SA520411005B1 - مستشعرات فوتونية متعددة الأبعاد محسنة بأجسام مفلورة - Google Patents

مستشعرات فوتونية متعددة الأبعاد محسنة بأجسام مفلورة

Info

Publication number
SA520411005B1
SA520411005B1 SA520411005A SA520411005A SA520411005B1 SA 520411005 B1 SA520411005 B1 SA 520411005B1 SA 520411005 A SA520411005 A SA 520411005A SA 520411005 A SA520411005 A SA 520411005A SA 520411005 B1 SA520411005 B1 SA 520411005B1
Authority
SA
Saudi Arabia
Prior art keywords
band gap
fluorophore
longitudinal axis
photonic
displacement
Prior art date
Application number
SA520411005A
Other languages
Arabic (ar)
English (en)
Inventor
بوفيرو اريكو
الله إيه الشهراني عبد
العبيدي غسان
Original Assignee
شركه الزيت العربية السعودية
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by شركه الزيت العربية السعودية filed Critical شركه الزيت العربية السعودية
Publication of SA520411005B1 publication Critical patent/SA520411005B1/ar

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/023Microstructured optical fibre having different index layers arranged around the core for guiding light by reflection, i.e. 1D crystal, e.g. omniguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Peptides Or Proteins (AREA)
SA520411005A 2017-07-14 2020-01-08 مستشعرات فوتونية متعددة الأبعاد محسنة بأجسام مفلورة SA520411005B1 (ar)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/650,478 US10436655B2 (en) 2017-07-14 2017-07-14 Fluorophore enhanced multidimensional photonic sensors

Publications (1)

Publication Number Publication Date
SA520411005B1 true SA520411005B1 (ar) 2022-09-14

Family

ID=63104053

Family Applications (1)

Application Number Title Priority Date Filing Date
SA520411005A SA520411005B1 (ar) 2017-07-14 2020-01-08 مستشعرات فوتونية متعددة الأبعاد محسنة بأجسام مفلورة

Country Status (8)

Country Link
US (1) US10436655B2 (enExample)
EP (1) EP3652499A1 (enExample)
JP (1) JP2020527703A (enExample)
KR (1) KR20200022431A (enExample)
CN (1) CN110832270A (enExample)
SA (1) SA520411005B1 (enExample)
SG (1) SG11202000152VA (enExample)
WO (1) WO2019014666A1 (enExample)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12050098B2 (en) 2019-02-20 2024-07-30 Humanetics Innovative Solutions, Inc. Shape sensing system and method for anthropomorphic test devices
WO2020172413A1 (en) 2019-02-20 2020-08-27 Humanetics Innovative Solutions, Inc. Optical fiber system having helical core structure for detecting forces during a collision test
CN110296778B (zh) * 2019-06-19 2020-07-10 华中科技大学 一种无源压力传感纤维及其制备方法
CN120280773A (zh) 2019-09-02 2025-07-08 Asml荷兰有限公司 基于光子晶体光纤的宽带光源的模式控制

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW327676B (en) 1996-08-13 1998-03-01 Nat Science Council Optical frequency and temperature sensor and its application employs two different optical resonators to detect the temperature and frequency simultaneously that can be able to provide tunable and highly stabilized optical source for optical system application
US6301421B1 (en) * 1999-05-27 2001-10-09 Trw Inc. Photonic crystal fiber lasers and amplifiers for high power
JP3484165B2 (ja) * 2000-03-03 2004-01-06 日本電信電話株式会社 偏波保持光ファイバ
US7473906B2 (en) * 2005-04-28 2009-01-06 Claudio Oliveira Egalon Reversible, low cost, distributed optical fiber sensor with high spatial resolution
US7790406B2 (en) 2005-08-11 2010-09-07 Sru Biosystems, Inc Grating-based sensor combining label-free binding detection and fluorescence amplification and readout system for sensor
CN100468008C (zh) 2006-05-26 2009-03-11 北京交通大学 写有光栅的光子晶体光纤的横向应力传感系统及实现方法
EP2035782A2 (en) 2006-06-29 2009-03-18 The Board of Trustees of The Leland Stanford Junior University Fiber optic sensor using a bragg fiber
US7512292B2 (en) 2006-09-12 2009-03-31 Weatherford/Lamb, Inc. Multi-core strain compensated optical fiber temperature sensor
US7539361B2 (en) * 2006-10-05 2009-05-26 Harris Corporation Fiber optic device for measuring a parameter of interest
WO2008136812A2 (en) 2007-05-07 2008-11-13 The Board Of Trustees Of The University Of Illinois Fluorescence detection enhancement using photonic crystal extraction
US7499605B1 (en) * 2007-09-14 2009-03-03 General Electric Company Fiber Bragg grating for high temperature sensing
EP2502102B1 (en) 2009-11-19 2018-09-05 Vrije Universiteit Brussel Birefringent micro-structured optical fiber for sensor application
DE102010052614B4 (de) 2010-11-29 2017-07-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sensor, System sowie Verfahren zur Kaft- und/oder Momentenmessung
CN102135459B (zh) * 2010-12-10 2013-07-24 杭州恒川科技有限公司 基于波导阵列光栅差分解调的强度检测型光子晶体光纤长周期光栅应力传感器
CN202195827U (zh) * 2011-08-09 2012-04-18 中国计量学院 一种融合光纤布里渊频移器的超远程脉冲编码分布式光纤布里渊传感器
EP2896978A1 (en) 2014-01-17 2015-07-22 Vrije Universiteit Brussel VUB Microstructured optical fibre, composite structure, method and use for measuring shear load in a composite structure

Also Published As

Publication number Publication date
SG11202000152VA (en) 2020-02-27
US10436655B2 (en) 2019-10-08
CN110832270A (zh) 2020-02-21
WO2019014666A1 (en) 2019-01-17
JP2020527703A (ja) 2020-09-10
US20190017887A1 (en) 2019-01-17
KR20200022431A (ko) 2020-03-03
EP3652499A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
SA520411005B1 (ar) مستشعرات فوتونية متعددة الأبعاد محسنة بأجسام مفلورة
SA517382215B1 (ar) مستشعرات ليف ضوئي أسفل البئر مزودة بأداة استجواب ضوئية أسفل البئر
FI3717944T3 (fi) Aaltoputki ja samaan perustuvia antureita
GB2535025A (en) Optical fiber sensing with enhanced backscattering
TR201906716T4 (tr) Ray ölçüm cihazı.
WO2017003982A3 (en) Optical fiber with large effective area and low bending loss
MX2019009333A (es) Fibra optica para fotonica de silicio.
PH12015500907A1 (en) Side illuminated multi point multi parameter optical fiber sensor
GB2464414A (en) Distributed sensing in an optical fiber using brillouin scattering
WO2013188520A3 (en) Multimode optical fiber spectrometer
WO2011159502A3 (en) Compartmentalized fiber optic distributed sensor
GB2535875A (en) Distributed sensing in an optical fiber network
GB0912851D0 (en) Distributed optical fibre sensing
WO2012018214A3 (en) Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
PL430153A1 (pl) Interferometr falowodowy
MY181759A (en) Cargo handling by a spreader
GB2517089A (en) Low profile magnetic orienting protectors
GB2540071A (en) Distributed nondestructive structural defects detection in slickline cables
WO2014202753A9 (en) Optical displacement sensor element
GB2553709A (en) Method of measuring acoustic energy impinging upon a cable
WO2016105196A3 (en) Detection of local property changes in an optical sensing fiber
GB2532155A (en) Loss compensation for distributed sensing in downhole environments
WO2014053002A3 (en) A device and a method for characterising a chromatic property of foodstuff
GB201313282D0 (en) Optically pumpable waveguide amplifier with amplifier having tapered input and output
HK1220757A1 (zh) 用於通过采用光纤的监测设备监测转动元件的变形的方法、和配备有这种设备的风力涡轮机