RU72748U1 - Система централизованного теплоснабжения - Google Patents

Система централизованного теплоснабжения Download PDF

Info

Publication number
RU72748U1
RU72748U1 RU2007147085/22U RU2007147085U RU72748U1 RU 72748 U1 RU72748 U1 RU 72748U1 RU 2007147085/22 U RU2007147085/22 U RU 2007147085/22U RU 2007147085 U RU2007147085 U RU 2007147085U RU 72748 U1 RU72748 U1 RU 72748U1
Authority
RU
Russia
Prior art keywords
heat supply
peak load
heat
subsystem
supply subsystem
Prior art date
Application number
RU2007147085/22U
Other languages
English (en)
Inventor
Анатолий Иванович Суздальцев
Сергей Петрович Петров
Николай Анатольевич Загородних
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ)
Priority to RU2007147085/22U priority Critical patent/RU72748U1/ru
Application granted granted Critical
Publication of RU72748U1 publication Critical patent/RU72748U1/ru

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Полезная модель системы централизованного теплоснабжения относится к области теплоэнергетики и может быть использована в когенерационных системах теплоснабжения (в частности при теплоснабжении от ТЭЦ).
Задача, решаемая в полезной модели, заключается в уменьшении влияния транспортного запаздывания подачи теплоносителя в подсистему теплоснабжения пиковой нагрузки для поддержания в ней температурного графика при изменении внешних условий. Полезная модель системы централизованного теплоснабжения содержит ТЭЦ, прямой трубопровод, потребителей, обратный трубопровод, в контур которого включен элемент подсистемы теплоснабжения пиковой нагрузки в виде теплообменника, вход которого со стороны подсистемы теплоснабжения пиковой нагрузки подключен к обратному трубопроводу после потребителей подсистемы теплоснабжения пиковой нагрузки через первый регулирующий орган, второй выход которого вместе с выходом теплообменника со стороны пиковой нагрузки связан со входом генератора тепловой энергии подсистемы теплоснабжения пиковой нагрузки, а его выход связан с потребителями подсистемы теплоснабжения пиковой нагрузки, при этом первый регулирующий орган связан с выходом первого управляющего устройства, входы которого подключены к датчикам температуры, расположенными на обратном трубопроводе централизованной системы теплоснабжения и на обратном трубопроводе подсистемы теплоснабжения пиковой нагрузки, а подсистема теплоснабжения пиковой нагрузки содержит второе управляющее устройство, второй регулирующий орган, третий и четвертый датчики температуры, при этом входы второго управляющего устройства подключены к третьему датчику температуры, установленному в подающем трубопроводе источника тепловой энергии подсистемы теплоснабжения и четвертому датчику температуры, а второй регулирующий орган связан с генератором тепловой энергии.

Description

Полезная модель системы централизованного теплоснабжения относится к области теплоэнергетики и может быть использована в когенерационных системах теплоснабжения, в частности при теплоснабжении от ТЭЦ.
Известна система теплоснабжения (патент RU 2244881 C1, F24D 3/01, 20.01.2005) содержащая нагнетатель теплоносителя, выход которого подключен к вихревой трубе, а вход подключен к обратному трубопроводу от пользователя системы, причем один из выходов вихревой трубы соединен с источником низкопотенциальной теплоты, при этом выход источника низкопотениальной теплоты вместе со вторым выходом вихревой трубы связан с потребителем. Недостатком данной системы является низкое качество теплоснабжения, обусловленное тем, что в ней не предусмотрено изменение температуры теплоносителя от изменения температуры наружного воздуха и температура теплоносителя, подаваемого потребителю, зависит только от изменения тепловой нагрузки потребителя.
Наиболее близкой к предлагаемой полезной модели является когенерационная система теплоснабжения (патент RU 2304254 C1, F24D 3/02, 20.02.2006), содержащая ТЭЦ, подающий трубопровод, потребителей, обратный трубопровод, в цепь которого включен элемент подсистемы теплоснабжения пиковой нагрузки в виде теплообменника, вход которого со стороны подсистемы теплоснабжения пиковой нагрузки подключен к обратному трубопроводу подсистемы теплоснабжения пиковой нагрузки через регулирующий
орган, второй выход которого вместе с выходом теплообменника со стороны подсистемы теплоснабжения пиковой нагрузки связан со входом генератора тепловой энергии подсистемы теплоснабжения пиковой нагрузки, а его выход связан с потребителями подсистемы теплоснабжения пиковой нагрузки, при этом регулирующий орган связан с выходом управляющего устройства, входы которого подключены к датчикам температуры, расположенными на обратном трубопроводе когенерационной системы теплоснабжения и на обратном трубопроводе подсистемы теплоснабжения пиковой нагрузки. Эта система принята за прототип.
Недостатком данной системы является тот факт, что при изменении температуры наружного воздуха, изменение температуры теплоносителя у потребителей в системе теплоснабжения пиковой нагрузки осуществляется с запаздыванием, то есть нарушается температурный график, т.к. в теплообменнике подсистемы теплоснабжения пиковой нагрузки изменение температуры теплоносителя от ТЭЦ происходит с большим запаздыванием в связи с большой протяженностью трубопроводов системы централизованного теплоснабжения.
Задача, решаемая в полезной модели, заключается в уменьшении влияния транспортного запаздывания подачи теплоносителя в подсистему теплоснабжения пиковой нагрузки для поддержания в ней температурного графика при изменении внешних условий.
Решение задачи достигается тем, что в системе централизованного теплоснабжения, содержащей ТЭЦ, подающий трубопровод, потребителей, обратный трубопровод, в контур которого включен элемент подсистемы теплоснабжения пиковой нагрузки в виде теплообменника, вход которого со стороны подсистемы теплоснабжения пиковой нагрузки подключен к обратному трубопроводу подсистемы теплоснабжения пиковой нагрузки через первый регулирующий орган, второй выход которого вместе с выходом теплообменника со стороны пиковой нагрузки связан с входом генератора тепловой энергии подсистемы теплоснабжения пиковой нагрузки, а его выход связан с
потребителями подсистемы теплоснабжения пиковой нагрузки, при этом регулирующий орган связан с выходом первого управляющего устройства, входы которого подключены к двум датчикам температуры, расположенным на обратном трубопроводе централизованной системы теплоснабжения и на обратном трубопроводе подсистемы теплоснабжения пиковой нагрузки, при этом, подсистема теплоснабжения пиковой нагрузки содержит второе управляющее устройство со вторым регулирующим органом, третий и четвертый датчики температуры, при этом входы второго управляющего устройства подключены к третьему датчику температуры, установленному в подающем трубопроводе источника тепловой энергии подсистемы теплоснабжения пиковой нагрузки, и четвертому датчику температуры, установленному снаружи здания, в котором расположен источник тепловой энергии подсистемы теплоснабжения пиковой нагрузки, причем в качестве источника тепловой энергии в подсистеме теплоснабжения пиковой нагрузки использован тепловой генератор, работающий на газе, к которому подключен второй регулятор подачи газа, вход которого подключен к выходу второго управляющего устройства.
На фиг.1 представлена функциональная схема полезной модели системы централизованного теплоснабжения, поясняющая работу полезной модели.
Полезная модель системы централизованного теплоснабжения содержит ТЭЦ 1, подающий трубопровод 2, потребителей 3, обратный трубопровод 6, в контур которого включен элемент подсистемы теплоснабжения пиковой нагрузки в виде теплообменника 5, вход которого со стороны подсистемы теплоснабжения пиковой нагрузки 96 подключен к обратному трубопроводу 19 после потребителей 20 подсистемы теплоснабжения пиковой нагрузки через регулирующий орган 8, второй выход которого 9а вместе с выходом теплообменника со стороны подсистемы теплоснабжения пиковой нагрузки связан со входом генератора тепловой энергии 16 подсистемы теплоснабжения пиковой нагрузки, расположенной в центральном тепловом пункте
15, а его выход 17 связан с потребителями 20 подсистемы теплоснабжения пиковой нагрузки, при этом регулирующий орган 8 связан с выходом первого управляющего устройства 7, входы которого подключены к датчикам температуры 4 и 14, расположенными на обратном трубопроводе системы централизованного теплоснабжения и в обратном трубопроводе подсистемы теплоснабжения пиковой нагрузки. Входы второго управляющего устройства 13 подключены к третьему датчику температуры 18, установленному в подающем трубопроводе 17 источника тепловой энергии 16 подсистемы теплоснабжения пиковой нагрузки, и четвертому датчику температуры (наружного воздуха) 10, установленному снаружи здания, в котором расположен источник тепловой энергии 16 подсистемы теплоснабжения пиковой нагрузки, причем, в качестве источника тепловой энергии в подсистеме теплоснабжения пиковой нагрузки использован тепловой генератор, работающий на газе, к которому подключен регулятор подачи газа 12, вход которого подключен к выходу второго управляющего устройства 13.
Полезная модель системы централизованного теплоснабжения работает следующим образом. Нагнетателем теплоносителя 11 по напорной трубе подают теплоноситель в источник тепловой энергии подсистемы теплоснабжения пиковой нагрузки 16, где его незначительно подогревают и подают потребителям 20 подсистемы теплоснабжения пиковой нагрузки. В установившемся режиме горячий поток после потребителей подсистемы теплоснабжения пиковой нагрузки разделяют на два потока, один из которых направляют по трубопроводу 9а непосредственно к нагнетателю теплоносителя, а второй - через дополнительный ввод 9в контура нагрева теплообменника 5. Разделение горячего потока осуществляется с помощью регулирующего органа 8 первого управляющего устройства 7, на входы которого поступают сигналы с датчиков температуры теплоносителя 4 и 14. Первым управляющим устройством формируют сигналы управления регулирующего органа 8 в соответствии с разностью двух температур таким образом, что если значение температуры датчика температуры 14 больше или равно значению
температуры датчика температуры 4, то регулирующий орган направляет поток теплоносителя после потребителя подсистемы теплоснабжения пиковой нагрузки непосредственно к нагнетателю теплоносителя 11 по трубопроводу 9а, в противном случае, поток направляют к нагнетателю теплоносителя по трубопроводу 96 через дополнительный ввод контура нагрева теплообменника 5.
При резком изменении температуры наружного воздуха по подающему трубопроводу 2 от ТЭЦ 1 начинает поступать теплоноситель с измененной температурой в соответствии с температурным графиком, однако изменение температуры теплоносителя в теплообменник 5 подсистемы теплоснабжения пиковой нагрузки приходит с запаздыванием за счет большой протяженности трубопроводов. В этом случае срабатывает второе управляющее устройство 13, которое через регулятор газа 12 увеличивает или уменьшает подачу газа в тепловой генератор 16 в зависимости от показаний датчиков температуры 10 и 18. Третий датчик температуры 18, расположенный в подающем трубопроводе 17 подсистемы теплоснабжения пиковой нагрузки, измеряет температуру теплоносителя и подает сигнал на вход второго управляющего устройства 13. Одновременно с этим, на второй его вход поступает температура наружного воздуха с четвертого датчика температуры 10. Если температура теплоносителя в подающем трубопроводе 17 подсистемы теплоснабжения пиковой нагрузки больше той, которая должна соответствовать по температурному графику, заложенному во второе управляющее устройство 13 при соответствующем значении температуры наружного воздуха, то вторым управляющим устройством 13 передается сигнал регулятору подачи газа 12 об уменьшении подачи газа в источник тепловой энергии подсистемы теплоснабжения пиковой нагрузки 16, в противном случае подачу газа увеличивают. При поступлении теплоносителя с измененной температурой от ТЭЦ в теплообменник 5 подсистемы теплоснабжения пиковой нагрузки второе управляющее устройство 13 отреагирует подачей газа в обратном направлении, т.е. потребители в
подсистеме теплоснабжения пиковой нагрузки не почувствуют резких изменений температуры воздуха в отапливаемых помещениях.
Введение второго управляющего устройства с подключенными датчиками температуры, установленными в подающем трубопроводе источника тепловой энергии подсистемы теплоснабжения пиковой нагрузки и снаружи здания, в котором расположен источник тепловой энергии этой подсистемы, выполненный в виде теплового генератора с регулятором газа, связанного с выходом второго управляющего устройства, позволяет осуществить быструю реакцию подсистемы теплоснабжения пиковой нагрузки на изменение внешних условий, не дожидаясь поступления теплоносителя от ТЭЦ с измененной температурой в теплообменник подсистемы теплоснабжения пиковой нагрузки. Тем самым потребители подсистемы теплоснабжения пиковой нагрузки не заметят скачкообразного изменения температуры воздуха в отапливаемых помещениях, т.к. влияние транспортного запаздывания сокращается до минимума.
В результате экспериментальных исследований, проведенных в детской инфекционной больнице города Орла, находящейся от ТЭЦ на расстоянии 4 километров (по трубопроводу), и имеющей предлагаемую подсистему теплоснабжения пиковой нагрузки с генератором тепловой энергии в качестве которого использована котельная больницы, подключенная к тепловой сети ТЭЦ, установлено, что при резком изменении температуры наружного воздуха изменение температуры теплоносителя от ТЭЦ в подсистеме теплоснабжения пиковой нагрузки, наблюдается через полтора часа. В этот период температурный график поддерживается за счет подогрева теплоносителя в подающем трубопроводе тепловым генератором. Отклонение фактической температуры теплоносителя от расчетной не превышает 3%, что соответствует требованиям СНиП.

Claims (1)

  1. Система централизованного теплоснабжения, содержащая ТЭЦ, подающий трубопровод, потребителей, обратный трубопровод, в контур которого включен элемент подсистемы теплоснабжения пиковой нагрузки в виде теплообменника, вход которого со стороны подсистемы теплоснабжения пиковой нагрузки подключен к обратному трубопроводу подсистемы теплоснабжения пиковой нагрузки через первый регулирующий орган, второй выход которого вместе с выходом теплообменника со стороны пиковой нагрузки связан с входом генератора тепловой энергии подсистемы теплоснабжения пиковой нагрузки, а его выход связан с потребителями подсистемы теплоснабжения пиковой нагрузки, при этом регулирующий орган связан с выходом первого управляющего устройства, входы которого подключены к двум датчикам температуры, расположенным на обратном трубопроводе централизованной системы теплоснабжения и на обратном трубопроводе подсистемы теплоснабжения пиковой нагрузки, отличающаяся тем, что в подсистему теплоснабжения пиковой нагрузки введено второе управляющее устройство со вторым регулирующим органом, третий и четвертый датчики температуры, при этом входы второго управляющего устройства подключены к третьему датчику температуры, установленному в подающем трубопроводе источника тепловой энергии подсистемы теплоснабжения пиковой нагрузки, и четвертому датчику температуры, установленному снаружи здания, в котором расположен источник тепловой энергии подсистемы теплоснабжения пиковой нагрузки, причем в качестве источника тепловой энергии в подсистеме теплоснабжения пиковой нагрузки использован тепловой генератор, работающий на газе, к которому подключен второй регулятор подачи газа, вход которого подключен к выходу второго управляющего устройства.
    Figure 00000001
RU2007147085/22U 2007-12-17 2007-12-17 Система централизованного теплоснабжения RU72748U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007147085/22U RU72748U1 (ru) 2007-12-17 2007-12-17 Система централизованного теплоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007147085/22U RU72748U1 (ru) 2007-12-17 2007-12-17 Система централизованного теплоснабжения

Publications (1)

Publication Number Publication Date
RU72748U1 true RU72748U1 (ru) 2008-04-27

Family

ID=39453369

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007147085/22U RU72748U1 (ru) 2007-12-17 2007-12-17 Система централизованного теплоснабжения

Country Status (1)

Country Link
RU (1) RU72748U1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573788C1 (ru) * 2014-12-01 2016-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ теплоснабжения населенных пунктов
RU2574972C1 (ru) * 2014-12-01 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ теплоснабжения населенных пунктов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573788C1 (ru) * 2014-12-01 2016-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ теплоснабжения населенных пунктов
RU2574972C1 (ru) * 2014-12-01 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ теплоснабжения населенных пунктов
RU2796734C1 (ru) * 2022-01-10 2023-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Система теплоснабжения

Similar Documents

Publication Publication Date Title
RU2014126365A (ru) Способ регулирования температуры помещения в одном или группе из нескольких помещений, а также устройство для выполнения способа
JP6033674B2 (ja) 熱供給制御装置、熱供給システム及び熱供給制御方法
RU2019129723A (ru) Локальный теплопотребляющий блок и локальный теплогенерирующий блок для районной системы распределения тепловой энергии
RU72748U1 (ru) Система централизованного теплоснабжения
US20130015172A1 (en) Electric heating device
RU78907U1 (ru) Система централизованного теплоснабжения
RU102760U1 (ru) Тепловой пункт
RU2017116141A (ru) Автоматизированный индивидуальный тепловой пункт с зависимым присоединением системы отопления и закрытой системой горячего водоснабжения
RU144388U1 (ru) Установка для системы горячего водоснабжения
Rafalskaya Investigation of failures in operation of heat networks of large heat supply systems
RU2474765C1 (ru) Способ работы открытой системы теплоснабжения
CN212777617U (zh) 一种能降低供热主管网流量波动的换热站系统
RU2543465C1 (ru) Тепловой пункт
RU2009115613A (ru) Устройство дистанционного контроля состояния тепловых установок
GB2493222A (en) Water heating system for heating mains water using a thermal store
CN102338449B (zh) 冷却水型无级调节冷凝热回收系统
RU2304255C1 (ru) Способ теплоснабжения
RU2485406C1 (ru) Система водяного отопления
RU2796734C1 (ru) Система теплоснабжения
RU2484379C1 (ru) Автономная водяная закрытая система централизованного теплоснабжения
WO2011128318A3 (de) Mischeinrichtung zur einstellung der warmwassertemperatur
JPS6124844Y2 (ru)
CN111023065B (zh) 基于汽轮机和电锅炉的燃煤热电厂的联合供热系统
CN207702553U (zh) 燃气-蒸汽联合循环机组余热锅炉供热系统
TWI669474B (zh) 溫控水流系統

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)