RU99116013A - METHOD FOR MEASURING HORIZONTAL AVERAGE SPEED OF RIVER FLOW - Google Patents

METHOD FOR MEASURING HORIZONTAL AVERAGE SPEED OF RIVER FLOW

Info

Publication number
RU99116013A
RU99116013A RU99116013/28A RU99116013A RU99116013A RU 99116013 A RU99116013 A RU 99116013A RU 99116013/28 A RU99116013/28 A RU 99116013/28A RU 99116013 A RU99116013 A RU 99116013A RU 99116013 A RU99116013 A RU 99116013A
Authority
RU
Russia
Prior art keywords
distance
receiving transducers
paired
measuring
interval
Prior art date
Application number
RU99116013/28A
Other languages
Russian (ru)
Other versions
RU2194949C2 (en
Inventor
Хак Соо ЧАНГ
Original Assignee
Чангмин Тек. Ко. Лтд.
Filing date
Publication date
Priority to KR1019980021590A priority Critical patent/KR100293842B1/en
Priority claimed from KR1019980021590A external-priority patent/KR100293842B1/en
Priority to US09/154,748 priority patent/US5952583A/en
Application filed by Чангмин Тек. Ко. Лтд. filed Critical Чангмин Тек. Ко. Лтд.
Priority to DE19933473A priority patent/DE19933473B4/en
Priority to CN99110385A priority patent/CN1120988C/en
Priority to RU99116013/28A priority patent/RU2194949C2/en
Priority to CA002277626A priority patent/CA2277626A1/en
Publication of RU99116013A publication Critical patent/RU99116013A/en
Application granted granted Critical
Publication of RU2194949C2 publication Critical patent/RU2194949C2/en

Links

Claims (4)

1. Способ измерения горизонтальной средней скорости учения на множестве глубин воды с использованием ультразвукового луча для вычисления расхода в большой реке, включающий этапы, на которых выбирают свободное поперечное сечение S для измерения расхода, проходящее под прямым углом к направлению течения воды, устанавливают ультразвуковой излучающий преобразователь на заданной глубине вдоль одного берега реки для излучения ультразвуковых лучей в направлении к другому берегу, устанавливают парные ультразвуковые принимающие преобразователи на линии, образованной под прямым углом к свободному сечению S, разнесенные на расстояние L интервала друг от друга, на множестве глубин вдоль другого берега реки, перемещают парные ультразвуковые принимающие преобразователи в направлении, совпадающем с направлением скорости течения, ориентируясь на центральную точку, в которой происходит пересечение поперечного сечения S, фиксируют точку, в которой выходные напряжения парных ультразвуковых принимающих преобразователей равны друг другу, измеряют расстояние 1 интервала ухода ультразвука между зафиксированной точкой и центральной точкой, и измеряют, горизонтальную среднюю скорость течения V в соответствии со следующими выражениями:
V=L/t (11)
или
Figure 00000001

где t - время распространения ультразвука при прохождении на расстояние D между центральной точкой и излучающим преобразователем, а С - скорость звука в жидкости в момент измерения скорости течения.
1. A method for measuring the horizontal average velocity of a study at multiple water depths using an ultrasound beam to calculate flow in a large river, comprising the steps of choosing a free cross section S for flow measurement, going at right angles to the direction of water flow, and installing an ultrasonic emitting transducer at a given depth along one river bank for the emission of ultrasonic rays in the direction to the other bank, paired ultrasonic receiving transformers are installed spruce on a line formed at right angles to the free section S, spaced at a distance L of the interval from each other, at multiple depths along the other bank of the river, move paired ultrasonic receiving transducers in the direction coinciding with the direction of the flow velocity, focusing on the central point, in where the cross section S intersects, fix the point at which the output voltages of the paired ultrasonic receiving transducers are equal to each other, measure the distance 1 of the ultra retreat interval sound between the fixed point and the center point, and measure the horizontal average flow velocity V in accordance with the following expressions:
V = L / t (11)
or
Figure 00000001

where t is the propagation time of ultrasound when traveling to a distance D between the center point and the radiating transducer, and C is the speed of sound in the liquid at the time of measuring the flow velocity.
2. Способ измерения горизонтальной средней скорости течения по п.1, отличающийся тем, что расстояние L интервала между парными ультразвуковыми принимающими преобразователями вычисляют следующим образом:
Figure 00000002

где Рmax- максимальное давление звука характеристики направленности излучающего преобразователя, P1 - давление звука, на которое рассчитаны принимающие преобразователи для приема, а β угол между линиями, соединяющими центральную точку с P1 и Рmax.
2. The method of measuring the horizontal average flow velocity according to claim 1, characterized in that the distance L of the interval between paired ultrasonic receiving transducers is calculated as follows:
Figure 00000002

where P max is the maximum sound pressure of the directivity of the emitting transducer, P 1 is the sound pressure at which the receiving transducers are designed to receive, and β is the angle between the lines connecting the center point with P 1 and P max .
3. Способ измерения горизонтальной средней скорости течения по п.1, отличающийся тем, что этап фиксации точки, в которой выходные напряжения парных ультразвуковых принимающих преобразователей равны друг другу, включает дополнительные этапы, на которых подают выходные напряжения парных ультразвуковых принимающих преобразователей на дифференциальные усилители для усиления этих напряжений, определяют момент, когда разность напряжений ΔU между дифференциальными усилителями становится равной нулю, и фиксируют положение, в котором выходные напряжения парных ультразвуковых принимающих преобразователей равны друг другу. 3. The method of measuring the horizontal average flow velocity according to claim 1, characterized in that the step of fixing the point at which the output voltages of the paired ultrasonic receiving transducers are equal to each other, includes additional steps in which the output voltages of the paired ultrasonic receiving transducers are fed to differential amplifiers for amplification of these voltages, determine the moment when the voltage difference ΔU between the differential amplifiers becomes equal to zero, and fix the position in which the output e voltage paired ultrasonic receiving transducers are equal to each other. 4. Способ измерения горизонтальной средней скорости течения по п.1 или 3, отличающийся тем, что этап измерения расстояния 1 интервала ухода ультразвука включает дополнительные этапы, на которых устанавливают излучающий преобразователь и парные принимающие преобразователи, разнесенные на расстояние L интервала друг от друга, в резервуаре для воды, перемещают излучающий преобразователь вдоль линии L на интервалы, разделенные на несколько интервалов, из исходного положения, и сравнивают расстояние перемещения с расстоянием интервала, измеренным с помощью парных принимающих преобразователей, для определения момента, когда разность напряжений ΔU становится равной нулю, или расстояния L. 4. The method for measuring the horizontal average flow velocity according to claim 1 or 3, characterized in that the step of measuring the distance 1 of the ultrasound drift interval includes the additional steps of installing a radiating transducer and paired receiving transducers spaced apart by a distance L of the interval from each other, water tank, move the emitting transducer along the line L at intervals divided by several intervals from the initial position, and compare the distance of movement with the distance of the interval, measured nnym using paired receiving transducers, to determine when the voltage difference ΔU becomes zero, or the distance L.
RU99116013/28A 1998-06-10 1999-07-16 Method of measuring average horizontal speed of river current RU2194949C2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019980021590A KR100293842B1 (en) 1998-06-10 1998-06-10 Horizontal average flow velocity measurement method
US09/154,748 US5952583A (en) 1998-06-10 1998-09-17 Method of measuring a river horizontal average flow velocity
DE19933473A DE19933473B4 (en) 1998-06-10 1999-07-16 Method for measuring a horizontal mean flow velocity of a river
CN99110385A CN1120988C (en) 1998-06-10 1999-07-16 Method of measuring overage flow rate of river water
RU99116013/28A RU2194949C2 (en) 1998-06-10 1999-07-16 Method of measuring average horizontal speed of river current
CA002277626A CA2277626A1 (en) 1998-06-10 1999-07-16 A method of measuring a river horizontal average flow velocity

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1019980021590A KR100293842B1 (en) 1998-06-10 1998-06-10 Horizontal average flow velocity measurement method
DE19933473A DE19933473B4 (en) 1998-06-10 1999-07-16 Method for measuring a horizontal mean flow velocity of a river
CN99110385A CN1120988C (en) 1998-06-10 1999-07-16 Method of measuring overage flow rate of river water
RU99116013/28A RU2194949C2 (en) 1998-06-10 1999-07-16 Method of measuring average horizontal speed of river current
CA002277626A CA2277626A1 (en) 1998-06-10 1999-07-16 A method of measuring a river horizontal average flow velocity

Publications (2)

Publication Number Publication Date
RU99116013A true RU99116013A (en) 2001-05-20
RU2194949C2 RU2194949C2 (en) 2002-12-20

Family

ID=27508684

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99116013/28A RU2194949C2 (en) 1998-06-10 1999-07-16 Method of measuring average horizontal speed of river current

Country Status (6)

Country Link
US (1) US5952583A (en)
KR (1) KR100293842B1 (en)
CN (1) CN1120988C (en)
CA (1) CA2277626A1 (en)
DE (1) DE19933473B4 (en)
RU (1) RU2194949C2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382034B1 (en) * 2001-06-27 2003-05-01 한국수자원공사 Method of Stream Liquid Velocity Determination and Apparatus for thereof
DE102004031274B4 (en) * 2004-06-28 2007-07-12 Flexim Flexible Industriemesstechnik Gmbh Method for calibrating ultrasonic clamp-on flowmeters
CN100378460C (en) * 2006-03-10 2008-04-02 中国海洋石油总公司 Deep water flow velocity measuring system
DE102006029199B3 (en) * 2006-06-26 2008-01-24 Siemens Ag Method and device for measuring a mass air flow by means of ultrasound
US7523658B1 (en) 2007-12-14 2009-04-28 Ysi Incorporated Method for measuring river discharge in the presence of moving bottom
DE102008020765B4 (en) * 2008-04-21 2012-08-02 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Apparatus and method for non-contact determination of physical properties
US8780672B2 (en) * 2008-12-19 2014-07-15 Ysi Incorporated Multi-frequency, multi-beam acoustic doppler system with concurrent processing
US8125849B2 (en) * 2008-12-19 2012-02-28 Ysi Incorporated Integrated multi-beam acoustic doppler discharge measurement system
US8411530B2 (en) * 2008-12-19 2013-04-02 Ysi Incorporated Multi-frequency, multi-beam acoustic doppler system
CN103063868B (en) * 2013-01-05 2014-08-20 浙江大学 Device and method for measuring flow rate of fluid
US9091576B2 (en) * 2013-01-14 2015-07-28 Cameron International Corporation Deployable ultrasonic flow meter that is inserted through a gate valve slot, method and apparatus
TWI465721B (en) * 2013-01-16 2014-12-21 Univ Ishou A method for surface velocity estimation of river water
US20140217306A1 (en) * 2013-02-01 2014-08-07 Bruno Ferran Split drive assembly and guide sleeves for uv disinfection modules
CN105804015B (en) * 2016-03-24 2018-01-26 华北水利水电大学 A kind of gate flow measuring device for sandy channel
CN105780717B (en) * 2016-03-24 2018-03-06 华北水利水电大学 A kind of gate flow measuring method for sandy channel
US10295385B2 (en) 2016-06-30 2019-05-21 Hach Company Flow meter with adaptable beam characteristics
US10161770B2 (en) 2016-06-30 2018-12-25 Ott Hydromet Gmbh Flow meter with adaptable beam characteristics
US10408648B2 (en) 2016-06-30 2019-09-10 Hach Company Flow meter with adaptable beam characteristics
CN107576813B (en) * 2017-09-06 2019-07-12 河海大学 A kind of flow rate measuring device and method of 360 degree of changeable depth of water
CN108871477A (en) * 2018-06-05 2018-11-23 北京华水仪表系统有限公司 Ultrasonic open channel flowmeter
US11099054B2 (en) * 2018-10-03 2021-08-24 Inframark, LLC Calibration tool for open channel flow measurement
CN111798386B (en) * 2020-06-24 2022-03-22 武汉大学 River channel flow velocity measurement method based on edge identification and maximum sequence density estimation
CN112730879B (en) * 2020-12-08 2023-01-20 扬州大学 Intelligent river flow velocity measuring device and method
CN114675051B (en) * 2022-03-08 2022-10-28 中国水利水电科学研究院 River flow velocity monitoring device, system and method based on differential pressure measurement
CN115268322B (en) * 2022-07-26 2024-03-22 交通运输部天津水运工程科学研究所 Channel flow measurement method based on single chip microcomputer
CN115792273B (en) * 2022-11-02 2024-02-23 清华大学 Method for measuring fluid flow rate, flow measuring device and computer storage medium
KR102555600B1 (en) 2023-02-13 2023-07-18 대한민국 Apparatus for Measuring Velocity of Fluid and Measuring Method of the Same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564912A (en) * 1968-10-28 1971-02-23 Westinghouse Electric Corp Fluid flow measurement system
US3546935A (en) * 1969-11-24 1970-12-15 Westinghouse Electric Corp Fluid measurement system and method
DE2160920A1 (en) * 1971-12-08 1973-06-14 Secretary Trade Ind Brit METHOD OF MEASURING THE FLOW RATE OF A FLOWING MEDIUM AND DEVICE FOR PULLING THROUGH THIS MEDIUM
DE2628336C2 (en) * 1976-06-24 1984-07-05 Fried. Krupp Gmbh, 4300 Essen Device for measuring the flow velocity
DE2703439C3 (en) * 1977-01-28 1979-08-09 Danfoss A/S, Nordborg (Daenemark) Device for measuring physical quantities of a liquid with two ultrasonic transducers
US4726235A (en) * 1986-03-12 1988-02-23 Available Energy, Inc. Ultrasonic instrument to measure the gas velocity and/or the solids loading in a flowing gas stream
KR960003645B1 (en) * 1993-08-25 1996-03-21 주식회사창민테크놀러지 Apparatus and method for measuring speed of a stream
DE19522697A1 (en) * 1995-06-22 1997-01-09 Sick Optik Elektronik Erwin Method and circuit arrangement for measuring the flow velocity by means of acoustic transit time differences
US5780747A (en) * 1995-12-18 1998-07-14 Changmin Co., Ltd. Open channel multichannel ultrasonic flowrate measurement apparatus and method
JP2955920B2 (en) * 1995-12-28 1999-10-04 チャンミン カンパニー リミテッド River flow measurement device and method

Similar Documents

Publication Publication Date Title
RU99116013A (en) METHOD FOR MEASURING HORIZONTAL AVERAGE SPEED OF RIVER FLOW
USRE43090E1 (en) Acoustic Doppler channel flow measurement system
US7503225B2 (en) Ultrasonic flow sensor having a transducer array and reflective surface
Hurther et al. A constant-beam-width transducer for 3D acoustic Doppler profile measurements in open-channel flows
EP2513611B1 (en) Ultrasonic transducer, flow meter and method
US6628570B2 (en) Laser velocimetry detection of underwater sound
RU2343502C2 (en) Method and system of positional analysis of object under observation by depth in aqueous medium
CN108680234A (en) A kind of water-depth measurement method of quarice layer medium
EP1726920B1 (en) Method for ultrasonic Doppler fluid flow measurement
US6360599B1 (en) Device for measuring liquid level preferably measuring tide level in sea
RU2313802C1 (en) Mode of measuring distance to a controlled object
RU2125278C1 (en) Method measuring distance to controlled object ( its versions )
RU75060U1 (en) ACOUSTIC LOCATION SYSTEM OF NEAR ACTION
CA2774758A1 (en) Method and device for measuring a profile of the ground
KR20170109506A (en) Sewage flow measurment device for partially filled pipe coinciding low carbon
RU2092802C1 (en) Method of determination of pressure levels and spatial positioning of noise emitting sources of moving object
RU2478917C2 (en) Fluid medium flow metre in free-flow pipelines
US4188609A (en) Low frequency hydrophone
JP2956805B2 (en) Ultrasonic flow meter
RU98254U1 (en) MULTI-FREQUENCY CORRELATION HYDROACOUSTIC LAG
Qin et al. The 3D imaging for underwater objects using SAS processing based on sparse planar array
JPH0552622A (en) Flow rate measuring device
CN109444860A (en) Multibeam echosounder analog calibration device
CN218995673U (en) Multi-beam sonar detection device
RU2795577C1 (en) Multi-frequency correlation method for measuring current velocity