RU94035715A - Multiple-beam interference unit - Google Patents

Multiple-beam interference unit

Info

Publication number
RU94035715A
RU94035715A RU94035715/25A RU94035715A RU94035715A RU 94035715 A RU94035715 A RU 94035715A RU 94035715/25 A RU94035715/25 A RU 94035715/25A RU 94035715 A RU94035715 A RU 94035715A RU 94035715 A RU94035715 A RU 94035715A
Authority
RU
Russia
Prior art keywords
optical axis
optical
optical element
curvature
spherical surfaces
Prior art date
Application number
RU94035715/25A
Other languages
Russian (ru)
Other versions
RU2085873C1 (en
Inventor
Е.В. Арменский
А.Ф. Каперко
Original Assignee
Московский государственный институт электроники и математики
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский государственный институт электроники и математики filed Critical Московский государственный институт электроники и математики
Priority to RU94035715A priority Critical patent/RU2085873C1/en
Publication of RU94035715A publication Critical patent/RU94035715A/en
Application granted granted Critical
Publication of RU2085873C1 publication Critical patent/RU2085873C1/en

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

FIELD: optical instruments using holography. SUBSTANCE: Homogeneous medium, which refraction index is n0, has point source of coherent linear-polarization light with wavelength λ, and optical element, which refraction index is n and which has parallel spherical surfaces with common curvature center but with different curvature radiuses r1 - r2 = d. Both optical element and light source are located on common optical axis. Convexity of both surfaces is directed towards light source. Distance between spherical surfaces conform to condition d=n•r1/(f•(n-n0)+n•r1),, where r1 is curvature radius of greater surface, f is focal length. Interference pattern is projected to matrix of photodetectors using charge-coupling devices. Period for arrangement of photodetectors is T. Light receiver is not perpendicular to optical axis, where light source and optical element are located, but is displaced with respect to perpendicular to optical axis by angle of α=arcsin λ/T.. EFFECT: increased precision of measuring interference alternation in shape of light wave edge, simplified design of interferometer.

Claims (1)

Изобретение относится к области оптических измерений и к построению контрольно-измерительных устройств с испольвованием голографии. Изобретение решает задачу повышения точности интерференционных измерений формы волнового фронта излучения, а также обеспечивает более простую схему построения интерферометра. Для этого в однородной среде с показателем преломления на одной оптической оси устанавливают точечный источник когерентного линейно-поляризованного излучения определенной длины волны, оптический элемент с показателем преломления и параллельными сферическими поверхностями, имеющими один центр кривизны, но различные радиусы кривизны, выпуклость обеих поверхностей ориентирована в сторону источника излучения. Расстояние между сферическими поверхностями выбирается из соотношения. Интерференционная картина проецируется на матрицу фоточувствительных элементов на приборах с зарядовой связью с периодом размещения фоточувствительных элементов Т. Причем приемник излучения не перпендикулярен к оптической оси, на которой находятся источник излучения и оптический элемент, а смещен относительно перпендикуляра к оптической оси на угол.The invention relates to the field of optical measurements and to the construction of control and measuring devices using holography. The invention solves the problem of improving the accuracy of interference measurements of the shape of the wavefront of the radiation, and also provides a simpler scheme for constructing an interferometer. For this, in a homogeneous medium with a refractive index on one optical axis, a point source of coherent linearly polarized radiation of a certain wavelength is installed, an optical element with a refractive index and parallel spherical surfaces having one center of curvature, but different radii of curvature, the convexity of both surfaces is oriented to the side radiation source. The distance between the spherical surfaces is selected from the ratio. The interference pattern is projected onto a matrix of photosensitive elements on charge-coupled devices with a period of placement of photosensitive elements T. Moreover, the radiation receiver is not perpendicular to the optical axis, on which the radiation source and optical element are located, but is offset by an angle relative to the perpendicular to the optical axis.
RU94035715A 1994-09-23 1994-09-23 Multiple-beam interference device RU2085873C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94035715A RU2085873C1 (en) 1994-09-23 1994-09-23 Multiple-beam interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94035715A RU2085873C1 (en) 1994-09-23 1994-09-23 Multiple-beam interference device

Publications (2)

Publication Number Publication Date
RU94035715A true RU94035715A (en) 1996-07-10
RU2085873C1 RU2085873C1 (en) 1997-07-27

Family

ID=20160812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94035715A RU2085873C1 (en) 1994-09-23 1994-09-23 Multiple-beam interference device

Country Status (1)

Country Link
RU (1) RU2085873C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549557C1 (en) * 2014-01-29 2015-04-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method for multichannel measurement of light wavelength shift using fabry-perot interferometer

Also Published As

Publication number Publication date
RU2085873C1 (en) 1997-07-27

Similar Documents

Publication Publication Date Title
EP1113251A3 (en) Wavefront sensor with a Hartmann plate with multifocal lenses, and a lens meter and an active optical reflecting telescope using the sensor
JP2016529480A (en) Optical displacement sensor element
KR900002116B1 (en) Spectral analyzer and direction indicator
US8780357B2 (en) Optical displacement measurement device with optimization of the protective film
RU2436038C1 (en) Static fourier spectrometre
RU94035715A (en) Multiple-beam interference unit
US4341473A (en) Measuring head in or for a densitometer
US5355209A (en) Device for measuring the diameter of an object that is largely cylindrical, for example an optical fiber, without contact
US6297497B1 (en) Method and device for determining the direction in which an object is located
CN112504164A (en) Measuring device and method capable of dynamically measuring surface shape of planar optical element
US5532821A (en) Testing of recessed surfaces at grazing incidence
RU2103741C1 (en) Device for checking validity of holograms
US5099116A (en) Optical device for measuring displacement
SU1037063A1 (en) Interferometric device for measuring distance and for changing distances
SU413373A1 (en)
SU1705706A1 (en) Holographic measurement of amplitude of oscillations
JPH0339625B2 (en)
SU842398A1 (en) Device for checking planeness of transparent articles
RU2100786C1 (en) Fourier-spectrometer
SU796658A1 (en) Device for checking mirror shape
SU844994A1 (en) Device for obtaining parallel light beams
SU823845A1 (en) Interferometer for checking concave spherical surfase form
RU2264595C2 (en) Scanning interferometer for measuring deviation of optical surfaces shape
SU1619014A1 (en) Interferometer
SU593071A1 (en) Optical gauge for measuring non-linear and non-planar parameters of surfaces