JPH0552323B2 - - Google Patents

Info

Publication number
JPH0552323B2
JPH0552323B2 JP58057058A JP5705883A JPH0552323B2 JP H0552323 B2 JPH0552323 B2 JP H0552323B2 JP 58057058 A JP58057058 A JP 58057058A JP 5705883 A JP5705883 A JP 5705883A JP H0552323 B2 JPH0552323 B2 JP H0552323B2
Authority
JP
Japan
Prior art keywords
catalyst
polymerization
oph
propylene
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58057058A
Other languages
Japanese (ja)
Other versions
JPS59182806A (en
Inventor
Sadanori Suga
Eiji Tanaka
Yasuo Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5705883A priority Critical patent/JPS59182806A/en
Publication of JPS59182806A publication Critical patent/JPS59182806A/en
Publication of JPH0552323B2 publication Critical patent/JPH0552323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はα−オレフむン重合甚固䜓觊媒に関す
る。曎に詳しくぱチレン、プロピレン、ブテン
−−メチルペンテン−等の重合に奜たし
く䜿甚される、高重合掻性を有する担䜓付觊媒成
分ず有機アルミニりム化合物ずからなる固䜓觊媒
に関するものである。 埓来、担䜓付觊媒で炭玠数以䞊のα−オレフ
むンの立䜓芏則性重合に適した觊媒ずしお特開昭
48−16986号、特開昭49−86482号、特開昭50−
108385号、特開昭50−126590号、特開昭51−
28189号等をはじめずしおハロゲン化マグネシり
ム化合物、奜たしくは塩化マグネシりムを担䜓原
料に甚いおチタン含有觊媒を補造する方法が数倚
く提案されおいる。 たた、本発明で甚いる䞀般匏 MgOR1oOR22-o   〔〕 匏䞭、R1、R2はアルキル基、アリヌル基たた
はアラルキル基を瀺し、R1ずR2は同䞀でも異な
぀おも良い。は≧≧を瀺す。 を担䜓ずしお䜿甚したチタン含有觊媒を甚いたオ
レフむンの重合に関しおも特公昭46−34098号、
特公昭47−1768号、特公昭47−42137号等に提案
がなされおはいるが、炭玠数以䞊のα−オレフ
むンの高立䜓芏則性重合に適したものはなか぀
た。䞀般匏〔〕で瀺される担䜓を甚いお立䜓芏
則性を改良する詊みも皮々提案され本出願人が先
に提案した特開昭52−98076号をはじめずしお特
開昭53−2580号、特開昭53−43094号、特開昭55
−152710号、特開昭56−26904号等が提案されお
はいるが充分に満足出来るものではなか぀た。本
発明者らは、䞀般匏〔〕で瀺される担䜓を甚い
たチタン含有固䜓觊媒の補法およびその觊媒によ
る重合方法に぀いお怜蚎した結果本発明に到達し
た。 すなわち本発明は、䞀般匏MgOR1oOR22
− 匏䞭、R1、R2はアルキル基、アリヌル基たた
はアラルキル基を瀺し、R1ずR2は同䞀でも異な
぀おも良い。は≧≧を瀺す。で衚わさ
れるマグネシりム化合物を、カルボン酞゚ステ
ル、ハロゲンずアリヌルオキシ基を含有するケむ
玠化合物および塩玠含有䟡チタン化合物より成
る皮の化合物で凊理するこずによ぀お埗られる
チタン含有固䜓觊媒成分(a)ず、有機アルミニりム
化合物(b)より成る觊媒の存圚䞋にオレフむンを重
合たたは共重合させるこずを特城ずするオレフむ
ン重合䜓の補造方法である。 先に瀺したハロゲン含有マグネシりムは吞湿性
たたは氎分ず反応する性質があり、ために䞀般匏
〔〕で瀺される担䜓を䜿甚するこずは觊媒補造
工皋䞊倧きな利点がある。 本発明を詳述すれば、 (A) 䞀般匏〔〕で瀺されるマグネシりム化合物
を (B) カルボン酞゚ステルず (C) ハロゲンずアリヌルオキシ基を含有するケむ
玠化合物ず (D) 塩玠含有䟡チタン化合物 より成る皮の化合物で 凊理するこずによ぀お埗られる固䜓觊媒成分(a)
ず有機アルミニりム化合物(b)ずを必須成分ずし、
曎に適宜カルボン酞゚ステル(c)を組合せたチタン
含有觊媒を甚いおオレフむンの重合たたは共重合
するこずを特城ずするオレフむン重合䜓の補造法
である。 本発明で䜿甚する䞀般匏〔〕で瀺されるマグ
ネシりム化合物を具䜓的に瀺すずMg
OCH32、MgOC2M52、MgOC3H7、Mg
OC4H92、MgOC6H52、MgOCH2C6H52、
MgOC6H5OC4H9、MgOC2H5CO6H5、
MgOC4H6CH32等のゞアルコキシマグネシり
ム、ゞアリヌルオキシマグネシりム、ゞアラルキ
ルオキシマグネシりム、アルキルオキシアリヌル
オキシマグネシりムを挙げるこずができる。 カルボン酞゚ステル(B)ずしおは、酢酞゚チル、
プロピオン酞メチル、アクリル酞゚チル、オレむ
ン酞゚チル、ステアリン酞゚チル、プニル酢酞
゚チル、安息銙酞メチル、安息銙酞゚チル、安息
銙酞プロピル、安息銙酞ブチル、トルむル酞メチ
ル、トルむル酞゚チル、トルむル酞プロピル、ト
ルむル酞ブチル、゚チル安息銙酞メチル、゚チル
安息銙酞゚チル、キシレンカルボン酞゚チル、ア
ニス酞メチル、アニス酞゚チル、゚トキシ安息銙
酞メチル、゚トキシ安息銙酞゚チル、ケむ皮酞゚
チル等が挙げられ、それらの䞭では芳銙族カルボ
ン酞゚ステルが奜たしく甚いられる。 ハロゲンずアリヌルオキシ基を含有するケむ玠
化合物(C)は、䞀般匏SiRaOArbXc匏䞭、
はアルキル基、アリヌル基たたはアラルキル基を
瀺し、Arはアリヌル基を瀺し、、、は
≊、、、
である数を瀺し、はハロゲンを瀺すで衚
わされる化合物であるが、具䜓的には、 PhSiOPh2ClPhはプニル基を瀺す、PhSi
OPh1.5Cl1.5、PhSiOPh1Cl2、 PhSiOPh0.5Cl2.5、MeSiOPh2ClMeはメチ
ル基を瀺す、MeSiOPh1.5cl1.5、MeSi
OPh1Cl2、MeSiOPh0.5Cl2.5、SiOPh3Cl、
SiOPh2.5、Cl1.5、SiOPh2Cl2、SiOPh1.5
Cl2.5、SiOPh1Cl3、SiOPh0.5Cl3.5等が挙げら
れる。さらにプニル基が、ハロゲンあるいはア
ルキル基等で眮換されおいおもよい。これらの
内、奜たしくはPhSiOPh0.5Cl2.5、PhSi
OPh1Cl2、 PhSiOPh−Cl0.5Cl2.5、PhSiOPh−Me0.5
Cl2.5、PhSiOPh−Cl1Cl2、PhSiOPh−
Me1Cl2等が挙げられる。 本発明方法においお、前蚘(A)、(B)、(C)、(D)成分
は機械的粉砕手法たたは炭化氎玠溶媒の存圚たた
は䞍存圚䞋に接觊させる方法等の手法をずり埗る
が、(A)、(B)、(C)、(D)成分を機械的粉砕混合あるい
は接觊させ、䞍掻性炭化氎玠溶媒で掗浄した埌
(B)、(C)、(D)を加えお曎に機械的粉砕するかたたは
(B)、(C)、(D)を加熱䞋に接觊混合し䞍掻性炭化氎玠
溶媒で掗浄する工皋を少くずも回以䞊繰り返す
方法も奜たしくずり埗る。 なお、繰り返し凊理の際、(C)成分ずしおハロゲ
ンおよびアリヌルオキシ含有ケむ玠化合物を少く
ずも回甚いれば他のハロゲン含有ケむ玠化合物
を甚いおもよい。 たた、觊媒補造工皋で䜿甚する各成分の぀の
工皋での䜿甚量をモル比で衚わすず通垞次のずお
りである。 MgOR1oOR22-o カルボン酞゚ステル10〜0.01、奜たしくは〜
0.1ハロゲンずアリヌルオキシ基を含有するケむ
玠化合物 20〜0.1、奜たしくは〜0.5 塩玠含有䟡チタン化合物 100〜0.1、奜たしく
は40〜 そしお通垞生成物䞭のチタン量が0.1〜10重量
、奜たしくは0.5〜重量になるように䞊蚘
各成分の䜿甚量を調節する。 䞊蚘各方法における機械粉砕は、ポヌルミル、
衝撃ミル、振動ミル等、埓来䞀般匏に採られおい
る方法によればよい。粉砕凊理枩床は通垞宀枩付
近でよく、加熱、冷华は特に必芁ずしない。粉砕
凊理時間は䜿甚する粉砕機の皮類にもよるが、通
垞、数時間乃至200時間である。 たた、䞍掻性炭化氎玠溶媒の存圚たたは䞍存圚
䞋での反応は通垞宀枩から200℃、奜たしくは80
〜150℃であり、反応時間は0.5〜時間皋床であ
る。 本発明においおは䞊蚘のようにしお埗られる反
応生成物を次いで䞍掻性炭化氎玠溶媒で掗浄し、
溶媒ぞの可溶成分を陀去する。そしおかくしお埗
られる觊媒成分(a)ず有機アルミニりム化合物(b)、
曎に必芁に応じおカルボン酞゚ステル(c)を混合し
おなる觊媒系を甚いお、オレフむンの重合たたは
共重合を行な぀おポリオレフむンを補造するので
ある。この際(a)、(b)、(c)各成分の添加順序には特
に制限はない。 次にこの觊媒系で甚いられる有機アルミニりム
化合物〔(b)成分〕ずしおは、奜たしくは䞀般匏
AlR2 oX3-oで衚わされる化合物が挙げられる。䞊
匏においおR2は炭玠数〜20個の炭化氎玠基、
特に脂肪族炭化氎玠基であり、はハロゲン、
は〜の数を瀺す。この有機アルミニりム化合
物の具䜓䟋ずしおは、トリ゚チルアルミニりム、
トリプロピルアルミニりム、トリむ゜ブチルアル
ミニりム、トリヘキシルアルミニりム、トリオク
チルアルミニりム、モノビニルゞ゚チルアルミニ
りム、ゞ゚チルアルミニりムモノクラむド等が挙
げられるが、奜たしくはトリアルキルアルミニり
ム単独およびゞアルキルアルミニりムモノハラむ
ドずの混合物が甚いられる。 たた、觊媒系成分(c)は前述の固䜓觊媒成分(a)補
造時に甚いた(B)成分が甚いられるが、奜たしくは
芳銙族カルボン酞゚ステルである。 觊媒各成分の䜿甚割合は、觊媒成分(a)䞭のチタ
ン察(b)成分のアルミニりム化合物察(c)成分のカル
ボン酞゚ステルのモル比が〜500〜100
奜たしくは20〜200〜50になるように遞
ばれる。 オレフむンずしおは、゚チレン、プロピレン、
ブテン−−メチルブテン−−メチル
ペンテン−等が挙げられ、奜たしくは炭玠数
以䞊のα−オレフむン、特にプロピレンが挙げら
れる。たた重合は単独重合のほかランダムたたは
ブロツク共重合䜓にも適甚できる。 重合反応は䞍掻性炭化氎玠、䟋えばヘキサン、
ヘプタン、シクロヘキサン、ベンれン、トル゚
ン、ペンタン、ブタン或いはこれらの混合物、た
たは重合を受けるα−オレフむンの液化物を溶媒
ずいおスラリヌ重合方匏で実斜するのが奜たしい
が、気盞䞭で重合を行なうこずもできる。枩床は
50〜100℃、奜たしくは60〜90℃であり、圧力は
特に制限されないが、通垞倧気圧〜100気圧の範
囲内から遞ばれる。 たた重合系内に分子量調節剀ずしお氎玠を存圚
させるこずもでき、これによりメルトフロヌむン
デツクスMFI、ASTM−D1238で枬定で50
〜0.1のポリマヌを容易に補造するこずができる。
その他それぞれのα−オレフむンの重合、共重合
に圓぀お通垞採られる手段を本発明方法に適甚す
るこずもできる。䟋えば前蚘觊媒成分(a)、(b)、
(c)たたは(a)、(b)成分を甚いおα−オレフむンで
前凊理する手法等である。 次に実斜䟋によ぀お本発明を曎に具䜓的に説明
するが、本発明はその芁旚を逞脱しない限りこれ
ら実斜䟋によ぀お制玄を受けるものでない。 なお、第図は本発明に含たれる技術内容の理
解を助けるためのフロヌチダヌト図であり、本発
明はその芁旚を超えない限りフロヌチダヌト図に
よ぀お䜕ら制玄を受けるものではない。 なお実斜䟋においお、重合掻性ずしお瀺
すは時間に぀きα−オレフむン圧Kgcm2圓
り、チタン圓りのポリマヌ生成量(g)であり、
觊媒効率CEずしお瀺すは觊媒成分のチタン
圓りのポリマヌの生成量(g)である。アむ゜タ
クチツクむンデツクスずしお瀺すは改良型
゜ツクスレヌ抜出噚で沞隰−ヘプタンにより
時間抜出した堎合の残量重量である。非結
晶性ポリマヌは沞隰−ヘプタンに可溶であるか
らは結晶性ポリマヌの収率を瀺す。嵩密床ρB
ずしお瀺す。単䜍はc.c.はJIS−−6721に
埓぀お枬定した。メルトフロヌむンデツクス
MFIずしお瀺すはASTM−−1238に埓぀お
枬定した。 実斜䟋  (A) 觊媒の補造 撹拌機、枩床蚈を備えた300mlフラスコに粟
補N2シヌル䞋垂販MgOC2H52を(g)採取
し、組成C6H5SiOC6H50.5Cl2.5で瀺されるケ
む玠化合物10.5(g)、安息銙酞゚チル1.3(g)、
TiCl483(g)をN2シヌル䞋に添加し、撹拌䞋
埐々に昇枩した。 130℃に昇枩埌、同枩床で時間保持した埌、
粟補−ヘプタンで充分掗浄しお䞊柄液を分離
埌也燥し、固䜓生成物を埗た。 次いでC6H5SiOC6H50.5Cl2.5のケむ玠化合
物10.5(g)、安息銙酞゚チル1.3(g)、TiCl483
(g)を添加し、130℃においお時間、固䜓生
成物を凊理した。その埌粟補−ヘプタンで充
分掗浄し、䞊柄液を分離埌也燥し、固䜓觊媒を
埗た。担持Ti量は2.5重量であ぀た。 (B) プロピレンの重合 粟補N2で充分に眮換したの誘導撹拌匏
オヌトクレヌプに、N2シヌル䞋宀枩でトリ゚
チルアルミニりム1.3ミリモル、パラメチル安
息銙酞メチル0.46ミリモルを添加し、曎に宀枩
でH2を1.8Kgcm2になるように加え、液䜓プロ
ピレンを700(g)添加した。撹拌䞋で昇枩し、
70℃で䞊蚘固䜓觊媒25mgを添加し、重合開始ず
した。 70℃で時間保持した埌、䜙剰のプロピレン
をパヌゞし、党おのアタクチツクポリプロピレ
ンを含め、癜色粉末ポリプロピレン400(g)を
埗た。觊媒効率CEは640Kg−PP−Ti、重
合掻性は21300であ぀た。 ρBは0.43c.c.でありは96.1、MFIは8.9で
あ぀た。 実斜䟋  実斜䟋の(A)においお、ケむ玠化合物ずしお
C6H5SiOC6H5Cl211.8(g)を甚いた以倖は、実
斜䟋(A)ず同様にしお固䜓觊媒を埗た。担持Ti
量は2.6重量であ぀た。実斜䟋の(B)ず同様に
しおプロピレンの重合を行぀たずころ、觊媒効率
CE600Kg−PP−Ti、重合掻性20000で
あ぀た。ρBは0.42c.c.で、は95.9、MFIは
9.8であ぀た。 実斜䟋  実斜䟋の(A)においお、ケむ玠化合物ずしお
C6H5SiOC6H4−CH30.5Cl2.510.8(g)を甚いた以
倖は実斜䟋(A)ず同様にしお固䜓觊媒を埗た。担
持Ti量は2.3重量であ぀た。実斜䟋(B)ず同様
にしおプロピレンの重合を行぀たずころ、觊媒効
率CE580Kg−PP−Ti、重合掻性
19300、ρB0.42c.c.、95.8、MFI8.8
の結果であ぀た。 実斜䟋  実斜䟋の(A)においお、ケむ玠化合物ずしお
C6H5SiOC6H4−CH3Cl212.4(g)を甚いた以倖
は実斜䟋(A)ず同様にしお固䜓觊媒を埗た。担持
Ti量は2.4重量であ぀た。実斜䟋(B)ず同様の
操䜜でプロピレンの重合を行぀たずころ、觊媒効
率CE550Kg−PP−Ti、重合掻性18300
であ぀た。ρB0.41c.c.、95.4、MFI
11.0であ぀た。 実斜䟋  実斜䟋の(A)においおケむ玠化合物ずしお
C6H5SiOC6H4−Cl0.5Cl2.511.3gr甚いた以倖は実
斜䟋(A)ず同様にしお固䜓觊媒を埗た。担持Ti
量は2.5重量であ぀た。実斜䟋(B)ず同様にし
おプロピレンの重合を行い、觊媒効率CE540Kg
−PP−Ti、重合掻性18000、ρB0.42
c.c.、95.5、MFI9.2の結果を埗た。 実斜䟋  実斜䟋(A)においお、ケむ玠化合物ずしお
C6H5SiOC6H4−ClCl213.3(g)を甚いた以倖は
実斜䟋(A)ず同様にしお固䜓觊媒を埗た。実斜䟋
(B)ず同様にしおプロピレンの重合を行぀たずこ
ろ、觊媒効率をCE530Kg−PP−Ti、重合
掻性17700であり、ρB0.41c.c.、95.3
、MFI10.0であ぀た。 比范䟋  (A) 觊媒の補造 実斜䟋の(A)においお、ケむ玠化合物ずしお
プニルトリクロルシラン9.2(g)を甚いた他
は、実斜䟋(A)ず同様な操䜜を行぀お固䜓觊媒
を埗た。担持Ti量は2.1重量であ぀た。 (B) プロピレンの重合 䞊蚘(A)で埗た固䜓觊媒25.0mgを䜿甚しお、実
斜䟋(B)ず同様な操䜜でプロピレンの重合を行
぀たずころ、觊媒効率CE400Kg−PP−
Tiで重合掻性13300であ぀た。ρBは0.40
c.c.、94.4、MFI10.0であ぀た。 比范䟋  実斜䟋(A)においおケむ玠化合物を䜿甚しない
こず以倖は、実斜䟋ず同様にしお固䜓觊媒を合
成し、実斜䟋(B)ず同様にしおプロピレンの重合
を行぀た。その結果、觊媒効率CE280Kg−
PP−Ti、重合掻性9300、ρB0.38
c.c.、91.0、MFI5.3であ぀た。 実斜䟋、、比范䟋、 実斜䟋、では実斜䟋の觊媒を、比范䟋
、では比范䟋の觊媒を甚いおプロピレン重
合時に添加するパラメチル安息銙酞メチルの量を
衚−に瀺すように倉曎し重合を実斜した。 結果を衚−に瀺す。
The present invention relates to a solid catalyst for α-olefin polymerization. More specifically, the present invention relates to a solid catalyst preferably used for the polymerization of ethylene, propylene, butene-1,4-methylpentene-1, etc., which is composed of a supported catalyst component having high polymerization activity and an organoaluminum compound. Conventionally, JP-A-Sho has proposed a supported catalyst suitable for the stereoregular polymerization of α-olefins having 3 or more carbon atoms.
No. 48-16986, JP-A No. 49-86482, JP-A No. 50-
No. 108385, Japanese Patent Application Publication No. 126590, Japanese Patent Application Publication No. 1973-
Many methods have been proposed, including No. 28189, for producing a titanium-containing catalyst using a halogenated magnesium compound, preferably magnesium chloride, as a carrier raw material. Furthermore, the general formula used in the present invention is Mg(OR 1 ) o (OR 2 ) 2-o ...[] (wherein, R 1 and R 2 represent an alkyl group, an aryl group, or an aralkyl group, and R 1 and R 2 may be the same or different; n indicates 2≧n≧0.
Although proposals have been made in Japanese Patent Publications No. 47-1768 and Japanese Patent Publication No. 47-42137, none have been found suitable for highly stereoregular polymerization of α-olefins having 3 or more carbon atoms. Various attempts have been made to improve the stereoregularity using a carrier represented by the general formula [], including JP-A No. 52-98076, which was previously proposed by the present applicant, as well as JP-A No. 53-2580, JP-A No. No. 1983-43094, Japanese Patent Application Publication No. 1983
-152710, JP-A-56-26904, etc. have been proposed, but these have not been fully satisfactory. The present inventors have arrived at the present invention as a result of studying a method for producing a titanium-containing solid catalyst using a carrier represented by the general formula [] and a polymerization method using the catalyst. That is, the present invention is based on the general formula Mg(OR 1 ) o (OR 2 ) 2
-o (In the formula, R 1 and R 2 represent an alkyl group, an aryl group, or an aralkyl group, and R 1 and R 2 may be the same or different. n represents 2≧n≧0.) A titanium-containing solid catalyst component (a) obtained by treating a magnesium compound with three types of compounds consisting of a carboxylic acid ester, a silicon compound containing a halogen and an aryloxy group, and a chlorine-containing tetravalent titanium compound; This is a method for producing an olefin polymer, which comprises polymerizing or copolymerizing an olefin in the presence of a catalyst comprising an organoaluminum compound (b). The above-mentioned halogen-containing magnesium has a property of being hygroscopic or reacting with moisture, and therefore, the use of a support represented by the general formula [] has a great advantage in the catalyst manufacturing process. To explain the present invention in detail, (A) a magnesium compound represented by the general formula [ ], (B) a carboxylic acid ester, (C) a silicon compound containing a halogen and an aryloxy group, and (D) a chlorine-containing tetravalent titanium Solid catalyst component (a) obtained by treatment with three types of compounds consisting of
and an organoaluminum compound (b) as essential components,
This method of producing an olefin polymer is characterized in that the olefin is polymerized or copolymerized using a titanium-containing catalyst in combination with an appropriate carboxylic acid ester (c). Specifically, the magnesium compound A represented by the general formula [] used in the present invention is Mg
( OCH3 ) 2 , Mg( OC2M5 ) 2 , Mg( OC3H7 ), Mg
(OC 4 H 9 ) 2 , Mg (OC 6 H 5 ) 2 , Mg (OCH 2 C 6 H 5 ) 2 ,
Mg( OC6H5 ) ( OC4H9 ) , Mg( OC2H5 ) ( CO6H5 ) ,
Examples include dialkoxymagnesium, diaryloxymagnesium, dialkyloxymagnesium, and alkyloxyaryloxymagnesium such as Mg(OC 4 H 6 CH 3 ) 2 . As the carboxylic acid ester (B), ethyl acetate,
Methyl propionate, ethyl acrylate, ethyl oleate, ethyl stearate, ethyl phenyl acetate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, methyl toluate, ethyl toluate, propyl toluate, toluic acid Examples include butyl, methyl ethylbenzoate, ethyl ethylbenzoate, ethyl xylenecarboxylate, methyl anisate, ethyl anisate, methyl ethoxybenzoate, ethyl ethoxybenzoate, ethyl cinnamate, etc. Among them, aromatic Carboxylic acid esters are preferably used. The silicon compound (C) containing a halogen and an aryloxy group has the general formula SiRa(OAr)bXc (wherein R
represents an alkyl group, an aryl group, or an aralkyl group, Ar represents an aryl group, and a, b, and c are 0
≩a<4, 0<b<4, 0<c<4, a+b+c
= 4, and X represents a halogen), specifically, PhSi(OPh) 2 Cl (Ph represents a phenyl group), PhSi
(OPh) 1.5 Cl 1.5 , PhSi (OPh) 1 Cl 2 , PhSi (OPh) 0.5 Cl 2.5 , MeSi (OPh) 2 Cl (Me represents a methyl group), MeSi (OPh) 1.5 cl 1.5 , MeSi
(OPh) 1 Cl 2 , MeSi(OPh) 0.5 Cl 2.5 , Si(OPh) 3 Cl,
Si (OPh) 2.5 , Cl 1.5 , Si (OPh) 2 Cl 2 , Si (OPh) 1.5
Examples include Cl 2.5 , Si(OPh) 1 Cl 3 , Si(OPh) 0.5 Cl 3.5 and the like. Furthermore, the phenyl group may be substituted with a halogen or an alkyl group. Among these, PhSi(OPh) 0.5 Cl 2.5 , PhSi
(OPh) 1 Cl 2 , PhSi(OPh−Cl) 0.5 Cl 2.5 , PhSi(OPh−Me) 0.5
Cl 2.5 , PhSi(OPh−Cl) 1 Cl 2 , PhSi(OPh−
Me) 1 Cl 2 etc. In the method of the present invention, the components (A), (B), (C), and (D) may be treated by mechanical pulverization or by contacting them in the presence or absence of a hydrocarbon solvent. After mechanically grinding, mixing or contacting components A), (B), (C), and (D) and washing with an inert hydrocarbon solvent.
Add (B), (C), and (D) and further mechanically crush or
A method of repeating the steps of contact-mixing (B), (C), and (D) under heating and washing with an inert hydrocarbon solvent at least once can also be preferably used. In addition, in the repeated treatment, as long as the halogen- and aryloxy-containing silicon compound is used at least once as component (C), other halogen-containing silicon compounds may be used. Furthermore, the amounts of each component used in the catalyst manufacturing process in one process are usually expressed in molar ratios as follows. Mg (OR 1 ) o (OR 2 ) 2-o carboxylic acid ester 10 to 0.01, preferably 1 to
Silicon compound containing 0.1 halogen and aryloxy group 20-0.1, preferably 5-0.5 Chlorine-containing tetravalent titanium compound 100-0.1, preferably 40-1 and usually the amount of titanium in the product is 0.1-10% by weight, The amount of each of the above components used is preferably adjusted to 0.5 to 5% by weight. Mechanical pulverization in each of the above methods is performed using a pole mill,
Any conventional method such as an impact mill or a vibration mill may be used. The pulverization temperature may normally be around room temperature, and heating and cooling are not particularly required. The pulverization time depends on the type of pulverizer used, but is usually from several hours to 200 hours. In addition, the reaction in the presence or absence of an inert hydrocarbon solvent is usually carried out at room temperature to 200°C, preferably at 80°C.
The temperature is ~150°C, and the reaction time is about 0.5 to 4 hours. In the present invention, the reaction product obtained as described above is then washed with an inert hydrocarbon solvent,
Remove components soluble in the solvent. and the thus obtained catalyst component (a) and organoaluminum compound (b),
Further, if necessary, a catalyst system containing a carboxylic acid ester (c) is used to carry out polymerization or copolymerization of the olefin to produce a polyolefin. At this time, there is no particular restriction on the order in which the components (a), (b), and (c) are added. Next, the organoaluminum compound [component (b)] used in this catalyst system preferably has the general formula
Examples include compounds represented by AlR 2 o X 3-o . In the above formula, R 2 is a hydrocarbon group having 1 to 20 carbon atoms,
In particular, it is an aliphatic hydrocarbon group, where X is a halogen, n
indicates a number of 2 to 3. Specific examples of this organoaluminum compound include triethylaluminum,
Examples include tripropyl aluminum, triisobutyl aluminum, trihexyl aluminum, trioctyl aluminum, monovinyl diethylaluminium, diethylaluminium monoclide, and preferably trialkyl aluminum alone or a mixture with dialkyl aluminum monohalide is used. Further, as the catalyst system component (c), the component (B) used in the production of the solid catalyst component (a) described above is used, but aromatic carboxylic acid ester is preferable. The ratio of catalyst components to be used is such that the molar ratio of titanium in catalyst component (a) to aluminum compound in component (b) to carboxylic acid ester in component (c) is 1:3 to 500:0 to 100.
Preferably, the ratio is selected to be 1:20 to 200:3 to 50. Olefins include ethylene, propylene,
Examples include butene-1,3-methylbutene-1,4-methylpentene-1, preferably 3 carbon atoms.
The above-mentioned α-olefins, especially propylene, can be mentioned. In addition to homopolymerization, the polymerization can also be applied to random or block copolymers. The polymerization reaction is carried out using an inert hydrocarbon, such as hexane,
Slurry polymerization is preferably carried out using heptane, cyclohexane, benzene, toluene, pentane, butane, or a mixture thereof, or a liquefied product of α-olefin to be polymerized as a solvent, but polymerization may also be carried out in a gas phase. can. The temperature is
The temperature is 50 to 100°C, preferably 60 to 90°C, and the pressure is not particularly limited, but is usually selected from within the range of atmospheric pressure to 100 atm. Hydrogen can also be present as a molecular weight regulator in the polymerization system, which results in a melt flow index (MFI, measured by ASTM-D1238) of 50
~0.1 polymers can be easily produced.
Other methods commonly used for the polymerization and copolymerization of α-olefins can also be applied to the method of the present invention. For example, the three catalyst components (a), (b),
(c) or a method of pretreating with α-olefin using two components (a) and (b). Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by these Examples unless it deviates from the gist thereof. It should be noted that FIG. 1 is a flowchart diagram to help understand the technical content included in the present invention, and the present invention is not limited in any way by the flowchart diagram as long as it does not exceed the gist thereof. In the examples, the polymerization activity (denoted as K) is the amount of polymer produced (g) per 1 g of titanium per 1 kg/cm 2 of α-olefin pressure per hour,
Catalytic efficiency (expressed as CE) is the amount of polymer produced (g) per gram of titanium in the catalyst component. The isotactic index (denoted as
This is the remaining amount (% by weight) when extracted over time. Since the amorphous polymer is soluble in boiling n-heptane, it indicates the yield of crystalline polymer. Bulk density (ρ B
Shown as The unit (g/cc) was measured according to JIS-K-6721. Melt flow index (denoted as MFI) was determined according to ASTM-D-1238. Example 1 (A) Production of catalyst 5 (g) of commercially available Mg(OC 2 H 5 ) 2 was collected under a purified N 2 seal in a 300 ml flask equipped with a stirrer and a thermometer, and the composition was C 6 H 5 Si ( OC 6 H 5 ) 0.5 Cl 2.5 silicon compound 10.5 (g) r, ethyl benzoate 1.3 (g) r,
83 (g) r of TiCl 4 was added under a N 2 blanket and the temperature was gradually increased with stirring. After raising the temperature to 130℃ and keeping it at the same temperature for 1 hour,
The supernatant was thoroughly washed with purified n-heptane and the supernatant was separated and dried to obtain a solid product. Then 10.5 (g) r of silicon compound of C 6 H 5 Si (OC 6 H 5 ) 0.5 Cl 2.5 , 1.3 (g) r of ethyl benzoate, TiCl 4 83
(g)r was added and the solid product was treated at 130°C for 1 hour. Thereafter, it was thoroughly washed with purified n-heptane, and the supernatant liquid was separated and dried to obtain a solid catalyst. The amount of Ti supported was 2.5% by weight. (B) Polymerization of propylene 1.3 mmol of triethylaluminum and 0.46 mmol of methyl p-methylbenzoate were added to the induction stirring autoclave ( 2) which had been sufficiently purged with purified N2 at room temperature under a N2 seal, and then H2 was added at room temperature. 700(g)r of liquid propylene was added to the mixture so that the amount was 1.8Kg/cm 2 . Raise the temperature while stirring,
25 mg of the above solid catalyst was added at 70°C to initiate polymerization. After being held at 70° C. for 1 hour, excess propylene was purged to obtain 400 (g) r of white powder polypropylene, including all the atactic polypropylene. The catalyst efficiency CE was 640 Kg-PP/g-Ti, and the polymerization activity K was 21,300. ρ B was 0.43 g/cc, 96.1%, and MFI was 8.9. Example 2 In (A) of Example 1, as a silicon compound
A solid catalyst was obtained in the same manner as in Example 1(A) except that 11.8 (g)r of C 6 H 5 Si(OC 6 H 5 )Cl 2 was used. Supported Ti
The amount was 2.6% by weight. When propylene was polymerized in the same manner as in Example 1 (B), the catalyst efficiency was
CE=600Kg-PP/g-Ti, polymerization activity K=20000. ρ B is 0.42g/cc, is 95.9%, and MFI is
It was 9.8. Example 3 In (A) of Example 1, as a silicon compound
A solid catalyst was obtained in the same manner as in Example 1(A) except that C6H5Si ( OC6H4 - CH3 ) 0.5Cl2.510.8 ( g ) r was used. The amount of Ti supported was 2.3% by weight. When propylene was polymerized in the same manner as in Example 1 (B), catalyst efficiency CE=580Kg-PP/g-Ti, polymerization activity K=
19300, ρ B =0.42g/cc, =95.8%, MFI=8.8
The result was Example 4 In (A) of Example 1, as a silicon compound
A solid catalyst was obtained in the same manner as in Example 1(A) except that 12.4(g ) r of C6H5Si ( OC6H4 - CH3 )Cl2 was used. carrying
The amount of Ti was 2.4% by weight. When propylene was polymerized in the same manner as in Example 1 (B), catalyst efficiency CE = 550 Kg-PP/g-Ti, polymerization activity K = 18300
It was hot. ρ B =0.41g/cc, =95.4%, MFI=
It was 11.0. Example 5 As a silicon compound in Example 1 (A)
A solid catalyst was obtained in the same manner as in Example 1(A) except that 11.3gr of C6H5Si ( OC6H4 - Cl ) 0.5Cl2.5 was used. Supported Ti
The amount was 2.5% by weight. Polymerization of propylene was carried out in the same manner as in Example 1 (B), and the catalyst efficiency was CE = 540 Kg.
-PP/g-Ti, polymerization activity K=18000, ρ B =0.42
Results of g/cc = 95.5% and MFI = 9.2 were obtained. Example 6 In Example 1(A), as a silicon compound
A solid catalyst was obtained in the same manner as in Example 1(A) except that 13.3 (g)r of C6H5Si ( OC6H4 - Cl ) Cl2 was used. When propylene was polymerized in the same manner as in Example 1 (B), the catalyst efficiency was CE = 530 Kg-PP/g-Ti, polymerization activity K = 17700, ρ B = 0.41 g/cc, = 95.3
%, MFI=10.0. Comparative Example 1 (A) Production of catalyst In (A) of Example 1, a solid was prepared by performing the same operation as in Example 1 (A) except that phenyltrichlorosilane 9.2 (g) r was used as the silicon compound. I got a catalyst. The amount of Ti supported was 2.1% by weight. (B) Polymerization of propylene Using 25.0 mg of the solid catalyst obtained in (A) above, propylene polymerization was carried out in the same manner as in Example 1 (B). Catalytic efficiency CE = 400 Kg - PP/g −
The polymerization activity K for Ti was 13,300. ρ B is 0.40
g/cc = 94.4%, MFI = 10.0. Comparative Example 2 A solid catalyst was synthesized in the same manner as in Example 1, except that no silicon compound was used in Example 1(A), and propylene was polymerized in the same manner as in Example 1(B). As a result, the catalyst efficiency CE = 280Kg−
PP/g-Ti, polymerization activity K=9300, ρ B =0.38g/
cc, = 91.0%, MFI = 5.3. Examples 7 and 8, Comparative Examples 3 and 4 In Examples 7 and 8, the catalyst of Example 1 was used, and in Comparative Examples 3 and 4, the catalyst of Comparative Example 1 was used, and the amount of methyl para-methylbenzoate added during propylene polymerization was Polymerization was carried out with the changes shown in Table 1. The results are shown in Table-1.

【衚】 実斜䟋  (A) 觊媒の補造 撹拌機、枩床蚈を備えた300mlフラスコにN2
シヌル䞋、MgOC2H5を採取し、プ
ニルトリクロルシラン9.2、安息銙酞゚チル
1.3、TiCl483を添加した。撹拌䞋埐々に昇
枩し、130℃に昇枩埌同枩床で時間保持した。
その埌、粟補ヘプタンで充分掗浄しお、䞊柄液
を分離し也燥しお固䜓生成物を埗た。 次いで埗られた固䜓性生物に、ケむ玠化合物
ずしおC6H5SiOC6H5Cl2を11.8、安息銙酞
゚チル1.3、TiCl483を添加し、130℃にお
いお時間凊理した。その埌−ヘプタンで充
分に掗浄し、䞊柄液を分離也燥し、固䜓觊媒を
埗た。担持Ti量は2.7重量であ぀た。 (B) プロピレンの重合 䞊蚘(A)で埗られた固䜓觊媒25.0mgを甚いお、
実斜䟋(C)ず同様にしおプロピレンの重合を行
぀た。その結果、觊媒効率EC580Kg−PP
−Ti、重合掻性19300、ρB0.43c.c.、
95.8、MFI9.5であ぀た。 比范䟋  実斜䟋のにおいお、ケむ玠化合物ずしお
C6H5SiCOC6H5Cl211.8を甚いお、安息銙酞
゚チルを添加しなか぀た以倖は、実斜䟋(A)ず同
様にしお、固䜓觊媒を埗た。担持Ti量は6.9重量
であ぀た。実斜䟋の(B)ず同様にしおプロピレ
ンの重合を行぀たずころ、觊媒効率CE150Kg−
PP−Ti、重合掻性5000であ぀た。は
67.1、MFIは50であり、ρBは枬定䞍胜であ぀
た。 䞊蚘の倀を安息銙酞゚チルを添加した実斜䟋
の倀ず比范する。
[Table] Example 9 (A) Production of catalyst N2 was added to a 300 ml flask equipped with a stirrer and a thermometer.
Under a seal, 5 g of Mg (OC 2 H 5 ) was collected, and 9.2 g of phenyltrichlorosilane and ethyl benzoate were collected.
1.3 g and 83 g of TiCl 4 were added. While stirring, the temperature was gradually raised to 130°C, and then maintained at the same temperature for 1 hour.
Thereafter, the mixture was thoroughly washed with purified heptane, and the supernatant liquid was separated and dried to obtain a solid product. Next, 11.8 g of C 6 H 5 Si (OC 6 H 5 ) Cl 2 as silicon compounds, 1.3 g of ethyl benzoate, and 83 g of TiCl 4 were added to the obtained solid organism, and the mixture was treated at 130° C. for 1 hour. Thereafter, it was thoroughly washed with n-heptane, and the supernatant liquid was separated and dried to obtain a solid catalyst. The amount of Ti supported was 2.7% by weight. (B) Polymerization of propylene Using 25.0 mg of the solid catalyst obtained in (A) above,
Polymerization of propylene was carried out in the same manner as in Example 1(C). As a result, catalyst efficiency EC=580Kg−PP/
g-Ti, polymerization activity K=19300, ρ B =0.43g/cc,
= 95.8%, MFI = 9.5. Comparative Example 5 In Example A, as a silicon compound
A solid catalyst was obtained in the same manner as in Example 1(A) except that 11.8 g of C 6 H 5 SiCOC 6 H 5 )Cl 2 was used and ethyl benzoate was not added. The amount of Ti supported was 6.9% by weight. When propylene was polymerized in the same manner as in Example 1 (B), the catalyst efficiency CE = 150Kg-
PP/g-Ti, polymerization activity K=5000. teeth
67.1%, MFI was 50, and ρ B was not measurable. Example 2 in which ethyl benzoate was added to the above values
Compare with the value of

【衚】 以䞊のように、電子䟛䞎性化合物の添加によ぀
お、重合掻性および立䜓芏則性が飛躍的に向䞊し
おおり、電子䟛䞎性化合物の添加効果は明癜であ
る。
[Table] As shown above, the polymerization activity and stereoregularity were dramatically improved by the addition of the electron donating compound, and the effect of the addition of the electron donating compound is obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明の䞀態様を瀺すフロヌチダヌト
図である。
FIG. 1 is a flowchart showing one embodiment of the present invention.

Claims (1)

【特蚱請求の範囲】  䞀般匏MgOR1oOR22-o 匏䞭、R1、R2はアルキル基、アリヌル基たた
はアラルキル基を瀺し、R1ずR2は同䞀でも異な
぀おも良い。は≧≧を瀺す。で衚わさ
れるマグネシりム化合物を、カルボン酞゚ステ
ル、ハロゲンずアリヌルオキシ基を含有するケむ
玠化合物および塩玠含有䟡チタン化合物より成
る皮の化合物で凊理するこずによ぀お埗られる
チタン含有固䜓觊媒成分(a)ず、有機アルミニりム
化合物(b)より成る觊媒の存圚䞋にオレフむンを重
合たたは共重合させるこずを特城ずするオレフむ
ン重合䜓の補造方法。  カルボン酞゚ステル(c)の共存䞋にオレフむン
を重合たたは共重合させるこずを特城ずする特蚱
請求の範囲第項蚘茉の方法。
[Claims] 1 General formula Mg (OR 1 ) o (OR 2 ) 2-o (wherein R 1 and R 2 represent an alkyl group, an aryl group, or an aralkyl group, and R 1 and R 2 are the same (n indicates 2≧n≧0.) Magnesium compounds represented by Production of an olefin polymer characterized by polymerizing or copolymerizing an olefin in the presence of a catalyst consisting of a titanium-containing solid catalyst component (a) obtained by treatment with a compound and an organoaluminum compound (b) Method. 2. The method according to claim 1, wherein the olefin is polymerized or copolymerized in the coexistence of the carboxylic acid ester (c).
JP5705883A 1983-04-01 1983-04-01 Production of olefinic polymer Granted JPS59182806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5705883A JPS59182806A (en) 1983-04-01 1983-04-01 Production of olefinic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5705883A JPS59182806A (en) 1983-04-01 1983-04-01 Production of olefinic polymer

Publications (2)

Publication Number Publication Date
JPS59182806A JPS59182806A (en) 1984-10-17
JPH0552323B2 true JPH0552323B2 (en) 1993-08-05

Family

ID=13044838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5705883A Granted JPS59182806A (en) 1983-04-01 1983-04-01 Production of olefinic polymer

Country Status (1)

Country Link
JP (1) JPS59182806A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06815B2 (en) * 1985-02-07 1994-01-05 䞉菱化成株匏䌚瀟 Method for producing propylene polymer
DE3767762D1 (en) * 1986-05-21 1991-03-07 Mitsubishi Chem Ind METHOD FOR PRODUCING AN OLEFIN POLYMER.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624408A (en) * 1979-08-08 1981-03-09 Idemitsu Kosan Co Ltd Polymerization of olefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624408A (en) * 1979-08-08 1981-03-09 Idemitsu Kosan Co Ltd Polymerization of olefin

Also Published As

Publication number Publication date
JPS59182806A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
US4724255A (en) Catalyst components, a catalyst and a process for the polymerization olefins
JPS5952166B2 (en) Method for manufacturing polyolefin
CA1162906A (en) Trialkyl aluminum cocatalyst
JPH0145485B2 (en)
EP0012397B1 (en) Polymerization catalyst and process for polymerizing alpha-olefins
US4220745A (en) Process for polymerization of α-olefins
JPS5923561B2 (en) Olefin polymerization method
JPS64407B2 (en)
EP0398439B1 (en) Solid alpha-olefin polymerization catalyst components
US4619981A (en) Process for preparing polyolefins
FI92836B (en) A process for preparing an olefin polymer
JPH0552323B2 (en)
JP3399067B2 (en) Electron Donor Combined with Ziegler-Natta Catalyst for Controlling Polyolefin Polydispersity
JPH06815B2 (en) Method for producing propylene polymer
JPS642125B2 (en)
US5328877A (en) Solid alkene polymerization catalyst components and process for their preparation
JP3279344B2 (en) α-Olefin polymerization method
JP2913791B2 (en) Method for producing propylene-ethylene block copolymer
JPH0532404B2 (en)
US5270409A (en) Process for producing olefin polymer
JP3279345B2 (en) α-Olefin polymerization method
EP0366204A2 (en) Alkene polymerization process and catalyst compositions therefor
JPH0532407B2 (en)
JPS6339603B2 (en)
JPH0780944B2 (en) Method for producing olefin polymer