、Mg(0C,H,)(0C6H4C1)、M
g(0C4H,)(0C6H4C1)、Mg(0CH,
)(0C6H40CH,)、Mg(0C2H,)(0C
6H40CH,)、Mg(0C8H,,)(0C6H4
0CH,)、Mg(0CH,)(0C,0H,)、Mg
(0C,H,)(0C,0H,)、Mg(0C,H,)
(0C,0H7)、Mg(0C6H,0)(0C,H,
)、Mg(0C6H10)(0C6H4CH,)、Mg
(0C6H10)(0C6114Cノ)、Mg(0C6
H5),、Mg(0C6H4CH3)、Mg(0C6H
,C,H5),、Mg(0C6H4C,H,),、Mg
(0C6H4C4H,),、Mg(0C6H4C8H1
,),、Mg(0C6H4C,H1,),、Mg〔0C
6H4C(CH,)C6H5〕2、Mg〔0C6H,(
CH3),〕,、MgC.OC6H,(CH,),(C
4H,)〕2、Mg(0C6H40CH,),、Mg(
0C6H4C1),、Mg(0C10H,),、Mg(
0C,0H6CH,),、Mg(0C,0H6C,H,
),、Mg〔0C10H,CH,)2〕,、 Mg(0C10H60CH,)2.Mg(0C10H4
C0,などのアリロキシ基含有マグネシウム化合物、M
g(0CH,)(0CH,C6H5)、Mg(0CH,
)(0C2H4C6H,)、Mg(0CH,)〔0CH
(CH,)C6H,LMg(0CH,)〔0C(CH,
),C6H5〕、Mg(0CH,)(0CH,C6H4
C,H,)、Mg(0CH,)〔0C(CH,),C6
H4C,H?〕、Mg(0C,H,)(0CH2C6H
,)、Mg(0C2H,)(0C2H4C6H5)、M
g(0C,H5)〔0CH(CH,)C6H,〕、Mg
(0C2H,)〔0C(CH,),C6H,LMg(0
C,H,)(0CH,C6H4C,H,)、Mg(0C
,H,)(0CH,C6H,)、Mg(0CH,C6H
,),、Mg(0C,H4C6H5),、Mg〔0CH
(CH,)C,H,〕,、Mg〔0C(CH,)2C6
H,〕,、 Mg(0CH,C,H4C,H,)2、 MgI,OC(CH,),C6H4C3H,〕,などの
アルアルコキシ基含有マグネシウム化合物、あるいはこ
れらの混合物などを挙げることができる。
Specifically, a suitable magnesium compound is Mg(0
CH3)(0C6H,), Mg(0CH,)(0C6H
, CH3), Mg(0CH3)( 0C6H,C21-
Ll), Mg(0CH3)(0C6H,C3H7),
Mg(0CH3) [0C6H3(CH3),], Mg(
0CH3) (0C6H4C4H,), Mg(0C2H,
)( 0C.H,), Mg(0C,H,)(0C.H4
CH3), Mg(0C2H,)(0C6H4C2H5)
, Mg(0C2H,)(0C.H.C3H,), Mg(
0C, H5) [0C. H3(CH3), ], Mg(0C
,H,) (0C.H4C.H9), Mg(0C3H,
)(0C.H4CH3), Mg(0CH,)(0C6H
4C1), Mg(0C,H,)(0C6H4C1), M
g(0C4H,)(0C6H4C1), Mg(0CH,
)(0C6H40CH,), Mg(0C2H,)(0C
6H40CH,), Mg(0C8H,,)(0C6H4
0CH,), Mg(0CH,)(0C,0H,), Mg
(0C,H,) (0C,0H,), Mg(0C,H,)
(0C,0H7), Mg(0C6H,0)(0C,H,
), Mg(0C6H10)(0C6H4CH,), Mg
(0C6H10) (0C6114Cノ), Mg (0C6
H5),, Mg(0C6H4CH3), Mg(0C6H
,C,H5),,Mg(0C6H4C,H,),,Mg
(0C6H4C4H,), Mg(0C6H4C8H1
,),,Mg(0C6H4C,H1,),,Mg[0C
6H4C(CH,)C6H5]2, Mg[0C6H, (
CH3), ], MgC. OC6H, (CH,), (C
4H,)]2,Mg(0C6H40CH,),,Mg(
0C6H4C1),, Mg(0C10H,),, Mg(
0C,0H6CH, ), Mg(0C,0H6C,H,
),, Mg[0C10H,CH,)2],, Mg(0C10H60CH,)2. Mg(0C10H4
Allyloxy group-containing magnesium compounds such as C0, M
g(0CH,)(0CH,C6H5), Mg(0CH,
)(0C2H4C6H,), Mg(0CH,)[0CH
(CH,)C6H,LMg(0CH,)[0C(CH,
), C6H5], Mg(0CH,)(0CH,C6H4
C,H,), Mg(0CH,)[0C(CH,),C6
H4C,H? ], Mg(0C,H,)(0CH2C6H
,), Mg(0C2H,)(0C2H4C6H5), M
g(0C,H5) [0CH(CH,)C6H,], Mg
(0C2H,)[0C(CH,),C6H,LMg(0
C,H,)(0CH,C6H4C,H,), Mg(0C
,H,)(0CH,C6H,), Mg(0CH,C6H
,),,Mg(0C,H4C6H5),,Mg[0CH
(CH,)C,H,],,Mg[0C(CH,)2C6
Examples include aralkoxy group-containing magnesium compounds such as Mg(0CH,C,H4C,H,)2, MgI, OC(CH,), C6H4C3H, ], or mixtures thereof.

電子供与体Bは、エステル、アミン、アミド、ケトン、
エーテル、ラクタムなどであり、好ましくはエステル、
一層好ましくは芳香族カルボン酸エステルである。エス
テルを具体的に例示する。
Electron donor B is an ester, an amine, an amide, a ketone,
Ethers, lactams, etc., preferably esters,
More preferred are aromatic carboxylic acid esters. Specific examples of esters are given below.

ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ビニル、酢
酸プロピル、酢酸ブチル、酢酸アミル、酢酸オクチル、
酢酸シクロヘキシル、プロピオン酸メチル、プロピオン
酸−2−エチルヘキシル、酪酸エチル、吉草酸エチル、
クロル酢酸メチル、ジクロル酢酸メチル、クロトン酸メ
チル、プロピオラクトン、γ−プチロラクトン、8−バ
レロラクトン、炭酸エチレンのような脂肪族エステル;
シクロヘキサンカルボン酸メチル、シクロヘキサンカル
ボン酸エチル、メチルシクロヘキサンカルボン酸エチル
のような脂環族エステル、安息香酸メチル、安息香酸エ
チル、安息香酸プロピル、安息香酸ブチル、安息香酸オ
クチル、安息香酸シクロヘキシル、安息香酸フエニル、
安息香酸ベンジル、安息香酸クロルフエニル、トルイル
酸メチル、トルイル酸エチル、トルイル酸プロピル、ト
ルイル酸ブチル、トルイル酸アミル、トルイル酸アルリ
ル エチル安息香酸メチル、エチル安息香酸エチル、キ
シレンカルボン酸エチル、アニス酸メチル、アニス酸エ
チル、アニス酸プロピル、アニス酸ブチル、エトキシ安
息香酸メチル、エトキシ安息香酸エチル、オキシ安息香
酸メチル、オキシ安息香酸エチル、アミノ安息香酸メチ
ル、アミノ安息香酸エチル、クロル安息香酸メチル、ク
ロル安息香酸エチル、クマリン、フノリドのような芳香
族エステル、他の電子供与体の例としては、N,N,N
′,〜−テトラメチルエチレンジアミン、イソキノリン
のようなアミン、アセトン、2,5−ヘキサンジオン、
アセトフエノンのようなケトン、ベラトロール、テトラ
ヒドロフルフリルメチルエーテルのような工ーテル、ニ
トロベンゼンのようなニトロ化合物、ε一カプロラクタ
ムのようなラクタムなどを例示することができる。一方
、チタン化合物Cとしては、ハロゲン化物の使用が好ま
しく、例えばTiCl4,TiCl,,TiBr4,T
il4,Ti(0CH3)C2,,Ti(0C,H5)
C2,,Ti(0C4H,)Cl,,Ti(0C,H,
)Cl,,Ti(0C,H5)2C1,などのチタンの
ハライドやアルコキシハライド、あるいはこれらと電子
供与体の錯化合物などを用いることができる。
Methyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, butyl acetate, amyl acetate, octyl acetate,
Cyclohexyl acetate, methyl propionate, 2-ethylhexyl propionate, ethyl butyrate, ethyl valerate,
Aliphatic esters such as methyl chloroacetate, methyl dichloroacetate, methyl crotonate, propiolactone, γ-butyrolactone, 8-valerolactone, ethylene carbonate;
Alicyclic esters such as methyl cyclohexanecarboxylate, ethyl cyclohexanecarboxylate, ethyl cyclohexanecarboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate ,
Benzyl benzoate, chlorphenyl benzoate, methyl toluate, ethyl toluate, propyl toluate, butyl toluate, amyl toluate, allyl toluate, methyl ethyl benzoate, ethyl ethyl benzoate, ethyl xylene carboxylate, methyl anisate, Ethyl anisate, propyl anisate, butyl anisate, methyl ethoxybenzoate, ethyl ethoxybenzoate, methyl oxybenzoate, ethyl oxybenzoate, methyl aminobenzoate, ethyl aminobenzoate, methyl chlorbenzoate, chlorbenzoic acid Examples of other electron donors are N, N, N
', ~-Tetramethylethylenediamine, amines such as isoquinoline, acetone, 2,5-hexanedione,
Examples include ketones such as acetophenone, veratrol, ethers such as tetrahydrofurfuryl methyl ether, nitro compounds such as nitrobenzene, and lactams such as ε-caprolactam. On the other hand, as the titanium compound C, it is preferable to use a halide, such as TiCl4, TiCl, TiBr4, T
il4,Ti(0CH3)C2,,Ti(0C,H5)
C2,,Ti(0C4H,)Cl,,Ti(0C,H,
)Cl, , Ti(0C,H5)2C1, or other titanium halides or alkoxy halides, or complex compounds of these with electron donors can be used.

特に好ましいチタン化合物はTiCl4である。固体触
媒成分aは、前記したマグネシウム化合物A、電子供与
体B及びチタン化合物Cを必須成分に用いて製造される
ものであるが、さらに前記以外に、他の付加成分〔但し
、マグネシウム化合物Aに対するハロゲン化剤を除外す
る〕をも原料に用いてもよい。
A particularly preferred titanium compound is TiCl4. Solid catalyst component a is produced using the above-mentioned magnesium compound A, electron donor B, and titanium compound C as essential components, but in addition to the above, other additional components [however, with respect to magnesium compound A] Excluding halogenating agents] may also be used as raw materials.

このような付加成分は、例えば有機又は無機の不活性希
釈剤であつてもよい。このような付加成分として、例え
ばB2O3,NaCl,Na2SO4,AIl2O3,
SiO,,CaCl2,アルミニウムアルコキシド、フ
エノキシド、ポリシロキサン、アルコキシシラン、ポリ
エチレン、ポリプロピレン、ポリスチレンなどを例示す
ることができる。固体触媒成分aは、成分A,B,Cを
任意の順序で接触させて得ることが可能であるが、好ま
しくは、成分Al.Bを接触させ、次いで成分Cを接触
させる方法を採るのが好ましい。
Such additional components may be, for example, organic or inorganic inert diluents. Such additional components include, for example, B2O3, NaCl, Na2SO4, AIl2O3,
Examples include SiO, CaCl2, aluminum alkoxide, phenoxide, polysiloxane, alkoxysilane, polyethylene, polypropylene, and polystyrene. Solid catalyst component a can be obtained by contacting components A, B, and C in any order, but preferably components Al. It is preferable to adopt a method of contacting component B and then contacting component C.

接触の方法においても任意の方法をとることが可能であ
るが、好適な方法は、成分AとBを共粉砕し、しかる後
、液相の成分Cを接触させる方法を採用するのが好まし
い。共粉砕処理は、例えばポールミル、振動ミル、衝撃
ミルなどを用いて、酸素、水などの実質的不存在下で行
ラのが一般的である。
Although any contacting method can be used, a preferred method is to co-pulverize components A and B and then bring them into contact with component C in a liquid phase. The co-pulverization treatment is generally carried out in the substantial absence of oxygen, water, etc. using, for example, a pole mill, vibration mill, impact mill, or the like.

原料の種類や粉砕装置に応じて粉砕条件を適当に選択す
ることが望ましいが、一般には粉砕時間は1時間及至1
0日間程度であり、また粉砕温度は常温近辺に選べばよ
く、特に冷却や加熱の必要はない。この操作によつて原
料マグネシウム化合物の最も強い回折線の半価巾が拡げ
られる。その拡がりの程度は、例えば1.05倍以上で
ある。かかる方法によつて得た生成物の構造については
不明であるが、不活性希釈剤等による洗浄でその組成が
変ることはない。成分Bの使用量は、成分A中のマグネ
シウム1原子当り、好ましくは0.01ないし2モル、
一層好ましくは0.05ないし1モルである。
It is desirable to select the grinding conditions appropriately depending on the type of raw material and the grinding equipment, but in general, the grinding time is between 1 hour and 1 hour.
The grinding time is about 0 days, and the grinding temperature can be selected around room temperature, and there is no need for cooling or heating. This operation widens the half-width of the strongest diffraction line of the raw material magnesium compound. The extent of the spread is, for example, 1.05 times or more. Although the structure of the product obtained by this method is unknown, its composition does not change after washing with an inert diluent or the like. The amount of component B used is preferably 0.01 to 2 mol per 1 atom of magnesium in component A,
More preferably, it is 0.05 to 1 mol.

成分Cを液相で接触させるには、四塩化テタンのような
液状のチタン化合物を単味で、あるいはテタン化合物を
へキサン、ヘプタン、灯油のような不活性溶媒に溶解さ
せた状態で行ラ方法を採用するのがよい。
To contact component C in a liquid phase, a liquid titanium compound such as tethane tetrachloride may be used alone, or the tethane compound may be dissolved in an inert solvent such as hexane, heptane, or kerosene. It is better to adopt this method.

接触濶度に特に制限はないが、好ましくはoないし20
0℃で約0.5時間以上接触させるのがよい。接触後、
r過によつて成分aを単離し、不活性溶媒でよく洗浄し
た後、重合に供するのがよい。本発明においては、ハロ
ゲン/チタン(モル比)が6以上、好ましくは6ないし
50,電子供与体/テタン(モル比)が0.1以上、好
ましくは0.1ないし1、チタン/マグネシウム(重量
比)が0.05ないし0.5の固体触媒成分aが触媒の
一成分として用いられる。
There is no particular limit to the degree of contact, but it is preferably between o and 20.
It is preferable to contact at 0° C. for about 0.5 hours or more. After contact,
Component a is preferably isolated by filtration, thoroughly washed with an inert solvent, and then subjected to polymerization. In the present invention, the halogen/titanium (molar ratio) is 6 or more, preferably 6 to 50, the electron donor/tetane (molar ratio) is 0.1 or more, preferably 0.1 to 1, and the titanium/magnesium (by weight) A solid catalyst component a having a ratio of 0.05 to 0.5 is used as a component of the catalyst.

前記固体触媒成分a中のハロゲン分は、通常はテタン化
合物Cのハロゲン分に由来するものである。ハロゲンや
電子供与体の種類によつても異なるが、典型的な固体触
媒成分a中のマグネシウム、テタン、ハロゲン、電子供
与体の重量比は、1対( 0.05ないし0.5)対(
lないし5)対(0.1ないし1.5)であり、常温に
おけるヘキサン洗浄によつて、実質的にその組成を変え
ることはない。これらは、通常、表面積10d/g以上
、好ましくは20d/g以上を示す。周期律表第1族な
いし第3族金属の有機金属化合物bは、金属に直結する
炭化水素基を有するものでアルキルアルミニウム化合物
、アルキルアルミニウムアルコキシド、アルキルアルミ
ニウムヒドリド、アルキルアルミニウムハライド、アル
キルアルミニウムアルコキシド、ジアルキル亜鉛、ジア
ルキルマグネシウム、アルキルアルミニウムハライドな
どを例示できる。
The halogen content in the solid catalyst component a usually originates from the halogen content of the tethane compound C. Although it varies depending on the type of halogen and electron donor, a typical weight ratio of magnesium, tethane, halogen, and electron donor in solid catalyst component a is 1:(0.05 to 0.5):(
1 to 5) (0.1 to 1.5), and its composition is not substantially changed by washing with hexane at room temperature. These usually exhibit a surface area of 10 d/g or more, preferably 20 d/g or more. Organometallic compounds b of Group 1 to Group 3 metals in the periodic table are those having a hydrocarbon group directly bonded to the metal, such as alkylaluminum compounds, alkylaluminum alkoxides, alkylaluminum hydrides, alkylaluminum halides, alkylaluminum alkoxides, dialkyl Examples include zinc, dialkylmagnesium, and alkylaluminum halides.

これらの中で好適な化合物は、Al (C,H,),、
Al(CH,),、Al( C3H,)3、Al(C4
H,)3、Al(Cl2H2,)3などのトリアルキル
またはトリアルケニルアルミニウム、(C2H5)2A
I0AI(C2H,)2、(C4H9)2AI0AI(
C,H,)2、(C,H,), AIN(C6H,)A
l(C2H,)2のような酸素や窒素原子を介してAl
原子が多数個連なつた構造のアルキルアルミニウム化合
物、(C2H,)2AIH)(C4H,)2AIHのよ
うなジアルキルアルミニウムヒドリド、(C2H,)2
AICI、(C2H,)2A11,(C4H,)2AI
CIなどのジアルキルアルミニウムハライド、(C,H
,),Al(0C.H,)、(C2H,)2A1(0C
6H,)のようなジアルキルアルミニウムアルコキシド
またはフエノキシドであり、もつとも好適なものはトリ
アルキルアルミニウムである。
Among these, preferred compounds are Al (C,H,),
Al(CH,),,Al(C3H,)3,Al(C4
H,)3, trialkyl or trialkenyl aluminum such as Al(Cl2H2,)3, (C2H5)2A
I0AI(C2H,)2, (C4H9)2AI0AI(
C,H,)2,(C,H,),AIN(C6H,)A
Al via oxygen or nitrogen atoms such as l(C2H,)2
Alkylaluminum compounds with a structure in which many atoms are linked together, dialkylaluminum hydrides such as (C2H,)2AIH) (C4H,)2AIH, (C2H,)2
AICI, (C2H,)2A11, (C4H,)2AI
Dialkyl aluminum halides such as CI, (C,H
, ), Al(0C.H,), (C2H,)2A1(0C
6H,) or phenoxides, the most preferred being trialkylaluminum.

重合に用いるオレフインとしては、エチレン、プロピレ
ン、1−ブテン、4−メチル−1−ベンゼンなどであり
、これらは単独重合のみならず、ランダム共重合、プロ
ツク共重合を行うことができる。
Olefins used in the polymerization include ethylene, propylene, 1-butene, 4-methyl-1-benzene, etc., and these can be used not only for homopolymerization but also for random copolymerization and block copolymerization.

また共重合に際し、共役ジエンや非共役ジエンのような
多不飽和化合物を共重合成分に選ぶことができる。これ
らは結晶性重合体、あるいは非晶性重合体を目的とする
ものであつてもよいが、とくに炭素数3以上のα−オレ
フインの重合に用いると立体規則性の高い重合体が高収
量で得られる。重合は、液相、気相の何れにおいても行
うことができる。
Further, during copolymerization, a polyunsaturated compound such as a conjugated diene or a non-conjugated diene can be selected as a copolymerization component. These may be aimed at crystalline polymers or amorphous polymers, but when used in the polymerization of α-olefins having 3 or more carbon atoms, polymers with high stereoregularity can be produced in high yields. can get. Polymerization can be carried out in either liquid phase or gas phase.

液相で行う場合は、ヘキサン、ヘプタン、灯油のような
不活性溶媒を反応媒体としてもよいが、オレフィンそれ
自身を反応媒体とすることもできる。液相重合の場合に
は、液相11当り、固体触媒成分aをチタン原子に換算
して0.001ないし0.5ミリモルに、また周期律表
第1ないし第3族金属の有機金属化合物bを金属原子に
換算して0.1ないし50ミリモルに保つのが好ましい
。重合に際し、水素のような分子量調節剤を用いてもよ
い。さらに炭素数3以上のα−オレフインの立体規則性
制御のため、エーテル、エチレングリコール誘導体、エ
ステル有機酸などの含酸素電子供与体およびアミン、含
硫黄化合物、ニトリルなどを共存させてもよく、とくに
芳香族含酸素化合物、なかでも芳香族カルボン酸エステ
ルが好ましい。かかる芳香族カルボン酸エステルの種類
は、固体触媒成分a調製に用いる前述したものから選ば
れるが、ここでとくに好適なものは安息香酸エステルお
よび核置換された安息香酸エステルであり、安息香酸エ
ステル、トルイル酸エステル、アニス酸エステル、フタ
ル酸ジエステル、テレフタル酸ジエステル、ヒドロキシ
安息香酸エステル、アミノ安息香酸エステルであり、も
つとも好ましいものはp−トルイル酸メチル、p−トル
イル酸エチルである。これらは前記有機金属化合物との
付加反応生成物の形で用いてもよい。効果的な前記化合
物の使用量は、有機金属化合物1モルに対して通常0.
001ないし10モル、好ましくぱ0.01ないし2モ
ル、とくに好ましくは0.1ないし1モルである。オレ
フインの重合温度は、好ましくは20ないし200℃、
一層好ましくは50ないし180℃程度、圧力は常圧な
いし50!/滅好ましくは2ないし20Kf/CrA程
度の加圧条件下で行うのが好ましい。
When carried out in a liquid phase, an inert solvent such as hexane, heptane or kerosene may be used as the reaction medium, but the olefin itself may also be used as the reaction medium. In the case of liquid phase polymerization, the solid catalyst component a is 0.001 to 0.5 mmol in terms of titanium atoms per liquid phase 11, and the organometallic compound b of a metal of Groups 1 to 3 of the periodic table is added. is preferably maintained at 0.1 to 50 mmol in terms of metal atoms. A molecular weight regulator such as hydrogen may be used during the polymerization. Furthermore, in order to control the stereoregularity of α-olefins having 3 or more carbon atoms, oxygen-containing electron donors such as ethers, ethylene glycol derivatives, and ester organic acids, as well as amines, sulfur-containing compounds, nitriles, etc. may be coexisting, and especially Aromatic oxygen-containing compounds, especially aromatic carboxylic acid esters, are preferred. The type of aromatic carboxylic acid ester is selected from those mentioned above for use in preparing the solid catalyst component a, and particularly preferred are benzoic acid ester and nuclear-substituted benzoic acid ester, and benzoic acid ester, These include toluic acid ester, anisic acid ester, phthalic acid diester, terephthalic acid diester, hydroxybenzoic acid ester, and aminobenzoic acid ester, and the most preferred ones are methyl p-toluate and ethyl p-toluate. These may be used in the form of addition reaction products with the organometallic compounds. The effective amount of the compound to be used is usually 0.0% per mole of the organometallic compound.
The amount is preferably 0.01 to 10 mol, preferably 0.01 to 2 mol, particularly preferably 0.1 to 1 mol. The polymerization temperature of the olefin is preferably 20 to 200°C,
More preferably, the temperature is about 50 to 180°C, and the pressure is normal pressure to 50! It is preferable to carry out under pressurized conditions, preferably about 2 to 20 Kf/CrA.

重合は、回分式、半連続式、連続式の何れの態様におい
ても行うことができる。さらに重合を反応条件の異なる
2段以上に分けて行うことも可能である。本発明によれ
ば、とくに炭素数3以上のα−オレフインから高立体規
則性重合体を高収量で得ることが可能である。
Polymerization can be carried out in any of the batch, semi-continuous and continuous modes. Furthermore, it is also possible to carry out the polymerization in two or more stages with different reaction conditions. According to the present invention, it is possible to obtain a highly stereoregular polymer in high yield, particularly from an α-olefin having 3 or more carbon atoms.

次に実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to examples.

実施例 1 市販のMg(0CH,)20.3モルを窒素雰囲気下で
丸底フラスコに装入し、さらにフエノール0.6モルを
ヘキサン200−に希釈した。
Example 1 20.3 moles of commercially available Mg(0CH,) were charged into a round bottom flask under a nitrogen atmosphere, and further 0.6 moles of phenol was diluted in 200% hexane.

攪拌しながら昇温し、蒸留により留出分を排除してMg
(0C6H5)2を得た。このもののX線スペクトルの
最大強度を示す回折線の半価巾は0.49であつた。次
に上記Mg(0C6H5),0.2モル、安息香酸エチ
ル0.033モルを、窒素雰囲気中、直径157!Eの
ステンレス鋼(SUS32)製ボール100個を収容し
た内容積800T!!t1内直径100uのステンレス
鋼製ボールミル円筒に装入し、125rTnで100時
間接触させた。
The temperature is raised while stirring, and the distillate is removed by distillation to remove Mg.
(0C6H5)2 was obtained. The half width of the diffraction line showing the maximum intensity of the X-ray spectrum of this product was 0.49. Next, 0.2 mol of the above Mg (0C6H5) and 0.033 mol of ethyl benzoate were added in a nitrogen atmosphere with a diameter of 157 mm. Internal volume 800T that accommodates 100 stainless steel (SUS32) balls! ! It was charged into a stainless steel ball mill cylinder with a t1 inner diameter of 100 u, and was brought into contact with 125 rTn for 100 hours.

得られた固体処理物のX線スペクトルの最大強度を示す
回折線の半価巾は5.83トであつた。上記固体処理物
を四塩化チタン200m1中に懸濁させ、80℃で2時
間攪拌して反応させた。
The half width of the diffraction line showing the maximum intensity of the X-ray spectrum of the obtained solid treated product was 5.83t. The above solid treated product was suspended in 200 ml of titanium tetrachloride and stirred at 80° C. for 2 hours to react.

反応終了後、固体部をf過により採取し、ヘキサンで充
分洗浄してチタン含有固体触媒成分を得た。該成分は、
チタン3.5重量%、塩素54重量%、マグネシウム1
8.0重量%、安息香酸エチル11.1重量%を含んで
いた。内容積22のオートクレープに十分に酸素および
水分が除かれたヘキサン750艷を装入し、40℃プロ
ピレン雰囲気下でトリエチルアルミニウム5.0mm0
1およびp−トルイル酸メチル1.59mm01を装入
し、5分後前記チタン含有固体触媒成分をチタン原子換
算で0.03mm01装入した。系を60℃に昇温し、
プロピレンで全圧7.0Kf/Cf!iに昇圧し、引続
き水素350meを導入、4時間重合を行つた。重合終
了後、固体成分をP過したところ白色粉末状ポリプロピ
レン244gを得た。沸騰n−ヘプタンによる抽出残率
は96.2%であり、嵩比重は0.36、メルトインデ
ツクスは4.9であつた。一方、液相部の濃縮により溶
媒可溶性重合体12.1gを得た。実施例 2ないし
8市販のMg( 0CH,)20.3モルを窒素雰囲気
下で丸底フラスコに装入し、表1のアルコール、フエノ
ール類をヘキサン200−に希釈して装入した。
After the reaction was completed, the solid portion was collected by filtration and thoroughly washed with hexane to obtain a titanium-containing solid catalyst component. The ingredient is
Titanium 3.5% by weight, chlorine 54% by weight, magnesium 1%
8.0% by weight, and 11.1% by weight of ethyl benzoate. An autoclave with an internal volume of 22 cm was charged with 750 ml of hexane from which oxygen and moisture had been sufficiently removed, and triethylaluminum 5.0 mm
1 and 1.59 mm01 of methyl p-toluate were charged, and after 5 minutes, 0.03 mm01 of the titanium-containing solid catalyst component was charged in terms of titanium atoms. The system was heated to 60°C,
Total pressure 7.0Kf/Cf with propylene! The pressure was increased to i, and then 350 me of hydrogen was introduced, and polymerization was carried out for 4 hours. After the polymerization was completed, the solid component was filtered through phosphorus to obtain 244 g of white powdery polypropylene. The extraction residue with boiling n-heptane was 96.2%, the bulk specific gravity was 0.36, and the melt index was 4.9. On the other hand, 12.1 g of a solvent-soluble polymer was obtained by concentrating the liquid phase. Example 2 or
8 20.3 mol of commercially available Mg (0CH,) was charged into a round bottom flask under a nitrogen atmosphere, and the alcohols and phenols shown in Table 1 were diluted with 200% hexane and charged.

攪拌しながら昇濶し蒸留により留出分を排除して、表1
の化合物を得た。上記のようにして得た化合物を実施例
1のMg(0C6H,)2のかわりに使用し、実施例1
と同様にして触媒合成を行い、プロピレン重合を行つた
Table 1
The compound was obtained. The compound obtained as described above was used in place of Mg(0C6H,)2 in Example 1, and Example 1
Catalyst synthesis was carried out in the same manner as described above, and propylene polymerization was carried out.

結果を表1に示した。比較例 実施例2で合成したMg(0−ぐ=〉−CH3),20
gをTiCl42OOmt中に懸濁させ、攪拌しながら
80℃で2時間反応させた。
The results are shown in Table 1. Comparative Example Mg (0-g=>-CH3) synthesized in Example 2, 20
g was suspended in TiCl42OOmt and reacted at 80° C. for 2 hours with stirring.

反応終了後r過により固体部を取り出し、ヘキサン洗浄
後乾燥した。該チタン含有固体触媒成分は、チタン4.
0重量%、塩素59重量%、マグネシウム18.0重量
%を含む。上記で得たチタン触媒を実施例1と同様の条
件下でプロピレン重合を行つたところ、白色粉末状ポリ
プロピレン15.8g、溶媒可溶性重合体1.7gを得
たにすぎない。
After the reaction was completed, the solid portion was taken out by filtration, washed with hexane, and then dried. The titanium-containing solid catalyst component includes titanium 4.
0% by weight, 59% by weight of chlorine, and 18.0% by weight of magnesium. When the titanium catalyst obtained above was subjected to propylene polymerization under the same conditions as in Example 1, only 15.8 g of white powdery polypropylene and 1.7 g of a solvent-soluble polymer were obtained.

粉末の沸騰n−ヘプタンによる抽出残は90.8%であ
つた。実施例 9ないし 12 実施例2で合成したチタン触媒を用い、実施例1の重合
条件下で、有機アルミニウムと組合せる有機酸エステル
を表2に示した化合物を用いて、実施例1と同様にプロ
ピレンの重合を行つた。
The residue of the powder extracted with boiling n-heptane was 90.8%. Examples 9 to 12 Using the titanium catalyst synthesized in Example 2, under the polymerization conditions of Example 1, and using the compounds shown in Table 2 as organic acid esters to be combined with organoaluminum, the same procedure as in Example 1 was carried out. Polymerization of propylene was carried out.

結果を表2に示した。実施例 13ないし 16 実施例3で合成したマグネシウム化合物 Mg(0CH,)(0−〈=〉)を0.2モル、および
表3に示した有機酸エステルを用いた他は実施例1と同
様にしてチタン含有触媒成分を合成し、実施例1と同じ
条件下でプロピレン重合を行つた。
The results are shown in Table 2. Examples 13 to 16 Same as Example 1 except that 0.2 mol of the magnesium compound Mg(0CH,)(0-<=>) synthesized in Example 3 and the organic acid ester shown in Table 3 were used. A titanium-containing catalyst component was synthesized, and propylene polymerization was carried out under the same conditions as in Example 1.

Claims (1)

【特許請求の範囲】 1 アルコキシ基又はアリロキシ基含有ハロゲン不含マ
グネシウム化合物A、電子供与体B及びチタンのハロゲ
ン化合物Cから導かれる、ハロゲン/チタン(モル比)
が6以上、電子供与体/チタン(モル比)が0.1以上
、チタン/マグネシウム(重量比)が0.05ないし0
.5の固体触媒成分aと周期律表第1族ないし第3族金
属の有機金属化合物bとの組合せ触媒を用いてオレフィ
ンを重合もしくは共重合することを特徴とするポリオレ
フィンの製造方法。 2 ハロゲン/チタン(モル比)が6ないし50、電子
供与体/チタン(モル比)が0.1ないし1の固体触媒
成分aを用いる特許請求の範囲1記載の方法。 3 マグネシウム化合物Aが、一般式 Mg(OR)_n(OR′)_2_−_n(但し、R、
R′はアルキル基又はアリール基で、RとR′は同一で
も異なつていてもよい。 nは0≦n≦2を示す数である。)で示される化合物を
用いる特許請求の範囲1又は2記載の方法。 4 該式中、R及び又はR′がアルアルキル基であるマ
グネシウム化合物を用いる特許請求の範囲3記載の方法
。 5 アルアルキル基が、フェニルアルキル基、低級アル
キル置換フェニルアルキル基、低級アルコキシ置換フェ
ニルアルキル基およびハロゲン置換フェニルアルキル基
よりなる群から選ばれたものである特許請求の範囲4項
記載の方法。 6 該式中、R及び又はR′が、フェニル基、ナフチル
基、低級アルキル置換フェニル基、低級アルキル置換ナ
フチル基、低級アルコキシ置換フェニル基、低級アルコ
キシ置換ナフチル基、ハロゲン置換フェニル基及びハロ
ゲン置換ナフチル基よりなる群から選ばれたアリール基
である特許請求の範囲3記載の方法。 7 電子供与体Bが、有機酸エステルである特許請求の
範囲1乃至6のいずれかに記載の方法。 8 有機酸エステルが、芳香族カルボン酸エステルであ
る特許請求の範囲7記載の方法。 9 チタンのハロゲン化合物Cが、四塩化チタンである
特許請求の範囲1乃至8のいずれかに記載の方法。10
固体触媒成分aが、マグネシウム化合物Aと電子供与
体Bとの共粉砕物に、四塩化チタンを液相で作用させて
得られたものである特許請求の範囲1乃至9のいずれか
に記載の方法。 11 有機金属化合物bが、有機アルミニウム化合物で
ある特許請求の範囲1乃至10のいずれかに記載の方法
。 12 オレフィン重合時に、電子供与体Cを共存させる
特許請求の範囲1乃至11のいずれかに記載の方法。 13 電子供与体Cが有機酸エステルである特許請求の
範囲1乃至12のいずれかに記載の方法。
[Scope of Claims] 1. Halogen/titanium (molar ratio) derived from a halogen-free magnesium compound A containing an alkoxy group or an allyloxy group, an electron donor B, and a halogen compound C of titanium.
is 6 or more, electron donor/titanium (molar ratio) is 0.1 or more, titanium/magnesium (weight ratio) is 0.05 to 0.
.. A method for producing a polyolefin, which comprises polymerizing or copolymerizing an olefin using a combination catalyst of the solid catalyst component a of No. 5 and an organometallic compound b of a metal from Group 1 to Group 3 of the periodic table. 2. The method according to claim 1, wherein the solid catalyst component a has a halogen/titanium (molar ratio) of 6 to 50 and an electron donor/titanium (molar ratio) of 0.1 to 1. 3 Magnesium compound A has the general formula Mg(OR)_n(OR')_2_-_n (however, R,
R' is an alkyl group or an aryl group, and R and R' may be the same or different. n is a number representing 0≦n≦2. ) The method according to claim 1 or 2, using a compound represented by: 4. The method according to claim 3, wherein a magnesium compound in which R and/or R' are an aralkyl group is used. 5. The method according to claim 4, wherein the aralkyl group is selected from the group consisting of a phenylalkyl group, a lower alkyl-substituted phenylalkyl group, a lower alkoxy-substituted phenylalkyl group, and a halogen-substituted phenylalkyl group. 6 In the formula, R and or R' are a phenyl group, a naphthyl group, a lower alkyl-substituted phenyl group, a lower alkyl-substituted naphthyl group, a lower alkoxy-substituted phenyl group, a lower alkoxy-substituted naphthyl group, a halogen-substituted phenyl group, and a halogen-substituted naphthyl group. 4. The method according to claim 3, wherein the aryl group is an aryl group selected from the group consisting of: 7. The method according to any one of claims 1 to 6, wherein electron donor B is an organic acid ester. 8. The method according to claim 7, wherein the organic acid ester is an aromatic carboxylic acid ester. 9. The method according to any one of claims 1 to 8, wherein the titanium halogen compound C is titanium tetrachloride. 10
10. The method according to claim 1, wherein the solid catalyst component a is obtained by causing titanium tetrachloride to act on a co-pulverized product of magnesium compound A and electron donor B in a liquid phase. Method. 11. The method according to any one of claims 1 to 10, wherein the organometallic compound b is an organoaluminum compound. 12. The method according to any one of claims 1 to 11, in which an electron donor C is coexisting during olefin polymerization. 13. The method according to any one of claims 1 to 12, wherein the electron donor C is an organic acid ester.
JP51076085A 1976-06-29 1976-06-29 Method for manufacturing polyolefin Expired JPS5952166B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP51076085A JPS5952166B2 (en) 1976-06-29 1976-06-29 Method for manufacturing polyolefin
ZA00773671A ZA773671B (en) 1976-06-29 1977-06-20 Process for producing polymers or copolymers of olefins with at least three carbon atoms
AU26339/77A AU505148B2 (en) 1976-06-29 1977-06-22 Catalytic polymerisation process
GB26417/77A GB1554340A (en) 1976-06-29 1977-06-23 Preparation of olefin polymers
FR7719819A FR2356676A1 (en) 1976-06-29 1977-06-28 PROCESS FOR (CO) POLYMERIZATION OF OLEFINS CONTAINING AT LEAST 3 CARBON ATOMS, IN THE PRESENCE OF A CATALYST CONTAINING THE REACTION PRODUCT OF IN PARTICULAR A TITANIUM COMPOUND WITH A HALOGEN-FREE ORGANIC MAGNESIUM COMPOUND
BE178838A BE856189A (en) 1976-06-29 1977-06-28 PROCESS FOR PREPARING POLYMERS OR COPOLYMERS OF OLEFINS CONTAINING AT LEAST 3 ATOMS OF CARBON
DE19772729196 DE2729196A1 (en) 1976-06-29 1977-06-28 METHOD FOR PRODUCING POLYMERS OR COPOLYMERS OF OLEFINS WITH AT LEAST 3 CARBON ATOMS
AT457177A AT350257B (en) 1976-06-29 1977-06-28 METHOD FOR PRODUCING POLYMERS OR COPOLYMERS OF OLEFINS WITH AT LEAST THREE C ATOMS
CA281,521A CA1082846A (en) 1976-06-29 1977-06-28 Process for producing polymers or copolymers of olefins with at least three carbon atoms
ES460188A ES460188A1 (en) 1976-06-29 1977-06-28 Preparation of olefin polymers
PT66733A PT66733B (en) 1976-06-29 1977-06-28 Process for producing polymers or copolymers of olefins which at least three carbon cetones
BR7704220A BR7704220A (en) 1976-06-29 1977-06-28 PERFECT PROCESS TO PRODUCE A POLYMER OR COPOLYMER OF AN OLEFINE CONTAINING AT LEAST THREE CARBON ATOMES
NO772287A NO150721C (en) 1976-06-29 1977-06-28 PROCEDURE FOR THE PREPARATION OF A POLYMER OR COPOLYMER OF AN OLEFIN CONTAINING AT LEAST 3 CARBON ATOMS
SE7707468A SE435518B (en) 1976-06-29 1977-06-28 PROCEDURE FOR POLYMERIZATION OF AT LEAST ONE OLEFINE CONTENTS 3-6 COLATOMES IN THE PRESENT OF A CATALYST OF (A) A MAGNESIUM-CONTAINING SOLID TITAN COMPOSITION AND (B) AN ORGANOALUMINUM
NLAANVRAGE7707220,A NL169324C (en) 1976-06-29 1977-06-29 Process for preparing olefin polymers.
IT25201/77A IT1081505B (en) 1976-06-29 1977-06-29 PROCEDURE FOR PRODUCING POLYMERS OR OLEFINE COPOLYMERS HAVING AT LEAST THREE CARBON ATOMS
PH19928A PH14174A (en) 1976-06-29 1977-06-29 Process for producing polymers or copolymers of olefins with at least three carbon atoms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51076085A JPS5952166B2 (en) 1976-06-29 1976-06-29 Method for manufacturing polyolefin

Publications (2)

Publication Number Publication Date
JPS532580A JPS532580A (en) 1978-01-11
JPS5952166B2 true JPS5952166B2 (en) 1984-12-18

Family

ID=13594978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51076085A Expired JPS5952166B2 (en) 1976-06-29 1976-06-29 Method for manufacturing polyolefin

Country Status (17)

Country Link
JP (1) JPS5952166B2 (en)
AT (1) AT350257B (en)
AU (1) AU505148B2 (en)
BE (1) BE856189A (en)
BR (1) BR7704220A (en)
CA (1) CA1082846A (en)
DE (1) DE2729196A1 (en)
ES (1) ES460188A1 (en)
FR (1) FR2356676A1 (en)
GB (1) GB1554340A (en)
IT (1) IT1081505B (en)
NL (1) NL169324C (en)
NO (1) NO150721C (en)
PH (1) PH14174A (en)
PT (1) PT66733B (en)
SE (1) SE435518B (en)
ZA (1) ZA773671B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225485A (en) 1978-07-24 1980-09-30 Miles Laboratories, Inc. Chemiluminescent naphthalene-1,2-dicarboxylic acid hydrazide-labeled polypeptides and proteins
US4331808A (en) 1978-07-24 1982-05-25 Miles Laboratories, Inc. Chemiluminescent naphthalene-1,2-dicarboxylic acid hydrazide-labeled haptens
US4277370A (en) * 1979-02-15 1981-07-07 Standard Oil Company (Indiana) Alpha-olefin polymerization catalyst
US4324690A (en) 1979-02-15 1982-04-13 Standard Oil Company (Indiana) Alpha-olefin polymerization catalyst
DE3064564D1 (en) 1979-04-30 1983-09-22 Shell Int Research Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
CA1141093A (en) 1979-05-17 1983-02-08 Brian L. Goodall Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
JPS5950246B2 (en) 1979-10-16 1984-12-07 三井化学株式会社 Production method of olefin copolymer for molding
JPS5763309A (en) * 1980-10-03 1982-04-16 Idemitsu Kosan Co Ltd Polymerization of alpha-olefin
AT377625B (en) * 1981-06-29 1985-04-10 Georges A Cournoyer DEVICE FOR TEACHING MUSIC SCREENS AND INTERVALS
DE3219117A1 (en) * 1982-05-21 1983-11-24 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING A CATALYST COMPONENT AND THEIR USE FOR THE POLYMERIZATION OF OLEFINS
JPS5938211A (en) * 1982-08-30 1984-03-02 Idemitsu Kosan Co Ltd Polymerization of alpha-olefin
US4419269A (en) 1982-12-06 1983-12-06 The Dow Chemical Company Transition metal containing catalyst
SE438091B (en) * 1983-06-08 1985-04-01 Gote Palsgard COORDINATE REGISTRATION DEVICE
US4866022A (en) * 1984-03-23 1989-09-12 Amoco Corporation Olefin polymerization catalyst
JPS60220805A (en) * 1984-04-17 1985-11-05 Kawasaki Heavy Ind Ltd Device for forming solid shape
US4618662A (en) * 1984-04-23 1986-10-21 Mobil Oil Corporation Catalyst composition for polymerizing alpha-olefins
JPS61108611A (en) * 1984-11-01 1986-05-27 Toho Titanium Co Ltd Catalyst component for olefin polymerization and catalyst
GB8521431D0 (en) * 1985-08-28 1985-10-02 Shell Int Research Spherical magnesium alkoxide particles
US4829038A (en) * 1986-06-17 1989-05-09 Amoco Corporation Alpha-olefin polymerization catalyst system including an advantageous modifier component
US4914069A (en) * 1987-05-04 1990-04-03 Shell Oil Company Preparation of olefin polymerization catalyst component
US4948770A (en) * 1987-06-29 1990-08-14 Shell Oil Company Method for crystallizing magnesium chloride and method for using in a catalyst composition
US4818799A (en) * 1987-11-13 1989-04-04 Shell Oil Company Process for the in-reactor stabilization of polyolefins
US4870039A (en) * 1987-11-24 1989-09-26 Shell Oil Company Olefin polymerization catalysts from soluble magnesium alkoxides made from mixed magnesium alkyls and aryls
US4870040A (en) * 1987-11-24 1989-09-26 Shell Oil Company Olefin polymerization catalysts from soluble magnesium alkoxides made from alkyl or aryl magnesium mixed with a branched or aromatic aldehyde
US5270410A (en) * 1989-04-25 1993-12-14 Shell Oil Company Process for the production of elastomeric, primarily syndiotactic polypropylene and catalysts for use in said process
US5270276A (en) * 1989-04-25 1993-12-14 Shell Oil Company Process for the production of elastomeric, primarily syndiotactic polypropylene and catalysts for use in said process
US4971936A (en) * 1989-07-10 1990-11-20 Shell Oil Company Catalyst component for making primarily isotactic elastomeric polypropylene or polybutene
GB8925945D0 (en) * 1989-11-16 1990-01-04 Shell Int Research Olefin polymerization catalysts
US5089573A (en) * 1990-02-26 1992-02-18 Shell Oil Company Process for the production of elastomeric, primarily isotactic polyolefins and catalysts for use in said process
US5118767A (en) * 1990-02-26 1992-06-02 Shell Oil Company Process for producing mildly elastomeric primarily isotatic polypropylene and poly-1-butene
US5118649A (en) * 1990-02-26 1992-06-02 Shell Oil Company Process for the production of elastomeric primarily isotactic polyolefins and catalysts for use in said process
JP2958923B2 (en) * 1990-04-27 1999-10-06 東邦チタニウム株式会社 Solid catalyst components and catalysts for olefin polymerization
US5506683A (en) * 1990-04-30 1996-04-09 Kumho & Co., Inc. Non-contact measuring apparatus for the section profile of a tire and its method
US5118768A (en) * 1990-05-11 1992-06-02 Shell Oil Company Process for the production of elastomeric, primarily isotactic polyolefins and catalysts for use in said process
US5164352A (en) * 1990-05-11 1992-11-17 Shell Oil Company Process for the production of elastomeric, primarily isotactic polyolefins and catalysts for use in said process
KR100341040B1 (en) 1994-08-18 2002-11-23 칫소가부시키가이샤 High Rigidity Propylene-Ethylene Block Copolymer Composition and Its Manufacturing Method
JP3355864B2 (en) * 1995-04-24 2002-12-09 チッソ株式会社 Continuous production of high-rigidity propylene / ethylene block copolymer
FR2802833B1 (en) * 1999-12-24 2002-05-10 Inst Francais Du Petrole CATALYTIC COMPOSITION AND PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE, PARTICULARLY HEXENE-1
CN102491874B (en) * 2011-12-08 2015-05-20 中国科学院长春应用化学研究所 Metallic alkoxy complex, catalyst composition and preparation method of poly-caprolactone or poly-lactide
EP3564346A4 (en) 2016-12-27 2020-09-02 Mitsui Chemicals, Inc. Lubricating oil composition, viscosity modifier for lubricating oil, and additive composition for lubricating oil
WO2021039818A1 (en) 2019-08-29 2021-03-04 三井化学株式会社 Lubricating oil composition
CN116023552A (en) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 Catalyst and catalyst system for olefin polymerization
CN116023554A (en) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 Catalyst active component, solid catalyst and catalyst system for olefin polymerization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298076A (en) * 1976-02-13 1977-08-17 Mitsubishi Chem Ind Ltd Preparation of polyolefins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2111455A1 (en) * 1971-03-10 1972-09-28 Hoechst Ag Process for the production of polyolefins
GB1492618A (en) * 1974-02-01 1977-11-23 Mitsui Petrochemical Ind Process for preparing highly stereoregular polyolefins and catalyst used therefor
IT1005486B (en) * 1974-02-15 1976-08-20 Montedison Spa THERMOPLASTIC RUBBERS AND THE PROCESS FOR THEIR PREPARATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298076A (en) * 1976-02-13 1977-08-17 Mitsubishi Chem Ind Ltd Preparation of polyolefins

Also Published As

Publication number Publication date
NO772287L (en) 1977-12-30
DE2729196A1 (en) 1978-01-05
NL169324C (en) 1982-07-01
AT350257B (en) 1979-05-25
PT66733B (en) 1978-11-24
FR2356676A1 (en) 1978-01-27
ZA773671B (en) 1978-05-30
PT66733A (en) 1977-07-01
NL7707220A (en) 1978-01-02
NL169324B (en) 1982-02-01
SE435518B (en) 1984-10-01
BE856189A (en) 1977-12-28
GB1554340A (en) 1979-10-17
ATA457177A (en) 1978-10-15
NO150721C (en) 1984-12-05
SE7707468L (en) 1977-12-30
ES460188A1 (en) 1978-05-01
AU2633977A (en) 1979-01-04
NO150721B (en) 1984-08-27
AU505148B2 (en) 1979-11-08
CA1082846A (en) 1980-07-29
PH14174A (en) 1981-03-19
DE2729196C2 (en) 1987-07-23
BR7704220A (en) 1978-04-04
FR2356676B1 (en) 1980-08-01
IT1081505B (en) 1985-05-21
JPS532580A (en) 1978-01-11

Similar Documents

Publication Publication Date Title
JPS5952166B2 (en) Method for manufacturing polyolefin
EP0019330B1 (en) Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
US4218339A (en) Catalyst components and catalysts for polymerizing olefins prepared from the catalysts
US4107415A (en) Process for the stereospecific polymerization of alpha-olefins
US4724255A (en) Catalyst components, a catalyst and a process for the polymerization olefins
RU2087485C1 (en) Propylene polymerization catalyst
JPS5948003B2 (en) Method for producing polyolefins
JPH01126307A (en) Solid catalyst component for polymerization catalyst of alpha olefin
EP0481748B1 (en) Olefin polymerization catalyst
CA2255522C (en) Novel electron donor containing compositions
JP2004527636A (en) Olefin polymerization catalyst composition and method for producing the same
US4820786A (en) Process for the preparation of linear low density polyethylene
EP0398439B1 (en) Solid alpha-olefin polymerization catalyst components
US4686200A (en) Catalyst for the polymerization of olefins
JPH07650B2 (en) Method for producing catalyst component for olefin polymerization
EP0096770A1 (en) Process for producing olefin polymers
JPS6112921B2 (en)
JPS60359B2 (en) Method for manufacturing titanium composite
JP2609278B2 (en) Transition metal composition
JPH06815B2 (en) Method for producing propylene polymer
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPH0780944B2 (en) Method for producing olefin polymer
JPH0532404B2 (en)
JPH0552323B2 (en)
JP2660967B2 (en) Method for producing olefin polymer