RU2304255C1 - Способ теплоснабжения - Google Patents

Способ теплоснабжения Download PDF

Info

Publication number
RU2304255C1
RU2304255C1 RU2006107169/03A RU2006107169A RU2304255C1 RU 2304255 C1 RU2304255 C1 RU 2304255C1 RU 2006107169/03 A RU2006107169/03 A RU 2006107169/03A RU 2006107169 A RU2006107169 A RU 2006107169A RU 2304255 C1 RU2304255 C1 RU 2304255C1
Authority
RU
Russia
Prior art keywords
heat
temperature
coolant
heat exchanger
supplied
Prior art date
Application number
RU2006107169/03A
Other languages
English (en)
Inventor
Сергей Петрович Петров (RU)
Сергей Петрович Петров
Анатолий Иванович Суздальцев (RU)
Анатолий Иванович Суздальцев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ)
Priority to RU2006107169/03A priority Critical patent/RU2304255C1/ru
Application granted granted Critical
Publication of RU2304255C1 publication Critical patent/RU2304255C1/ru

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

Изобретение относится к области теплоэнергетики и может быть использовано в когенерационных системах теплоснабжения (в частности при теплоснабжении от ТЭЦ) и в системах теплоснабжения с использованием вихревой трубы. Технический результат: уменьшение зависимости температуры теплоносителя, подаваемого потребителю, от изменения тепловой нагрузки потребителя и изменения производительности нагнетателя теплоносителя в теплоисточник, а также в поддержании температуры холодного потока на входе в теплообменник в заданных пределах. Способ теплоснабжения заключается в том, что подачу теплоносителя для его нагрева осуществляют нагнетателем в теплоисточник - вихревую трубу, на выходе из которой теплоноситель разделяют на холодный и горячий потоки, причем горячий поток теплоносителя подают потребителю с возвращением его через нагнетатель в теплоисточник, а холодный поток теплоносителя подают в теплообменник, где подогревают внешним источником теплоты и подают к узлу смешения с горячим потоком теплоносителя, при этом количество теплоты, подаваемой в теплообменник от внешнего источника, регулируют для поддержания температуры теплоносителя, выходящего из узла смешения, в соответствии с температурным графиком. Контроль температуры холодного потока теплоносителя осуществляют на входе в теплообменник и используют его для регулирования производительности нагнетателя в теплоисточник - вихревую трубу, а затем осуществляют контроль температуры смешанного потока теплоносителя после узла смешения и дополнительно регулируют количество теплоты, подаваемой в теплообменник от внешнего источника теплоты, таким образом, чтобы температура теплоносителя, выходящего из узла смешения, находилась в соответствии с температурным графиком при его отклонении. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области теплоэнергетики и может быть использовано в когенерационных системах теплоснабжения (в частности, при теплоснабжении от ТЭЦ) и в системах теплоснабжения с использованием вихревой трубы.
Известен способ теплоснабжения, включающий подачу теплоносителя для его нагрева нагнетателем в теплоисточник - вихревую трубу, с последующей подачей теплоносителя по трубопроводу потребителю и возвращением его в теплоисточник (патент RU 2244881 C1, F24D 3/00, 13.10.2003).
Недостатком данного способа является зависимость температуры теплоносителя, подаваемого потребителю, от изменения тепловой нагрузки потребителя и производительности нагнетателя теплоносителя в теплоисточник, что приводит к дестабилизации температуры воздуха в помещениях потребителя.
Известен также способ теплоснабжения, заключающийся в том, что подачу теплоносителя для его нагрева осуществляют нагнетателем теплоносителя в теплоисточник - вихревую трубу, на выходе из которой теплоноситель по соответствующим трубопроводам разделяют на холодный и горячий потоки, при этом горячий поток подают потребителю, а затем возвращают к нагнетателю теплоносителя, а холодный поток подают к нагнетателю теплоносителя через теплообменник, к которому подводят теплоту от низкопотенциального источника (патент RU 2252366 C1, F24D 3/02, 13.10.2003).
Недостатком данного способа является зависимость температуры теплоносителя, подаваемого потребителю, от изменения тепловой нагрузки потребителя и производительности нагнетателя теплоносителя в теплоисточник, что приводит к дестабилизации температуры воздуха в помещениях потребителя.
Техническая задача, решаемая настоящим изобретением, заключается в уменьшении зависимости температуры теплоносителя, подаваемого потребителю, от изменения тепловой нагрузки потребителя и изменения производительности нагнетателя теплоносителя в теплоисточник, а также в поддержании температуры холодного потока на входе в теплообменник в заданных пределах.
Решение технической задачи заключается в том, что подачу теплоносителя для его нагрева осуществляют нагнетателем в теплоисточник - вихревую трубу, на выходе из которой теплоноситель разделяют на холодный и горячий потоки, причем горячий поток теплоносителя подают потребителю с возвращением его через нагнетатель в теплоисточник, а холодный поток теплоносителя подают в теплообменник, где подогревают внешним источником теплоты и подают к узлу смешения с горячим потоком теплоносителя, при этом количество теплоты, подаваемой в теплообменник от внешнего источника, регулируют для поддержания температуры теплоносителя, выходящего из узла смешения, в соответствии с температурным графиком, причем сначала осуществляют контроль температуры холодного потока теплоносителя на входе в теплообменник и используют его для регулирования производительности нагнетателя в теплоисточник - вихревую трубу, а затем осуществляют контроль температуры смешанного потока теплоносителя после узла смешения и дополнительно регулируют количество теплоты, подаваемой в теплообменник от внешнего источника, таким образом, чтобы температура теплоносителя, выходящего из узла смешения, находилась в соответствии с температурным графиком при его отклонении, причем в качестве внешнего источника теплоты в теплообменнике используют пар от паровой турбины когенерационного источника, а регулирование производительности нагнетателя в теплоисточник осуществляют в соответствии с выражением
Figure 00000002
где Р - производительность нагнетателя в виде числа оборотов электродвигателя нагнетателя;
Тз, Ти - температура заданного и измеренного холодного потока теплоносителя на входе в теплообменник;
δТз - заданное отклонение температуры холодного потока теплоносителя на входе в теплообменник;
signΔТ - знак разности ΔТ=Тиз;
К - коэффициент пропорциональности.
На чертеже изображена функциональная схема системы теплоснабжения, поясняющая способ. Система теплоснабжения содержит нагнетатель теплоносителя 1, подключенный к теплоисточнику - вихревой трубе 2, выход которой связан трубопроводами 3 и 4 соответственно холодного и горячего потоков теплоносителя с теплообменником 6 и одним из входов узла смешения 5, а второй вход узла смешения связан трубопроводом 7 с выходом теплообменника 6. Выход узла смешения соединен трубопроводом 8 с входом потребителя 9, а выход потребителя связан трубопроводом 10 с входом нагнетателя теплоносителя 1. Вход регулирующего органа 11 связан с внешним источником теплоты 12, а выход - с теплообменником 6. Датчик температуры 13 установлен в трубопроводе 3 на входе в теплообменник и подключен к входу управляющего устройства 14, связанного с нагнетателем 1. Датчик температуры наружного воздуха 15 и датчик температуры 16, установленный в трубопроводе 8 на входе к потребителю, подключены к входам управляющего устройства 17, связанного с регулирующим органом 11.
Способ теплоснабжения заключается в следующем. Подачу теплоносителя для его нагрева осуществляют нагнетателем 1 в теплоисточник - вихревую трубу 2, на выходе из которой теплоноситель разделяют на холодный и горячий потоки, причем горячий поток теплоносителя по трубопроводу 4 подают к одному из входов узла смешения 5, а холодный поток теплоносителя по трубопроводу 3 подают в теплообменник 6, где подогревают внешним источником теплоты и подают по трубопроводу 7 к второму входу узла смешения 5. От узла смешения поток теплоносителя по трубопроводу 8 направляют потребителю 9, а от потребителя возвращают по трубопроводу 10 через нагнетатель теплоносителя 1 в теплоисточник 2. Количество теплоты, подаваемое от внешнего источника 12 в теплообменник 6, изменяют регулирующим органом 11 для поддержания температуры теплоносителя, выходящего из узла смешения по трубопроводу 8, в соответствии с температурным графиком. При изменении тепловой нагрузки потребителем 9 изменяется температура в трубопроводе 10 на входе нагнетателя теплоносителя 1, отчего изменяется температура холодного потока в трубопроводе 3 на входе в теплообменник 6. Датчиком 13 осуществляют контроль температуры холодного потока теплоносителя в трубопроводе 3 на входе в теплообменник 6 и в зависимости от разности заданной и измеренной температур управляющим устройством 14 регулируют производительность нагнетателя 1 в теплоисточник - вихревую трубу 2, на выходе которой в трубопроводе 4 происходит изменение температуры (например, повышение) горячего потока теплоносителя. Датчиками температуры наружного воздуха 15 и температуры теплоносителя 16 осуществляют контроль температуры теплоносителя, направляемого к потребителю, на соответствие температурному графику, при этом управляющим устройством 17 дополнительно регулируют количество теплоты, подаваемой в теплообменник 6 от внешнего источника теплоты 12, регулирующим органом 11 таким образом, чтобы температура теплоносителя не отклонялась от температурного графика не только в зависимости от температуры внешней среды (наружного воздуха), но и от изменения температуры в трубопроводе 4 в процессе регулирования температуры холодного потока в трубопроводе 3. В качестве источника внешней теплоты 12, подаваемой в теплообменник 6, используют пар от паровой турбины когенерационного источника, а регулирование производительности нагнетателя в теплоисточник осуществляют в соответствии с выражением
Figure 00000003
где Р - производительность нагнетателя в виде числа оборотов электродвигателя нагнетателя;
Тз, Ти - температур заданного и измеренного холодного потока теплоносителя на входе в теплообменник;
δTз - заданное отклонение температуры холодного потока теплоносителя на входе в теплообменник;
signΔТ - знак разности ΔТ=Тиз;
К - коэффициент пропорциональности.
Например, если изменение нагрузки потребителя повышает температуру теплоносителя (Ти) на входе в теплообменник 6 до 55°С и превышает требуемую (Тз=50°С) на 5°С, а нормируемое отклонение (δТз) составляет ±2°С (диапазон 48-52°С), то управляющее устройство 14 повышает производительность (число оборотов электродвигателя) нагнетателя 1 и понижает температуру теплоносителя на входе в теплообменник, например, до 51°С, т.е. на
ΔТ=Тиз=51-50°С=+1°С<δТз.
При этом температура теплоносителя, подаваемого на вход узла смешения и к потребителю по трубопроводу 4, повышается и датчик температуры 16, контролирующий температуру в трубопроводе 8, передает сигнал управляющему устройству 17, связанному с регулирующим органом 11, который уменьшает расход теплоты в теплообменник 6 от источника 12.
Таким образом, при изменении тепловой нагрузки потребителя изменяется температура холодного потока на входе теплообменника, которая регулируется в заданных пределах, что приводит к изменению температуры горячего потока в узле смешения и нарушает соответствие температуры теплоносителя заданному температурному графику. Однако указанное изменение температуры фиксируется соответствующим датчиком и осуществляется регулировка подачи теплоты в теплообменник, что приводит к восстановлению соответствия температуры в трубопроводе подачи теплоносителя к потребителю заданному температурному графику, что и уменьшает зависимость температуры теплоносителя, подаваемого потребителю, от изменения его тепловой нагрузки.
Важным фактором является то, что подача из вихревой трубы охлажденного потока теплоносителя в теплообменник в заданном температурном диапазоне и регулирование подачи теплоты от внешнего источника теплоты в теплообменник в зависимости от изменения температуры в точке смешения потоков теплоносителя повышает КПД внешнего источника, подающего теплоту в теплообменник, в частности КПД паровой турбины ТЭЦ, используемой в качестве внешнего источника теплоты, подаваемой в теплообменник.

Claims (3)

1. Способ теплоснабжения, заключающийся в том, что подачу теплоносителя для его нагрева осуществляют нагнетателем в теплоисточник - вихревую трубу, на выходе из которой теплоноситель разделяют на холодный и горячий потоки, причем горячий поток теплоносителя подают потребителю с возвращением его через нагнетатель в теплоисточник, а холодный поток теплоносителя подают в теплообменник, где подогревают внешним источником теплоты и подают к узлу смешения с горячим потоком теплоносителя, при этом количество теплоты, подаваемой в теплообменник от внешнего источника, регулируют для поддержания температуры теплоносителя, выходящего из узла смешения, в соответствии с температурным графиком, отличающийся тем, что осуществляют контроль температуры холодного потока теплоносителя на входе в теплообменник и используют его для регулирования производительности нагнетателя в теплоисточник - вихревую трубу, а затем осуществляют контроль температуры смешанного потока теплоносителя после узла смешения и дополнительно регулируют количество теплоты, подаваемой в теплообменник от внешнего источника теплоты, таким образом, чтобы температура теплоносителя, выходящего из узла смешения, находилась в соответствии с температурным графиком при его отклонении.
2. Способ по п.1, отличающийся тем, что в качестве внешнего источника теплоты в теплообменнике используют пар от паровой турбины когенерационного источника.
3. Способ по п.1, отличающийся тем, что регулирование производительности нагнетателя в теплоисточник осуществляют в соответствии с выражением
Figure 00000004
где Р - производительность нагнетателя в виде числа оборотов электродвигателя нагнетателя;
Тз, Ти - температура заданного и измеренного холодного потока теплоносителя на входе в теплообменник;
δТз - заданное отклонение температуры холодного потока теплоносителя на входе в теплообменник;
signΔT - знак разности ΔТ=Тиз;
К - коэффициент пропорциональности.
RU2006107169/03A 2006-03-07 2006-03-07 Способ теплоснабжения RU2304255C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006107169/03A RU2304255C1 (ru) 2006-03-07 2006-03-07 Способ теплоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006107169/03A RU2304255C1 (ru) 2006-03-07 2006-03-07 Способ теплоснабжения

Publications (1)

Publication Number Publication Date
RU2304255C1 true RU2304255C1 (ru) 2007-08-10

Family

ID=38510879

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006107169/03A RU2304255C1 (ru) 2006-03-07 2006-03-07 Способ теплоснабжения

Country Status (1)

Country Link
RU (1) RU2304255C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796734C1 (ru) * 2022-01-10 2023-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Система теплоснабжения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОКОЛОВ Е.Я. Теплофикация и тепловые сети. - М.: Издательство "МЭИ", 2001, стр.87, 88, рис.3.6 (г), стр.92. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796734C1 (ru) * 2022-01-10 2023-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Система теплоснабжения

Similar Documents

Publication Publication Date Title
CN102859148B (zh) 能量回收系统及方法
RU2325591C1 (ru) Способ автоматического регулирования расхода тепла в тепловой сети при двухконтурной системе отопления
CN101922356A (zh) 涉及涡轮发动机控制及运行的系统
RU2014126365A (ru) Способ регулирования температуры помещения в одном или группе из нескольких помещений, а также устройство для выполнения способа
WO2012089653A3 (de) Durchlauferhitzer
CN102418937A (zh) 应用于陶瓷窑炉的助燃空气和天然气线性比例控制系统
RU2304255C1 (ru) Способ теплоснабжения
CN108592396B (zh) 蓄热锅炉恒温恒量出风装置及其出风方法
EP2715213B1 (en) Gas heating system for gas pressure reducing systems and method for obtaining said heating effect
RU2796734C1 (ru) Система теплоснабжения
RU2424472C2 (ru) Устройство дистанционного контроля состояния тепловых установок
CN205448316U (zh) 一种沥青材料生产线的导热油热循环系统
RU2287743C1 (ru) Система снабжения здания теплом и холодной водой (система 3 т)
SU1132118A1 (ru) Тепловой пункт здани
RU72748U1 (ru) Система централизованного теплоснабжения
JP2010243044A (ja) 吸収冷温水機の台数切替制御方法及び装置
RU2719532C1 (ru) Устройство подогрева топлива дизельного двигателя
SU842345A1 (ru) Устройство дл регулировани расходаТЕплА B СиСТЕМЕ ТЕплОСНАбжЕНи
RU2464499C2 (ru) Система водяного отопления
JP2022533083A (ja) 温度制御された循環システムの操作方法、および温度制御された循環システム
CN212058465U (zh) 换热器控温装置
RU2237214C1 (ru) Способ управления подачей природного газа
GB2446602A (en) Thermal regulation of water
CN215408926U (zh) 燃油温度控制系统
CN202328348U (zh) 应用于陶瓷窑炉的助燃空气和天然气线性比例控制系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080308