SE185456C1 - - Google Patents

Info

Publication number
SE185456C1
SE185456C1 SE185456DA SE185456C1 SE 185456 C1 SE185456 C1 SE 185456C1 SE 185456D A SE185456D A SE 185456DA SE 185456 C1 SE185456 C1 SE 185456C1
Authority
SE
Sweden
Prior art keywords
amino acids
solution
lactam
plastic
lactams
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE185456C1 publication Critical patent/SE185456C1/sv

Links

Description

Uppfinnare: K Kahr och M Itin Ur laktamer kan man som bekant genom elektrolys med starka syror framstalla motsvarande aminosyror. Darvid bildas salterna av dessa syror med aminosyra. For avlagsnande av syraresten och isolering av den fria aminosyran aro olika forfaranden kanda. Vid anvandning av svavelsyra for laktamens hydrolys och efterfoljande neutralisation med jordalkalihydroxider, t. ex. bariumhydroxid, erhalles saltfria ammoniumaminosyror med endast daliga utbyten. Man kan aven framstalla aminosyror genom hydrolys av laktamer med ett stort overskott av enbart vatten eller ocksa i 'Alvaro av sma mangder syror vid temperaturer Over 150° G och under tryck. Pa grund av den darvid erforderliga hoga temperaturen intrader emellertid en partiell dekarboxylering under bildning av basiska bestandsdelar och andra sonderdelningsprodukter. Dessutom omvandlas laktamerna darvid joke fullstandigt, varfor de erhallna aminosyrorna ej erhallas tillrackligt rena, utan maste underkastas en ytterligare rening. Inventors: K Kahr and M Itin As is well known, the corresponding amino acids can be extracted from lactams by electrolysis with strong acids. The salts of these acids are formed with amino acid. For the removal of the acid residue and the isolation of the free amino acid, various procedures are known. When using sulfuric acid for the hydrolysis of the lactam and subsequent neutralization with alkaline earth hydroxides, e.g. barium hydroxide, salt-free ammonium amino acids are obtained with only poor yields. Amino acids can also be produced by hydrolysis of lactams with a large excess of water alone or also in Alvaro of small amounts of acids at temperatures above 150 ° C and under pressure. However, due to the high temperature required, partial decarboxylation occurs to form basic constituents and other probing products. In addition, the lactams are thereby completely transformed into jokes, so that the amino acids obtained are not sufficiently pure, but must be subjected to further purification.

P0 liknande satt utfordes enligt den tyska patentskriften 820 440 hydrolysen av laktamerna i narvaro av fasta syror, hi. a. med jonbytare. De darvid anvanda fasta syrorna verka katalytiskt och ferandras joke. De erhallna utbytena av aminosyror aro emellertid sma och aminosyrorna erhallas tillsammans med de joke omsatta laktamerna och deras isolering leder ej till nagra rena aminosyror. Similarly, according to German Pat. No. 820,440, the hydrolysis of the lactams in the presence of solid acids is challenged, hi. a. with ion exchanger. The solid acids used in this process have a catalytic and mutually beneficial effect. However, the yields of amino acids obtained are small and the amino acids are obtained together with the jerkily converted lactams and their isolation does not lead to any pure amino acids.

Syraresten frau aminosyrornas salter, t. ex. hydrokloriden 6-aminokapronsyra, som erhallits medelst hydrolys av s-kaprolaktam med saltsyra, avlagsnas enligt Org. Synthese, Vol. XXXII, 13, (1952) med hjalp av jonbytare. Nackdelen med denna metod är att den ej kan tillampas i teknisk skala, emedan man erhaller mycket laga koncentrationer av vattenlosningar av aminosyrorna, namligen under 1 %. The acid residue from the salts of the amino acids, e.g. the hydrochloride 6-aminocaproic acid obtained by hydrolysis of ε-caprolactam with hydrochloric acid is removed according to Org. Synthesis, Vol. XXXII, 13, (1952) with the help of ion exchangers. The disadvantage of this method is that it can not be applied on a technical scale, since very low concentrations of aqueous solutions of the amino acids are obtained, namely below 1%.

Nu har det visats, att man erhaller aminosyrorna kvantitativt och med hog renhet i form av koncentrerade losningar, om laktamerna i vattenlosning omsattas ochupptagas medhj alp av katj onbytare av konstplasttyp, vilka innehalla ett polystyrenskelett och som verksam grupp en sulfogrupp. Som jonbytarplaster lampa sig isynnerhet de i handeln fOrekommande karnsulfonerade polystyrenerna. Laktamerna intranga darvid i jonbytarmaterialets porer och hydrolyseras vid deras hydratiserade sulfonsyrade grupper, varvid de bildade aminosyrorna samtidigt anlagras vid jonbytaren i en mangd, som i det narmaste motsvarar den totala teoretiska vindningskapaciteten hos katjonbytaren. Med hj alp av jonbytarna omsattas emeller Lid endast sadana mangder av laktamer, som kunna bindas som aminosyror. De nyare sulfonsyrade katjonbytarna av konstplasttyp ha en hog bindningskapacitet for anjoner. Salunda utgOr exempelvis bindningskapaciteten for karnsulfonerade polystyrener upp till c:a 280 g s-aminokapronsyra for 1 1 torr resp 2 1 fuktig jonbytarplast. Forutsattningen är endast, att jonbytaren dessforinnan aktiveras Som lOsningsmedel for de for omsattning avsedda laktamerna lampar sig framfdrallt vatten men aven blandningar av vatten och darmed blandbara organiska losningsmedel, t ex. alkoholer. It has now been shown that the amino acids are obtained quantitatively and with high purity in the form of concentrated solutions, if the lactams in aqueous solution are reacted and taken up with the aid of cation exchange type plastics, which contain a polystyrene skeleton and as active group a sulfo group. Particularly commercially available are the commercially available carbon sulphonated polystyrenes. The lactams thereby penetrate into the pores of the ion exchange material and are hydrolyzed at their hydrated sulfonic acid groups, the amino acids formed simultaneously being deposited at the ion exchanger in an amount which closely corresponds to the total theoretical winding capacity of the cation exchanger. With the help of the ion exchangers, however, only such amounts of lactams are converted, which can be bound as amino acids. The newer sulfonic acid cation exchangers of the synthetic plastic type have a high binding capacity for anions. Thus, for example, the bonding capacity of carbon sulfonated polystyrenes is up to about 280 g of s-aminocaproic acid for 1 l dry and 2 l moist ion exchange plastic, respectively. The only condition is that the ion exchanger is previously activated as a solvent for the lactams intended for reaction, mainly water, but also mixtures of water and thus miscible organic solvents, e.g. alcohols.

Koncentrationen hos den for omsattning avsedda laktamlosningen kan hallos mycket lag eller mycket hog. Salunda kan man hydrolysera lhg- koncentrerade losningar med t. ex. 1. % laktam men aven sadana med htigsta koncentrationer av upp till 90 % laktam. Losningar av lagre koncentrationer visa vid samma jonbytarmangd per tidsenhet, en mindre omsattning an losningar av hogre laktamkonc,entrationer. Temperaturen vid laktamernas omsattning med katjonbytarna kan variera mellan rumstemperatur och 90° C. Vid lagre temperaturer forsiggar omsattningen med jonbytaren endast langsamt, medan den forlOper hastigare vid hogre temperaturer. The concentration of the lactam solution intended for sale can be very low or very high. Thus, one can hydrolyze lhg-concentrated solutions with e.g. 1.% lactam but also those with the highest concentrations of up to 90% lactam. Solutions of lower concentrations show at the same amount of ion exchange per unit time, a smaller turnover than solutions of higher lactam concentrations, concentrations. The temperature of the lactams' reaction with the cation exchangers can vary between room temperature and 90 ° C. At lower temperatures the reaction with the ion exchanger proceeds only slowly, while it proceeds more rapidly at higher temperatures.

Vid temperaturer Over 90° C underga jonbytar- 2— — plasterna redan en ringa sonderdelning, varvid , deras aktivitet minskas. Omsattningen utf Ores darfor lampligen vid 60-80° C. At temperatures above 90 ° C, the ion exchange plastics already undergo a small probe division, thereby reducing their activity. The turnover is therefore probably at 60-80 ° C.

Tiden fOr laktaralosningens omsattning med • hjalp av katjonbytarna är beroende av den anvanda laktamlOsningens koncentration och tern- - peratur. Man uppnar samma omsattningstid vid anvandning av lagre laktamkoneentrationer och hogre temperaturer; som Ad anvandning av hogre laktamkoncentrationer och lagre temperaturer. Salunda bildas och anlagras vid omsattning av en 1 % laktamlosning pa ca 30 timmar, och vid omsattning av en 15 % laktamlosning pa ca 10 timmar, samt vid omsattning av en 70 % laktamlosning pa ca 4 timmar en -mangd aminosyra, som motsvarar ca 90 % av jonbytarplastens teoretiska upptagningsformaga. The time for the lactate solution to be reacted with the aid of the cation exchangers depends on the concentration and temperature of the lactam solution used. The same turnover time is obtained by using lower lactam concentrations and higher temperatures; as Ad use of higher lactam concentrations and lower temperatures. Salunda is formed and stored by reacting a 1% lactam solution in about 30 hours, and by reacting a 15% lactam solution in about 10 hours, and by reacting a 70% lactam solution in about 4 hours an amount of amino acid, which corresponds to about 90 hours. % of the ion uptake capacity of the ion exchange plastic.

Elutionen av de av jonbytarplasten upptagna aminosyrorna utfiires pa enklaste satt genom behandling med utspadd, lampligen vattenhaltigt ammoniaklosning i kyla och under kylning. Darvid fortranges aminosyran ur plasten, varvid plasten mattas med ammoniak. Elutionen utfores tills en svagt ammoniakalisk, t. ex. ca 0,1 %, Riming erhalles. De sã erhallna svagt ammoniakaliska aminosyralosningarna kunna efter tillsattning av ytterligare ammoniak anvandas till fornyad elution. Pa detta salt kan man erhalla koncentrerade aminosyralosningar, vilkas koncentration kan vara hogre an den anvanda laktamlosningens; darigenom kan man utan destination uppna en hog koncentration. The elution of the amino acids taken up by the ion exchange plastic is carried out in the simplest way by treatment with dilute, suitably aqueous ammonia solution in the cold and during cooling. This displaces the amino acid from the plastic, whereby the plastic is matted with ammonia. The elution is carried out until a slight ammoniacal, e.g. about 0.1%, Riming is obtained. The weakly ammoniacal amino acid solutions thus obtained can be used for renewed elution after the addition of additional ammonia. Concentrated amino acid solutions can be obtained on this salt, the concentration of which may be higher than that of the lactam solution used; as a result, a high concentration can be achieved without destination.

Aminosyrorna ntvinnas sir sina svagt ammoniakaliska losningar genom enkel indunstning, lampligen vid laga temperaturer och vakuum. The amino acids are recovered from their weakly ammoniacal solutions by simple evaporation, preferably at low temperatures and vacuum.

Darvid avdrivs till att borja med en ringa mangd av ammoniakoverskottet, som kan Atervinnas. Som aterstod erhaller man aminokarbonsyrorna antingen som koncentrerade losningar eller i fast form i teknisk renhetsgrad, och rent vita. It is stripped off to begin with a small amount of the ammonia excess, which can be recycled. As a residue, the aminocarboxylic acids are obtained either as concentrated solutions or in solid form in technical purity, and pure white.

Aminokarbonsyrorna erhallas pa detta sad fria fran utgangslaktamerna och dessutom framforallt fria fran basiska amnen i sa ren form, att deras hogkoncentrerade losningar redan utkristallisera. Den indunstade aminosyrans smaltpunkt motsvarar nastan den teoretiska. Salunda erhalles e-aminokapronsyra med en smaltpunkt av 198° C. The aminocarboxylic acids are obtained in this way free from the starting lactams and also above all free from basic substances in such a pure form that their highly concentrated solutions already crystallize out. The melting point of the evaporated amino acid corresponds almost to the theoretical one. Salunda gives e-aminocaproic acid with a melting point of 198 ° C.

Den med de ammoniakaliska lOsningarna behandlade jonbytarplasten regenereras pa sedvanligt salt, varvid man genom en eller flera gangers anvandning av den sura regenerationslosningen kan erhalla lagre eller hogre koncentrationer av ammoniumsalter. The ion exchange plastic treated with the ammoniacal solutions is regenerated on conventional salt, whereby one or more uses of the acidic regeneration solution can be obtained with lower or higher concentrations of ammonium salts.

Forfarandet kan pa enklaste satt utforas kontinuerligt genom periodisk vaxling av jonbytarplasten. The process can most easily be carried out continuously by periodically changing the ion exchange plastic.

Exempel 1. 100 volymdelar av en 73 % vattenlosning av e-kaprolaktam omrores i en omroringsbehallare med 100 volymdelar av en aktiverad och fuktig katjonbytare »Amberlite JR420» (jonbytare med polystyrenskelett och sulfogrupp), i 4 timmar vid 80° C. Darefter avskils plasten frail den joke omsatta kaprolaktamlosningen, tvattas laktamfri riled avsaltat vatten och blandas med 100 volymdelar avsaltat vatten i en annan omrOringsbehallare. Genom portionsvis _tillsattning av 7,25 viktdelar 25 % ammoniaklosning vid 100° C erhailer man slutligen en losning med en halt av 0,1 % ammoniak. Den svagt ammoniakaliska som innehaller ea 13 % amoniokapronsyra frail plasten och indunstas i vakuum. Som aterstod erhaller man 13,1 viktdelar rent vit saminokapronsyra med en smaltpunkt av 196° C, motsvarande ca 90 % av jonbytarplastens teoretiska bindningskapacitet. Example 1. 100 parts by volume of a 73% aqueous solution of ε-caprolactam are stirred in a stirring vessel containing 100 parts by volume of an activated and moist cation exchanger «Amberlite JR420» (ion exchanger with polystyrene skeleton and sulfo group), for 4 hours at 80 ° C. Then the plastic is separated frail the joke converted caprolactam solution, wash lactam-free riled desalinated water and mix with 100 parts by volume desalinated water in another stirring container. By portionwise addition of 7.25 parts by weight of 25% ammonia solution at 100 ° C, a solution with a content of 0.1% ammonia is finally obtained. The weak ammoniacal which contains 13% of the ammoniocaproic acid from the plastic and is evaporated in vacuo. As a residue, 13.1 parts by weight of pure white saminocaproic acid with a melting point of 196 ° C are obtained, corresponding to about 90% of the theoretical bonding capacity of the ion exchange plastic.

Exempel 2. 100 volymdelar av en 15 % vattenlosning av e-kaprolaktam omriires i en omrOringsbehallare med 100 volymdelar aktiverad och fuktig katjonbytare »Dowex 50» (jonbytare med polystyrenskelett och sulfogrupp), i 6 timmar vid 60° C. Plasten skiljes frail den icke omsatta kaprolaktamlOsningen, tvattas laktamfri med avsaltat vatten och blandas med 100 volymdelar avsaltat vatten i en andra omrbringsbehallare. Darpa sattes portionsvis 7,4 viktdelar 25 % ammoniaklosning vid 15° C for utlosning av aminosyran, tills den erhallna losningen fatt en ammoniakhalt av ca 0,1 %. Den svagt ammoniakaliska losningen, som innehaller ca 7 % aminokarbonsyra, ski!] es fran plasten och indunstas i vakuum. Som aterstod erhaller man 10,7 viktdelar rent vit Eaminokapronsyra , motsvarande ea 76 % av plastens teoretiska bindningskapacitet. Smaltpunkt 198° C. Example 2. 100 parts by volume of a 15% aqueous solution of ε-caprolactam are stirred in a stirring container with 100 parts by volume of activated and moist cation exchanger «Dowex 50» (ion exchanger with polystyrene skeleton and sulfo group), for 6 hours at 60 ° C. reacted caprolactam solution, wash lactam free with desalinated water and mix with 100 parts by volume of desalinated water in a second stirring vessel. Darpa was added portionwise 7.4 parts by weight of 25% ammonia solution at 15 ° C to release the amino acid, until the resulting solution had an ammonia content of about 0.1%. The slightly ammoniacal solution, which contains about 7% of aminocarboxylic acid, is separated from the plastic and evaporated in vacuo. As a residue, 10.7 parts by weight of pure white Eaminocaproic acid are obtained, corresponding to 76% of the theoretical bonding capacity of the plastic. Melting point 198 ° C.

Exempel 3. Example 3.

Genom ett till 80° C upphettat torn, som beskickats med 250 volymdelar av en aktiverad och fuktig katjonbytare, »Amberlite JR-120» (jonbytare med polystyrenskelett och sulfogrupp), later man per timme 4000 volymdelar 1 % kaprolaktainliisning med 80° C rinna. Efter timmar vaxlas detta torn och tvattas laktamfritt med avsaltat vatten. Darefter leder man genom detta torn Over den med aminosyra bemangda jonbytaren med samma stromningshastighet 250 volymdelar av en vattenlosning, som man under 2 timmar under kylning vid 20° C fbrsatter med 18 volymdelar 25 % ammoniaklOsning. Efter fullstandig elution erhalles en svagt aramoniakalisk losning av aminokapronsyra, som efter indunstning i vakuum ger 32 viktdelar fast och tekniskt ren e-aminokapronsyra med en smaltpunkt av 197° C. Through a tower heated to 80 ° C, which is loaded with 250 parts by volume of an activated and moist cation exchanger, "Amberlite JR-120" (ion exchanger with polystyrene skeleton and sulfo group), 4000 parts by volume of 1% caprolactin solution with 80 ° C are allowed to flow per hour. After hours, this tower is swapped and washed lactam-free with desalinated water. Then, through this tower, 250 parts by volume of an aqueous solution is passed through the amino acid-charged ion exchanger at the same flow rate, which is carried out with 18 parts by volume of 25% ammonia solution for 2 hours under cooling at 20 ° C. After complete elution, a slightly ammoniacal alkaline solution of aminocaproic acid is obtained, which after evaporation in vacuo gives 32 parts by weight of solid and technically pure e-aminocaproic acid with a melting point of 197 ° C.

Claims (4)

Patentanspr fik:Patent claim: 1. Forfarande att framstalla aminosyror, kannetecknat av att deras i form av vattenlosningar forefintliga laktamer omsattas i kontakt med katjonbytare av konstplasttyp, vilka innehalla ett polystyrenskelett och som verksam grupp en — —3 sulfogrupp, och att de erhallna aminosyrorna utlOsas med hjalp ay ammoniak.Process for the production of amino acids, characterized in that their lactams present in the form of aqueous solutions are reacted in contact with plastic cation-type cation exchangers, which contain a polystyrene skeleton and as active group one - - 3 sulfo group, and that the obtained amino acids are released with the aid of ammonia. 2. Forfarande enligt patentanspraket 1, Iannetecknat ay att de ammoniakaliska aminosyralosningarna koncentreras medelst deras anvandning till eluering.2. A process according to claim 1, characterized in that the ammoniacal amino acid solutions are concentrated by their use in elution. 3. Forfarande enligt patentanspraken 1 och 2, kannetecknat ay att man arbetar kontinuerligt. Anforda publikationer: Patentskrifter frdn Frankrike 938 488, 1 001 576; Tyskland 820 440, 896 943. A method according to claims 1 and 2, characterized in that one works continuously. Request publications: Patents from France 938 488, 1 001 576; Germany 820 440, 896 94 4.4.
SE185456D SE185456C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE185456T

Publications (1)

Publication Number Publication Date
SE185456C1 true SE185456C1 (en) 1963-01-01

Family

ID=41972905

Family Applications (1)

Application Number Title Priority Date Filing Date
SE185456D SE185456C1 (en)

Country Status (1)

Country Link
SE (1) SE185456C1 (en)

Similar Documents

Publication Publication Date Title
CA2787596C (en) Process for manufacturing succinic acid
CN105348154B (en) The recovery method of sulfosalicylic acid in a kind of Doxycycline production waste liquid
EP3013969B1 (en) Process for the preparation of 2,5-furandicarboxylic acid
Schaffer Improved Synthesis of Sodium D-glucuronate-6-C14 and of D-glucose-6-C14
US2700054A (en) Isolation of amino acids
JPH07119231B2 (en) Lactulose production method
SE185456C1 (en)
JP2001506585A (en) Method for recovering lactic acid from lactate aqueous solution using ion exchanger
JPS63170213A (en) Method of separating and collecting boron compound
US20040262161A1 (en) Method for the isolation of salts of organic acids from a fermentation broth and for releasing the organic acid
US3496212A (en) Process for purifying adiponitrile
SE429543B (en) SET FOR PURIFICATION OF WATER-MADE PHOSPHORIC ACID
JP2930736B2 (en) Method for treating aqueous mother liquor containing hydrochloric acid, sulfuric acid and its hydroxylammonium and ammonium salts
US2948592A (en) Process for producing pure boric acid and potassium sulfate
JPH0127058B2 (en)
US3113966A (en) Process of hydrolyzing caprolactams
CN1084505A (en) The method of synthetic betaine (trimethyl-glycine)
JPS6113456B2 (en)
SU148390A1 (en) Ammonium perrhenate production method
US2779760A (en) Lithium maltobionate and process for making same
SI9011080A (en) Procedure for the lactulose production
FI92490C (en) Method for the preparation of lactulose
HU208980B (en) Process for producing lactulose
SU487869A1 (en) The method of obtaining 1,1,6,6-tetramethylhexadiindiol-1,6
GB963359A (en) Chemical process for recovery of vanadium and copper catalysts