JPS6229361B2 - - Google Patents

Info

Publication number
JPS6229361B2
JPS6229361B2 JP3274980A JP3274980A JPS6229361B2 JP S6229361 B2 JPS6229361 B2 JP S6229361B2 JP 3274980 A JP3274980 A JP 3274980A JP 3274980 A JP3274980 A JP 3274980A JP S6229361 B2 JPS6229361 B2 JP S6229361B2
Authority
JP
Japan
Prior art keywords
nickel
iodide
nickel sulfate
water
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3274980A
Other languages
Japanese (ja)
Other versions
JPS56129601A (en
Inventor
Saburo Shimizu
Hayato Nakajima
Yasumasa Ikezoe
Shoichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP3274980A priority Critical patent/JPS56129601A/en
Publication of JPS56129601A publication Critical patent/JPS56129601A/en
Publication of JPS6229361B2 publication Critical patent/JPS6229361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は沃化ニツケルと硫酸ニツケルを含
む水溶液において両塩を分離する方法に関する。
より詳細には、沃化水素と硫酸からなる混合酸水
溶液に金属ニツケルを加え、水素が発生した後に
残る、沃化ニツケルと硫酸ニツケルを分離す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating nickel iodide and nickel sulfate in an aqueous solution containing both salts.
More specifically, the present invention relates to a method for separating nickel iodide and nickel sulfate that remain after hydrogen is generated by adding nickel metal to a mixed acid aqueous solution consisting of hydrogen iodide and sulfuric acid.

ニツケル、沃素および二酸化硫黄を循環反応物
質として用い、全体として1000℃以下の反応温度
で水を分解して、水素と酸素を製造する方法は既
に知られている(清水、他、特開昭和54―
78394)。これらの方法においては、沃化ニツケル
と硫酸ニツケルとの混合塩は、350℃から400
℃で加熱脱水せしめて無水混合塩にし、あるいは
100℃から350℃で加熱して沃化ニツケル無水塩と
硫酸ニツケル1水塩の混合物とした上で、それぞ
れ無水アルコール、あるいは30重量%以下の水を
含むアルコールを用いて、混合物から沃化ニツケ
ルのみを抽出することにより両塩を分離してい
る。これらの方法は実行可能ではあるが、沃化塩
のアルコール溶液からの分離あるいは溶媒用アル
コールの再生のために、蒸留による分離を考慮し
ており、このためにエネルギーを供給しなければ
ならず、従つて、プロセス全体としての熱経済を
悪化させている。
A method for producing hydrogen and oxygen by using nickel, iodine, and sulfur dioxide as circulating reactants and decomposing water at an overall reaction temperature of 1000°C or less is already known (Shimizu et al., JP-A-1988-1993). ―
78394). In these methods, a mixed salt of nickel iodide and nickel sulfate is heated from 350°C to 400°C.
Heat and dehydrate at ℃ to make anhydrous mixed salt, or
After heating at 100°C to 350°C to form a mixture of nickel iodide anhydride and nickel sulfate monohydrate, nickel iodide is extracted from the mixture using absolute alcohol or alcohol containing 30% by weight or less of water. Both salts are separated by extracting only the salt. Although these methods are viable, they allow for separation by distillation for the separation of the iodide salt from the alcoholic solution or for the regeneration of the solvent alcohol, for which energy must be supplied; Therefore, the thermal economy of the process as a whole is deteriorated.

本発明に見られる如く、有機溶媒を用いること
なく、しかも100℃以下の低温で、沃化ニツケル
と硫酸ニツケルとを高分離度で分離する方法
が明らかになつたことは、プロセスの簡略化と熱
経済の改善のため役立つものと期待できる。
As seen in the present invention, the discovery of a method for separating nickel iodide and nickel sulfate with a high degree of separation without using an organic solvent and at a low temperature of 100°C or less has led to the simplification of the process. It is expected that this will be useful for improving thermal economy.

沃化ニツケルの水に対する溶解度は、59.7g
無水塩/100g溶液(20℃)、64.6(60℃)であ
り、硫酸ニツケルのそれは24.6(20℃)36.1
(60℃)である(化学便覧、基礎編、P.789丸
善、1975)。ところが、他の多くの混合塩―水系
において金属イオンを共通とする二種の塩を同時
に水に溶解せしめようとするとき、一方の塩の溶
解度が単独溶解の場合に比べて著しく低下してい
る現象が観察されているが、沃化ニツケルと硫
酸ニツケルの場合にも同様な現象が見出され
た。すなわち、室温付近の温度範囲での水―沃化
ニツケル―硫酸ニツケル三成分系においては、沃
化ニツケルの溶解度は水―沃化ニツケル二成分
系の場合と同程度であるが、硫酸ニツケルの溶
解度は著しく低下して二成分系における値の数%
程度の値となる。例えば、沃化ニツケルと硫酸
ニツケルの各無水塩1モルに、水量20モルとな
る割合に調製された三成分系での、沃化ニツケル
と硫酸ニツケルの20℃における溶解度はそれ
ぞれ、53.9g無水塩/100g溶液、および0.483g無
水塩/100g溶液である。この場合、溶液中の両
塩の溶解量のモル比はNiI2/NiSO4=55.1であ
り、さらに固相には沃化ニツケルは極微量しか
含有されていない。このことから沃化ニツケル
と硫酸ニツケルを、水に対する溶解度の大差を
利用して分離せしめることが可能である。
The solubility of nickel iodide in water is 59.7g.
Anhydrous salt/100g solution (20℃) is 64.6 (60℃), and that of nickel sulfate is 24.6 (20℃) 36.1
(60℃) (Chemistry Handbook, Basic Edition, P.789 Maruzen, 1975). However, in many other mixed salt-water systems, when two salts that share a metal ion are simultaneously dissolved in water, the solubility of one salt is significantly lower than when dissolved alone. A similar phenomenon was observed in the case of nickel iodide and nickel sulfate. In other words, in the water-nickel iodide-nickel sulfate ternary system in the temperature range around room temperature, the solubility of nickel iodide is about the same as in the water-nickel iodide binary system, but the solubility of nickel sulfate is is significantly reduced to several percent of the value in the two-component system.
The value will be approximately. For example, in a three-component system prepared at a ratio of 20 moles of water to 1 mole of each anhydrous salt of nickel iodide and nickel sulfate, the solubility of nickel iodide and nickel sulfate at 20°C is 53.9 g of anhydrous salt, respectively. /100g solution, and 0.483g anhydrous salt/100g solution. In this case, the molar ratio of the dissolved amounts of both salts in the solution is NiI 2 /NiSO 4 =55.1, and the solid phase contains only a trace amount of nickel iodide. From this, it is possible to separate nickel iodide and nickel sulfate by taking advantage of the large difference in solubility in water.

実施例 沃化水素0.2モルを含む濃沃化水素酸(比重
1.7)26.4mlと硫酸0.1モルを含む濃硫酸(比重
1.84)5.61mlを水34.2gに加え、沃化水素と硫酸
との混合酸溶液を調製した。これは、HIと
H2SO4とH2Oのモル比が2:1:30に相当する溶
液である。窒素ガスで置換した還流冷却器付200
ml容量のフラスコでこの混合酸溶液と金属ニツケ
ル0.5モル29.4gを仕込んだ。最初は室温で、酸の
大半が消費された後には最高60℃で反応させた。
Example Concentrated hydriodic acid containing 0.2 mol of hydrogen iodide (specific gravity
1.7) Concentrated sulfuric acid (specific gravity
1.84) 5.61ml was added to 34.2g of water to prepare a mixed acid solution of hydrogen iodide and sulfuric acid. This is HI and
This solution has a molar ratio of H 2 SO 4 and H 2 O of 2:1:30. 200 with reflux condenser replaced with nitrogen gas
This mixed acid solution and 29.4 g of 0.5 mol of nickel metal were charged into a ml flask. The reaction was initially at room temperature and up to 60°C after most of the acid was consumed.

発生した水素ガスは、水上にて捕集した。水素
の体積は室温1気圧で4.39であり、これは計算
量の98.0%に相当する量である。水素の発生が終
了した時点では、すでに硫酸ニツケルの一部が
晶出しているが、さらに晶出を充分に進行させる
ため、反応容器から還流冷却器をはずして加熱し
水分を蒸発除去した。このようにして18.0gの水
が溜出したところで加熱を止め、反応系を20℃に
冷却後、一昼夜放置してさらに硫酸ニツケル含
水塩を晶出せしめた。
The generated hydrogen gas was collected on the water. The volume of hydrogen is 4.39 at room temperature and 1 atm, which is equivalent to 98.0% of the calculated amount. At the time when the generation of hydrogen was completed, some of the nickel sulfate had already crystallized, but in order to further promote crystallization, the reflux condenser was removed from the reaction vessel and the vessel was heated to remove water by evaporation. When 18.0 g of water had distilled out in this way, heating was stopped, and the reaction system was cooled to 20°C, and left to stand overnight to further crystallize nickel sulfate hydrate.

晶出終了後、溶液相と未反応金属ニツケルを含
む晶出物を過して分離した。溶液相を窒素気流
中150℃にて加熱脱水して、30.5gの固体を得た。
化学分析によれば、この固体は28.8gの沃化ニツ
ケル無水塩と未分離の1.5gの硫酸ニツケル無
水塩を含む。一方、金属ニツケルを含む晶出物に
水100gを加え、得られた溶液を過して金属ニ
ツケルを分離した。溶液を400℃以下で加熱脱水
して13.2gの硫酸ニツケル無水塩を得た。
After the crystallization was completed, the solution phase and the crystallized material containing unreacted metal nickel were separated by filtration. The solution phase was heated and dehydrated at 150° C. in a nitrogen stream to obtain 30.5 g of solid.
According to chemical analysis, this solid contains 28.8 g of anhydrous nickel iodide and 1.5 g of unseparated anhydrous nickel sulfate. On the other hand, 100 g of water was added to the crystallized product containing nickel metal, and the resulting solution was filtered to separate the nickel metal. The solution was dehydrated by heating at 400° C. or lower to obtain 13.2 g of nickel sulfate anhydride.

以上により、沃化ニツケルをほとんど含まず
硫酸ニツケルからなる直接晶出分と、モル比で
9.5%の硫酸ニツケルを含み他は沃化ニツケル
からなる残留液相分とが分取された。
As a result of the above, the molar ratio between the directly crystallized fraction, which contains almost no nickel iodide and consists of nickel sulfate, and
A residual liquid phase containing 9.5% nickel sulfate and the rest consisting of nickel iodide was separated.

Claims (1)

【特許請求の範囲】[Claims] 1 沃化水素と硫酸から成る混合酸水溶液に金属
ニツケルを加えて水素を発生させて得られた沃化
ニツケルトと硫酸ニツケルとを含む60℃以上
の水溶液を室温まで冷却することにより、沃化ニ
ツケルと硫酸ニツケルの水に対する溶解度の
差を利用して、硫酸ニツケルを沃化ニツケル溶液
より分離することから成る沃化ニツケルと硫酸ニ
ツケルの晶出による分離法。
1. Nickel iodide is produced by adding nickel metal to a mixed acid aqueous solution consisting of hydrogen iodide and sulfuric acid to generate hydrogen, and then cooling an aqueous solution containing nickel iodide and nickel sulfate at 60°C or higher to room temperature. A method for separating nickel iodide and nickel sulfate by crystallization, which consists of separating nickel sulfate from a nickel iodide solution by utilizing the difference in solubility in water between nickel iodide and nickel sulfate.
JP3274980A 1980-03-17 1980-03-17 Separation of nickel iodide and nickel sulfate by crystallization Granted JPS56129601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274980A JPS56129601A (en) 1980-03-17 1980-03-17 Separation of nickel iodide and nickel sulfate by crystallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274980A JPS56129601A (en) 1980-03-17 1980-03-17 Separation of nickel iodide and nickel sulfate by crystallization

Publications (2)

Publication Number Publication Date
JPS56129601A JPS56129601A (en) 1981-10-09
JPS6229361B2 true JPS6229361B2 (en) 1987-06-25

Family

ID=12367489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274980A Granted JPS56129601A (en) 1980-03-17 1980-03-17 Separation of nickel iodide and nickel sulfate by crystallization

Country Status (1)

Country Link
JP (1) JPS56129601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106248U (en) * 1988-01-11 1989-07-18
JPH02231359A (en) * 1989-03-04 1990-09-13 Mita Ind Co Ltd Paper discharger of picture forming device
JPH0471269U (en) * 1990-10-31 1992-06-24
JPH0489360U (en) * 1990-12-17 1992-08-04

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106248U (en) * 1988-01-11 1989-07-18
JPH02231359A (en) * 1989-03-04 1990-09-13 Mita Ind Co Ltd Paper discharger of picture forming device
JPH0471269U (en) * 1990-10-31 1992-06-24
JPH0489360U (en) * 1990-12-17 1992-08-04

Also Published As

Publication number Publication date
JPS56129601A (en) 1981-10-09

Similar Documents

Publication Publication Date Title
US4127644A (en) Process for hydrogen production from water
US8153842B2 (en) Method for producing 3-(2,2,2-trimethyl-hydrazinium) propionate dihydrate
JP2016530196A (en) Synthesis of hydrogenbis (fluorosulfonyl) imide
US4115530A (en) Process for obtaining gaseous hydrogen chloride from dilute, aqueous hydrochloric acid
JPS6036811B2 (en) How to remove SO↓2 from gas
US4513143A (en) Preparation of ketene acetals
NO152371B (en) PROCEDURE FOR THE PREPARATION OF ANCIENT OR APPROXIMATED Aqueous ACID.
JPS6229361B2 (en)
JP6709686B2 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt
JPS62158233A (en) Separation of bisphenol a from o,p'-isomer
IL49211A (en) Process for purifying wet process phorphoric acid
FI59077B (en) FOERFARANDE FOER RENING AV VAOTPROCESSFOSFORSYRA
JPS62106047A (en) Separation and purification of salicylic acid
EP4058411A1 (en) A process for working up water containing 4,4'-dichlorodiphenyl sulfoxide and/or 4,4'-dichlorodiphenyl sulfone as impurities
KR20220156229A (en) Mass Production Method of Metal bis(fluorosulfonyl)imide
CA2138113A1 (en) Recovery of carboxylic acids from their salts
US4743707A (en) Process for purifying allyl alcohol
CA1055419A (en) Purification of phosphoric acid
JPH05186216A (en) Production of potassium sulfate and hydrochloric acid
US4814495A (en) Method for the preparation of hydroxybenzoic acid
US3031500A (en) Conversion of ammonium salts
JP2002326977A (en) Method for producing electrolyte and nonaqueous electrolyte liquid
SU1235456A3 (en) Method of producing cebacic acid
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
US2708153A (en) Manufacture of hydrazine hydrobromide