SE1551093A1 - Stainless steel strip for flapper valves - Google Patents
Stainless steel strip for flapper valves Download PDFInfo
- Publication number
- SE1551093A1 SE1551093A1 SE1551093A SE1551093A SE1551093A1 SE 1551093 A1 SE1551093 A1 SE 1551093A1 SE 1551093 A SE1551093 A SE 1551093A SE 1551093 A SE1551093 A SE 1551093A SE 1551093 A1 SE1551093 A1 SE 1551093A1
- Authority
- SE
- Sweden
- Prior art keywords
- strip
- steel
- mpa
- strip according
- following requirements
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/021—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
15 20 25 30 35 DISCLOSURE OF THE INVENTION The general object of the present invention is to provide a pre-hardened stainless steel strip for flapper valves having an optimized property profile such that it can be used to produce more efficient and reliable compressors.
A further object is to provide pre-hardened stainless steel strip for flapper valves, which reduces the flapper reed contribution to the overall noise levels of the compressor.
It is also an object of the present invention to provide a method of producing such an improved steel strip.
The foregoing objects, as well as additional advantages are achieved to a significant measure by providing a cold rolled and hardened martensitic stainless steel strip having a composition, microstructure and physical properties as set out in the claims.
The invention is defined in the claims.
DETAILED DESCRIPTION The importance of the separate elements and their interaction with each other as well as the limitations of the chemical ingredients of the claimed alloy are briefly explained in the following. All percentages for the chemical composition of the steel are given in weight % (wt. %) throughout the description. The amount of microstructural phases is given in volume % (vol. %). Upper and lower limits of the individual elements can be freely combined within the limits set out in the claims.
Carbon (0.3 - 0.5 %) is to be present in a minimum content of 0.3 %, preferably at least 0.32, 0.34, 0.36 or 0.36 %. Carbon is a strong austenite stabilizer with relatively large so lubility in austenite. The upper limit for carbon is 0.5 % and may be set to 0.48, 0.46, 0.44 or 0.42 %. A referred range is 0.35 - 0.41 %. In any case, the amount of carbon should be controlled such that the amount of primary carbides of the type M23C6, MvCg and MÖC in the steel is limited, preferably the steel is free from such primary carbides.
Silicon (0,2 - 0.8 %) Silicon is used for deoxidation. Si is a strong ferrite former and increases the carbon activity. Si is also a powerful so lid-so lution strengthening element and strengthens the 10 15 20 25 30 35 steel matrix. This effect appears at a content of 0.2 %Si. A preferred range is 0.30 - 0.60 %.
Manganese (0.2 - 1.0 %) Manganese is an austenite stabilizer and contributes to improving the hardenability of the steel. Manganese shall therefore be present in a minimum content of 0.2 %, preferably at least 0.3, 0.35 or 0.4 %. When the content of Mn is too large the amount of retained austenite after finish annealing may be too high. The steel shall therefore contain maximum 1.0 % Mn, preferably maximum 0.8, 0.7 or 0.65 %.
Chromium (12.0 - 15.0 %) Chromium is a ferrite stabilizing element, which is added to impart corrosion resistance to the steel. Cr needs to be present in a content of at least 12.0 % in order to provide a passive film on the steel surface. The lower limit may be 12,4, 12, 6, 12, 8 or 13 %.
When the content of Cr exceeds 15 %, however, delta ferrite may form.
Molybdenum (0.5 - 2.0 %) Mo is a ferrite stabilizer and is known to have a very favourable effect on the hardenability. Molybdenum is essential for attaining a good secondary hardening response. The minimum content is 0.5 % and may be set to 0.6, 0.7 or 0.8 %.
Molybdenum is strong carbide forrning element and also a strong ferrite former. The maximum content of molybdenum is therefore 2.0 %. Preferably Mo is limited to 1.5, 1.3 or l.l %.
Vanadium (0.01 - 0.20 %) Vanadium forms evenly distributed fine precipitated carbides, nitrides and carbonitrides of the type V(N,C) in the matrix of the steel. This hard phase may also be denoted MX, wherein M is mainly V but other metals like Cr and Mo may be present to some extent. X is one or both of C and N. Vanadium shall therefore be present in an amount of 0.01 - 0.2%. The upper limit may be set to 0.1 or 0.08 %. The lower limit may be 0.02, 0.03, 0.04 or 0.05%.
Nitrogen (0.02 - 0.15 %) Nitro gen is a strong austenite former. N is restricted to 0.15% in order to obtain the desired type and amount of hard phases, in particular V(C,N). Higher nitrogen content may lead to work hardening, edge cracking and/or a high amount of retained austenite.
When the nitrogen content is properly balanced against the vanadium content, vanadium 10 15 20 25 30 35 rich carbonitrides V(C,N) will form. These will be partly dissolved during the austenitizing step and then precipitated during the tempering step as particles of nanometre size. The therrnal stability of vanadium carbonitrides is considered to be better than that of Vanadium carbides. Therefore the resistance against grain growth at high austenitizing temperatures is enhanced. The lower limit may be 0.02, 0.03, 0.04 or 0.05 %. The upper limit may be 0.12, 0.10, 0.08 or 0.06 %.
Nickel (S 2.0 %) Nickel is an austenite former. Ni may be present in an amount of 52.0 %. It gives the steel a good hardenability and toughness. However, because of the expense, the nickel content of the steel should be limited. The upper limit may therefore be set to 1.0, 0.5 or 0.5%. However, Ni is norrnally not deliberately added.
Cobalt (E 2.0 %) Cobalt is an austenite former. Co causes the solidus temperature to increase and therefore provides an opportunity to raises the hardening temperature. During austenitization it is therefore possible to dissolve larger fraction of carbides and thereby enhance the hardenability. Co also increases the MS temperature. However, large amount of Co may result in a decreased toughness and wear resistance. The maximum amount is 2 % and may be set to 0.5 %. However, for practical reasons, such as scrap handling, a deliberate addition of Co is norrnally not made.
Copper (S 2.0%) Cu is an austenite stabilizing element but has a low solubility in ferrite. Cu may contribute to increasing the hardness and the corrosion resistance of the steel. However, it is not possible to extract copper from the steel once it has been added. This drastically makes the scrap handling more difficult. For this reason, the upper limit may be 1.0, 0.5, or 0.3 %. Copper is norrnally not deliberately added.
Aluminium (5 0.06 %) Aluminium may be used for deoxidation in combination with Si and Mn. The lower limit is set to 0.001, 0.003, 0.005 or 0.007% in order to ensure a good deoxidation. The upper limit is restricted to 0.06% for avoiding precipitation of undesired phases such as AlN and hard, brittle Alumina inclusions. The upper limit may be 0.05, 0.04, 0.03, 0.02 or 0.015 %. 10 15 20 25 30 35 Tungsten (S 2 %) In principle, molybdenum may be replaced by twice as much With tungsten because of their chemical similarities. However, tungsten is expensive and it also complicates the handling of scrap metal. The maximum amount is therefore limited to 2 %, preferably 0.5 % or 0.3 % and most preferably no deliberate additions are made.
Niobium (S 0.05%) Niobium is similar to vanadium in that it forms carbonitrides of the type M(N,C) and may in principle be used to replace part of the vanadium but that requires the double amount of niobium as compared to vanadium. However, Nb results in a more angular shape of the M(N,C) and these are also much more stable than V(C,N) and may therefore not be dissolved during austenitising. The maximum amount is therefore 0.05%, preferably 0.01 % and most preferably no deliberate additions are made.
Ti, Zr and Ta (S 0.05% each) These elements are carbide formers and may be present in the alloy in the claimed ranges for altering the composition of the hard phases. However, norrnally none of these elements are added.
Boron (S 0.01%) B may be used in order to further increase the hardness of the steel. The amount is limited to 0.01%, preferably S 0.005 or even S 0.001 %.
Ca and REM (Rare Earth Metals) These elements may be added to the steel in the claimed amounts in order to further improve the hot Workability and to modify the shape of non-metallic inclusions.
Impurity elements P, S and O are the main impurities, Which have a negative effect on the mechanical properties of the steel strip. P may therefore be limited to 0.03%, preferably to 0.01%. S may be limited to 0.03, 0.01, 0.008, 0.0005 or 0.0002%. O may be limited to 0.003, 0.002 or 0.001%.
The present inventors have systematically investigated the effect of a modified chemical composition and a modified heat treatment on the mechanical properties of the flapper valve material. The modifications made to the chemical composition relative to the conventional material Were mainly focused on increases in nitrogen and vanadium 10 15 20 25 30 35 although some benefits were also gained from increases in austenite levels and tighter control over such elements as carbon, manganese and phosphorus.
The continuous hardening of valve strip was undertaken using different furnace parameters to map the hardening response of material from the conventional and modified chemical compositions. The production trials were carried out at a constant line speed with hardening temperatures in the range from 1000 °C to 1080°C, quenching into a molten lead alloy at a temperature in the range of 25 0°C to 350°C and tempering at temperatures in the range from 220°C to 600°C.
The mechanical properties resulting from these hardening trials on conventional material corresponded to: 0 a yield strength Rpog range between 1300 MPa and 1600 MPa, 0 a tensile strength Rm range between 1740 MPa and 2100 MPa 0 an elongation A50 range between 4 % and 6 % Further continuous hardening trials were carried out on material with the modified chemical composition and non-metallic inclusion content. The production trials were carried out at a constant line speed with hardening temperatures in the range from 1050 °C to 1100°C, quenching into a molten lead alloy at a temperature in the range of 250°C to 350°C and tempering at temperatures in the range from 220°C to 600°C.
The mechanical properties resulting from fiarther hardening trials on material with the modified chemical composition and non-metallic inclusion content corresponded to: 0 a Rpog range between 1400 MPa and 1750 MPa, 0 a Rm range between 1970 MPa and 2300 MPa 0 a A50 range between 4 % and 8 % EXAMPLE In this example a stainless steel strip according to the invention is compared to a conventional stainless steel strip. The composition of the investigated steels was as follows: Conventional Inventive C 0.38 0.40 Si 0.36 0.42 10 15 20 Mn 0.48 Cr 13.1 M0 0.98 N 0.017 V 0.009 Ni 0.31 P 0.018 S 0.0004 Fe and impurities balance. 0.56 13.4 0.99 0.052 0.055 0.15 0.018 0.0006 The cold ro11ed strips used for the hardening and tempering trials all had a thickness of 0.203 mm and a width of 140 mm. The strips Were subj ected to hardening and tempering in the above mentioned continuous hardening fumace. Tensile strength measurements Were made according to ISO 6892:2009. Fig. 1 discloses tensile properties as a function of the austenitising temperature. Fig. 2 discloses the tensile properties as a function of the tempering temperature.
INDUSTRIAL APPLICABILITY The inventive steel strip can be used for producing flapper valves for compressors having improved properties.
Claims (8)
1. l. Kallvalsat och härdat martensitiskt/austenitiskt band av rostfritt stål för bladventiler i kompressorema, varvid stålbandet a) är tillverkat av stål bestående av, i viktprocent: C 0,3-0,5 Si 0,2-0,8 Mn 0,2-1,0 Cr 12,0-15,0 Mo 0,5-2,0 N 0,02-0,15 V 0,01-0,20 Ni S 2,0 Co S 2,0 Cu S 2,0 W S 2,0 Al S 0,06 Ti S 0,05 Zr S 0,05 Nb S 0,05 Ta S 0,05 B S 0,01 Ca S 0,009 REM S 0,2 samt resten Fe och föroreningar, b) har en matris bestående av anlöpt martensit samt mellan 5 och 15 volymprocent austenit, c) har en draghållfasthet (Rm) av l 970-2 300 MPa, d) har en tjocklek av 0,07-3 mm och en bredd av S 500 mm. 10 15 20 25
2. Band enligt patentkrav 1 som uppfyller minst ett av följande krav: och varvid föroreningshalten av P, S och O uppfyller följande krav: C 0,35-0,41 Si 0,30-0,60 Mn 0,40-0,65 Cr 13-14 Mo 0,8-1,2 N 0,03-0,13 V 0,02-0,10 Ni S 0,5 Co S 0,5 Cu S 0,5 W S 0,5 Al S 0,01 Ti S 0,01 Zr S 0,01 Nb S 0,01 Ta S 0,01 B S 0,001 Ca 0,0005-0,002 P S 0,03 S S 0,03 O S 0,003
3. Band enligt patentkrav 1 eller 2 som uppfyller fólj ande krav: 10 15 20 25 C 0,35-0,4l Si 0,30-0,60 Mn 0,40-0,65 Cr 13-14 Mo 0,8-1,2 N 0,03-0,10 V 0,03-0,09
4. Band enligt något av föregående patentkrav som uppfyller minst ett av fo lj ande krav: en draghållfasthet (Rm) av 2 000-2 200 MPa, en stråckgräns(R1-0_2) av 1 500-1 750 MPa, en vickershårdhet (HVl) av 570-650, en duktilitet A50 av 4-9 %.
5. Band enligt något av föregående patentkrav som uppfyller följande krav: återbockningsutmattningen är > 850 MPa
6. Band enligt något av föregående patentkrav med en tjocklek av 0,1-1,5 mm och/eller en bredd av 5-150 mm.
7. Band enligt något av föregående patentkrav, varvid den maximala storleken av sfariska inneslutningar år 6 pm. 10 15 20
8. 10. ll. 12. Band enligt något av föregående patentkrav, varvid de primära inneslutningskategoriema är av silikattyp med en maximal bredd av 4 um. Metod for att framställa ett band enligt något av patentkrav 1-8, varvid metoden innefattar följande moment: a) att varmvalsa ett stål med en sammansättning enligt något av patentkrav 1-3, b) att kallvalsa det varmvalsade bandet till en tjocklek av 0,07-3 mm, c) att kontinuerligt härda och anlöpa det kallvalsade bandet, d) att eventuellt slitta det kallvalsade bandet. Metod enligt patentkrav 9, varvid austenitiseringstemperaturen är 1 000- 1 150 °C i moment c) och varvid anlöpningstemperaturen är 200-600 °C. Metod enligt patentkrav 9 eller 10, varvid härdningen inbegriper kylning av bandet i ett bad av smält bly eller blylegering, varvid badet företrädesvis har en temperatur av 250-350 °C. Metod enligt något av patentkrav 9-11, varvid det stål som används framställs genom pulverrnetallurgi och varvid den maximala storleken av sfäriska inneslutningar hos nämnda stål är 6 um.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1551093A SE538704C2 (sv) | 2015-08-25 | 2015-08-25 | Stainless steel strip for flapper valves |
SG11201703857WA SG11201703857WA (en) | 2014-12-09 | 2015-12-08 | Stainless steel for flapper valves |
BR112016015645-5A BR112016015645B1 (pt) | 2014-12-09 | 2015-12-08 | Tira de aço inoxidável para válvulas de charneira |
JP2016535110A JP6196381B2 (ja) | 2014-12-09 | 2015-12-08 | フラッパ弁用ステンレス鋼帯 |
US15/102,217 US9890436B2 (en) | 2014-12-09 | 2015-12-08 | Stainless steel strip for flapper valves |
KR1020177018768A KR102274408B1 (ko) | 2014-12-09 | 2015-12-08 | 플래퍼 밸브들용 스테인레스강 스트립 |
CN201580003829.XA CN105934530B (zh) | 2014-12-09 | 2015-12-08 | 用于舌形阀的不锈钢 |
PCT/SE2015/051316 WO2016093762A1 (en) | 2014-12-09 | 2015-12-08 | Stainless steel for flapper valves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1551093A SE538704C2 (sv) | 2015-08-25 | 2015-08-25 | Stainless steel strip for flapper valves |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1551093A1 true SE1551093A1 (sv) | 2016-10-25 |
SE538704C2 SE538704C2 (sv) | 2016-10-25 |
Family
ID=57140270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1551093A SE538704C2 (sv) | 2014-12-09 | 2015-08-25 | Stainless steel strip for flapper valves |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE538704C2 (sv) |
-
2015
- 2015-08-25 SE SE1551093A patent/SE538704C2/sv unknown
Also Published As
Publication number | Publication date |
---|---|
SE538704C2 (sv) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102274408B1 (ko) | 플래퍼 밸브들용 스테인레스강 스트립 | |
EP3031942B1 (en) | Stainless steel strip for flapper valves | |
US8071017B2 (en) | Low cost high strength martensitic stainless steel | |
JP5076683B2 (ja) | 高靭性高速度工具鋼 | |
JP4650013B2 (ja) | 低温靱性に優れた耐摩耗鋼板およびその製造方法 | |
CA2785318C (en) | Austenite steel material having superior ductility | |
WO2017111680A1 (en) | Hot work tool steel | |
CA3078221A1 (en) | Stainless steel, a prealloyed powder obtained by atomizing the steel and use of the prealloyed powder | |
WO2018182480A1 (en) | Hot work tool steel | |
WO2010074017A1 (ja) | 鋼の焼入方法 | |
CA2792615A1 (en) | Tool steel for extrusion | |
WO2016083335A1 (en) | Bearing component formed from a steel alloy | |
EP3126537B1 (en) | Dual-phase stainless steel | |
US7067019B1 (en) | Alloy steel and article made therefrom | |
RU2719212C1 (ru) | Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения | |
CN103981437B (zh) | 一种高强度、高韧性合金钢、制备方法及其在钢构中的应用 | |
SE1551093A1 (sv) | Stainless steel strip for flapper valves | |
CN112458366A (zh) | 一种海洋环境下高组织稳定性不锈钢及其制造方法 | |
CN113966405A (zh) | 马氏体不锈钢合金 | |
JP2018159133A (ja) | 冷間加工工具鋼 | |
EP3980571A1 (en) | Steel strip for flapper valves | |
JP2017190519A (ja) | 耐食性に優れた高強度バネ鋼 | |
KR20240101160A (ko) | 열처리 특성이 우수한 샤프트용 중탄소강 선재 및 그 제조 방법 | |
JP2022077311A (ja) | マルテンサイト系ステンレス鋼 | |
JP2022077310A (ja) | マルテンサイト系ステンレス鋼 |