JP2020527703A - フルオロフォア増強多次元フォトニックセンサ - Google Patents
フルオロフォア増強多次元フォトニックセンサ Download PDFInfo
- Publication number
- JP2020527703A JP2020527703A JP2020501155A JP2020501155A JP2020527703A JP 2020527703 A JP2020527703 A JP 2020527703A JP 2020501155 A JP2020501155 A JP 2020501155A JP 2020501155 A JP2020501155 A JP 2020501155A JP 2020527703 A JP2020527703 A JP 2020527703A
- Authority
- JP
- Japan
- Prior art keywords
- photonic
- fiber
- bandgap
- core
- clad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/18—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35316—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
- G01L1/246—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02042—Multicore optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/023—Microstructured optical fibre having different index layers arranged around the core for guiding light by reflection, i.e. 1D crystal, e.g. omniguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02347—Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Transform (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Peptides Or Proteins (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/650,478 US10436655B2 (en) | 2017-07-14 | 2017-07-14 | Fluorophore enhanced multidimensional photonic sensors |
| US15/650,478 | 2017-07-14 | ||
| PCT/US2018/042249 WO2019014666A1 (en) | 2017-07-14 | 2018-07-16 | MULTIDIMENSIONAL PHOTONIC SENSORS ENHANCED BY FLUOROPHORE |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2020527703A true JP2020527703A (ja) | 2020-09-10 |
| JP2020527703A5 JP2020527703A5 (enExample) | 2021-07-29 |
Family
ID=63104053
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020501155A Withdrawn JP2020527703A (ja) | 2017-07-14 | 2018-07-16 | フルオロフォア増強多次元フォトニックセンサ |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US10436655B2 (enExample) |
| EP (1) | EP3652499A1 (enExample) |
| JP (1) | JP2020527703A (enExample) |
| KR (1) | KR20200022431A (enExample) |
| CN (1) | CN110832270A (enExample) |
| SA (1) | SA520411005B1 (enExample) |
| SG (1) | SG11202000152VA (enExample) |
| WO (1) | WO2019014666A1 (enExample) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12050098B2 (en) | 2019-02-20 | 2024-07-30 | Humanetics Innovative Solutions, Inc. | Shape sensing system and method for anthropomorphic test devices |
| US11885699B2 (en) | 2019-02-20 | 2024-01-30 | Humanetics Innovative Solutions, Inc. | Optical fiber system having helical core structure for detecting forces during a collision test |
| CN110296778B (zh) * | 2019-06-19 | 2020-07-10 | 华中科技大学 | 一种无源压力传感纤维及其制备方法 |
| KR102718090B1 (ko) * | 2019-09-02 | 2024-10-18 | 에이에스엠엘 네델란즈 비.브이. | 광결정 섬유 기반의 광대역 광원의 모드 제어 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW327676B (en) | 1996-08-13 | 1998-03-01 | Nat Science Council | Optical frequency and temperature sensor and its application employs two different optical resonators to detect the temperature and frequency simultaneously that can be able to provide tunable and highly stabilized optical source for optical system application |
| US6301421B1 (en) * | 1999-05-27 | 2001-10-09 | Trw Inc. | Photonic crystal fiber lasers and amplifiers for high power |
| JP3484165B2 (ja) * | 2000-03-03 | 2004-01-06 | 日本電信電話株式会社 | 偏波保持光ファイバ |
| US7473906B2 (en) * | 2005-04-28 | 2009-01-06 | Claudio Oliveira Egalon | Reversible, low cost, distributed optical fiber sensor with high spatial resolution |
| US7790406B2 (en) | 2005-08-11 | 2010-09-07 | Sru Biosystems, Inc | Grating-based sensor combining label-free binding detection and fluorescence amplification and readout system for sensor |
| CN100468008C (zh) | 2006-05-26 | 2009-03-11 | 北京交通大学 | 写有光栅的光子晶体光纤的横向应力传感系统及实现方法 |
| WO2008003071A2 (en) | 2006-06-29 | 2008-01-03 | The Board Of Trustees Of The Leland Stanford Junior University | Fiber optic sensor using a bragg fiber |
| US7512292B2 (en) | 2006-09-12 | 2009-03-31 | Weatherford/Lamb, Inc. | Multi-core strain compensated optical fiber temperature sensor |
| US7539361B2 (en) * | 2006-10-05 | 2009-05-26 | Harris Corporation | Fiber optic device for measuring a parameter of interest |
| US7768640B2 (en) | 2007-05-07 | 2010-08-03 | The Board Of Trustees Of The University Of Illinois | Fluorescence detection enhancement using photonic crystal extraction |
| US7499605B1 (en) * | 2007-09-14 | 2009-03-03 | General Electric Company | Fiber Bragg grating for high temperature sensing |
| EP2502102B1 (en) | 2009-11-19 | 2018-09-05 | Vrije Universiteit Brussel | Birefringent micro-structured optical fiber for sensor application |
| DE102010052614B4 (de) | 2010-11-29 | 2017-07-20 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Sensor, System sowie Verfahren zur Kaft- und/oder Momentenmessung |
| CN102135459B (zh) * | 2010-12-10 | 2013-07-24 | 杭州恒川科技有限公司 | 基于波导阵列光栅差分解调的强度检测型光子晶体光纤长周期光栅应力传感器 |
| CN202195827U (zh) * | 2011-08-09 | 2012-04-18 | 中国计量学院 | 一种融合光纤布里渊频移器的超远程脉冲编码分布式光纤布里渊传感器 |
| EP2896978A1 (en) | 2014-01-17 | 2015-07-22 | Vrije Universiteit Brussel VUB | Microstructured optical fibre, composite structure, method and use for measuring shear load in a composite structure |
-
2017
- 2017-07-14 US US15/650,478 patent/US10436655B2/en active Active
-
2018
- 2018-07-16 KR KR1020207001036A patent/KR20200022431A/ko not_active Withdrawn
- 2018-07-16 WO PCT/US2018/042249 patent/WO2019014666A1/en not_active Ceased
- 2018-07-16 SG SG11202000152VA patent/SG11202000152VA/en unknown
- 2018-07-16 JP JP2020501155A patent/JP2020527703A/ja not_active Withdrawn
- 2018-07-16 EP EP18749960.3A patent/EP3652499A1/en not_active Withdrawn
- 2018-07-16 CN CN201880044975.0A patent/CN110832270A/zh not_active Withdrawn
-
2020
- 2020-01-08 SA SA520411005A patent/SA520411005B1/ar unknown
Also Published As
| Publication number | Publication date |
|---|---|
| US10436655B2 (en) | 2019-10-08 |
| EP3652499A1 (en) | 2020-05-20 |
| SA520411005B1 (ar) | 2022-09-14 |
| KR20200022431A (ko) | 2020-03-03 |
| WO2019014666A1 (en) | 2019-01-17 |
| SG11202000152VA (en) | 2020-02-27 |
| CN110832270A (zh) | 2020-02-21 |
| US20190017887A1 (en) | 2019-01-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Sagnac interferometer-based optical fiber strain sensor with exceeding free spectral measurement range and high sensitivity | |
| JP2020527703A (ja) | フルオロフォア増強多次元フォトニックセンサ | |
| CN1228610C (zh) | 一种用于油气管线检测的光纤光栅传感测试系统 | |
| US9612394B2 (en) | Fibre-optic sensor and use thereof | |
| US20180202843A1 (en) | Distributed fiber sensors and systems employing hybridcore optical fibers | |
| AU2013100784A4 (en) | An optical refractive index measuring system based on speckel correlation | |
| US20120176597A1 (en) | Strain and Temperature Discrimination Using Fiber Bragg Gratings in a Cross-Wire Configuration | |
| US20070223855A1 (en) | Efficient distributed sensor fiber | |
| Zheng et al. | Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity | |
| JP2012505410A (ja) | 検出システム及びそのようなシステムに用いるための光ファイバ | |
| Handerek et al. | Improved optical power budget in distributed acoustic sensing using enhanced scattering optical fibre | |
| JP2020527703A5 (enExample) | ||
| US20220412834A1 (en) | Fiber optics sensor for hydrocabon and chemical detection | |
| Liu et al. | Microcapillary-based high-sensitivity and wavelength-tunable optical temperature sensor | |
| Robertson et al. | A fibre optic distributed sensor system for condition monitoring of synthetic ropes | |
| Zheng et al. | Temperature insensitive all-fiber accelerometer using a photonic crystal fiber long-period grating interferometer | |
| Alberto et al. | Simultaneous strain and refractive index sensor based on a TFBG | |
| Tiwari | Civil structural health monitoring using FBG sensors: trends and challenges | |
| JPH10206240A (ja) | Lng漏洩監視装置 | |
| Kassani et al. | Sensitivity enhancement of in-line chemical sensing device with C-type fiber and photonic crystal fiber | |
| Sekulić et al. | Corrosion Monitoring in Concrete Structures with Fibre Optical Sensors | |
| Lim | Novel applications of distributed fiber optic sensors for pipeline structural health monitoring | |
| Kasinathan et al. | Optical fiber defect detection using Brillouin optical time domain analyser | |
| Gupta et al. | Development of fiber optic sensors for leak detection in underground energy storage pipelines | |
| Johny | Investigations towards the development of a novel multimodal fibre optic sensor for oil and gas applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210607 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210607 |
|
| A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20210715 |