RU62857U1 - Устройство для плазменной обработки изделий - Google Patents

Устройство для плазменной обработки изделий Download PDF

Info

Publication number
RU62857U1
RU62857U1 RU2006145085/22U RU2006145085U RU62857U1 RU 62857 U1 RU62857 U1 RU 62857U1 RU 2006145085/22 U RU2006145085/22 U RU 2006145085/22U RU 2006145085 U RU2006145085 U RU 2006145085U RU 62857 U1 RU62857 U1 RU 62857U1
Authority
RU
Russia
Prior art keywords
nozzle
electrode
plasma
products
working gas
Prior art date
Application number
RU2006145085/22U
Other languages
English (en)
Inventor
Тахир Рахимзянович Галиуллин
Олег Юрьевич Ефимов
Михаил Васильевич Никиташев
Валерий Яковлевич Чинокалов
Вадим Петрович Симаков
Сергей Александрович Дубинин
Original Assignee
Открытое акционерное общество "Западно-Сибирский металлургический комбинат", ОАО "ЗСМК"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Западно-Сибирский металлургический комбинат", ОАО "ЗСМК" filed Critical Открытое акционерное общество "Западно-Сибирский металлургический комбинат", ОАО "ЗСМК"
Priority to RU2006145085/22U priority Critical patent/RU62857U1/ru
Application granted granted Critical
Publication of RU62857U1 publication Critical patent/RU62857U1/ru

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

Полезная модель относится к плазменной обработке изделий, в частности, к устройствам для плазменной поверхностной закалки калибров валков чистовых клетей для прокатки арматурного профиля. Технический результат заключается в создании устройства для плазменной обработки изделий, которое позволит за счет формирования столба дуги в цилиндрической части электрода и определения оптимальной длины сопла, соответственно, обеспечить достижение необходимой плотности мощности теплового потока плазменной струи и осуществить термообработку поверхности изделий с повышенной производительностью. Устройство для плазменной обработки изделий содержит канал для подачи рабочего газа, электроды, один из которых выполнен с внутренним каналом и рубашкой охлаждения, и соединен с преобразователем потока рабочего газа. Преобразователь потока рабочего газа выполнен в виде сопла с расширением в сторону истечения плазменной струи и образует с электродом общий внутренний канал переменного сечения. Электрод и преобразователь потока рабочего газа имеют общую рубашку охлаждения. Внутренний канал электрода выполнен цилиндрическим. Длину сопла lс определяют из условия lс=(1,4-1,7)dc, где - dc выходной диаметр сопла.

Description

Полезная модель относится к плазменной обработке изделий, в частности, к устройствам для плазменной поверхностной закалки калибров валков чистовых клетей для прокатки арматурного профиля.
Известно устройство для плазменной поверхностной закалки, содержащее корпус, установленные в корпусе катод и цилиндрическое охлаждаемое сопло - анод, каналы подачи плазмообразующего газа. Известное устройство позволяет обрабатывать сложную конфигурацию поверхности изделия (SU №727369, В21К 9/16, 1977 г.).
Недостатком известного устройства является малая ширина упрочняемой зоны за один проход.
Известно устройство для плазменной поверхностной закалки, с секционированной межэлектродной вставкой. Известное устройство позволяет обрабатывать сложную конфигурацию поверхности изделия эффективно за счет того, что увеличенная длина дуги в цилиндрическом канале обеспечивает достижение необходимых теплофизических параметров плазменной струи при более низких токах и, в целом, повышается стабильность работы плазмотрона (Лещинский А.К., Самогутин С.С., Пирч И.И., Комар В.И. Плазменное поверхностное упрочнение, Киев: Наукова Думка, 1990. С.82-99).
Недостатком известного устройства является малая ширина закаливаемой за один проход зоны. При многопроходной же закалке наблюдается существенная неоднородность обработанной поверхности.
Наиболее близким к заявляемому решению по технической сущности и достигаемому положительному результату является устройство для плазменной обработки изделия, содержащее систему подачи рабочего газа, электроды, один из которых выполнен с внутренним каналом и рубашкой
охлаждения, и соединенный с преобразователем потока рабочего газа, выполненного в виде сопла с расширением в сторону истечения плазменной струи, образующим с ним общий внутренний канал переменного сечения (RU №2069131, В23К 10/00, 1995 г.).
Известное устройство позволяет обрабатывать поверхности изделия сложной конфигурации с повышенной производительностью по площади, однако выполнение внутреннего канала электрода с конусным сечением способствует усилению процесса шунтирования дуги, ведущего к уменьшению средней длины дуги (она не успевает развиться). Это приводит к асимметрии горения дуги в канале и неравномерности нагрева плазмообразующего газа для малых значений рабочего тока технологического диапазона (Чередниченко B.C., Аньшаков А.С., Кузьмин М.Г. Плазменные электротехнические установки, Новосибирск, НГТУ, 2005, С.236-239). Выполнение преобразователя газа без эффективного охлаждения при расположении его в зоне активного действия плазменной струи способствует повышенному высокотемпературному окислительному износу
Задачей полезной модели является упрочнение с высокой производительностью поверхности обрабатываемых изделий и получение однородных свойств по износостойкости и контактно-усталостной выносливости по всей обработанной поверхности изделий.
Поставленная задача достигается тем, что в предлагаемом устройстве для плазменной обработки изделий, содержащем канал для подачи рабочего газа, электроды, один из которых выполнен с внутренним каналом и рубашкой охлаждения, и соединен с преобразователем потока рабочего газа, выполненным в виде сопла с расширением в сторону истечения плазменной струи и образующим с ним общий внутренний канал переменного сечения согласно полезной модели, электрод и преобразователь потока рабочего газа имеют общую рубашку охлаждения, при этом внутренний канал электрода выполнен цилиндрическим, а длину сопла lс определяют из условия lс=(1,4-1,7)dc,
где - dc выходной диаметр сопла.
Технический результат заявляемой полезной модели заключается в создании устройства для плазменной обработки изделий, которое позволит за счет формирования столба дуги в цилиндрической части электрода и определения оптимальной длины сопла, соответственно, обеспечить достижение необходимой плотности мощности теплового потока плазменной струи и осуществить термообработку поверхности изделий с повышенной производительностью.
Технический результат достигается тем, что электрод и преобразователь потока рабочего газа имеют общую рубашку охлаждения, при этом внутренний канал электрода выполнен цилиндрическим, а длину сопла lс определяют из условия lс=(1,4-1,7)dc,
где - (1,4-1,7) - эмпирический коэффициент, полученный экспериментальным путем.
Выбор длины сопла lс устройства для плазменной обработки изделий из условия lс=(1,4-1,7)dc обеспечивает реализацию оптимальных газодинамических и теплофизических условий формирования турбулентной плазменной струи с углом раскрытия β=18° в среде с атмосферным давлением (Бобров Г.В. Ильин А.А. Нанесение неорганических покрытий, Москва: Интермет Инжиниринг, 2004, С.254-255), т.к. гидравлическое сопротивление выходного сопла переменного сечения слагается из потерь на трение и на вихреобразование. Вихревые потери вызываются отрывом пограничного слоя от стенок выходного сопла, они зависят от угла раствора выходного сопла и играют главную роль. При малых углах раствора гидравлические потери невелики, но по мере увеличения угла они возрастают. С ростом угла раствора зона вихрей перемещается от конца выходного сопла к его началу и при больших углах вся стенка покрыта вихревой областью (Абрамович Г.Н. Прикладная газовая динамика. Том 1, Москва, Наука, 1991, С.455-460).
Выполнение условия выбора длины сопла lc<l,4dc (увеличение угла β) ведет к значительному возрастанию газодинамических потерь в сопле.
Выполнение условия для длины сопла lc>l,7dc (уменьшение угла β) технически не целесообразно по причине незначительного снижения газодинамических потерь и росту тепловых потерь, способствующих охлаждению плазменной струи.
Диаметр сопла dc определяют из условия d>dc≥0,5d,
где d - диаметр обрабатываемого изделия,
dc - выходной диаметр сопла,
что описано в заявке на изобретение ОАО «Западно-Сибирский металлургический комбинат» №2006121872 от 19.06.2006 г «Способ термической обработки профилированных металлических поверхностей».
Выполнение электрода и преобразователя потока рабочего газа с общей рубашкой охлаждения обеспечивает эффективную защиту устройства от высокотемпературного окисления и повышает ресурс его работы в целом.
Выполнение внутреннего канала электрода в виде цилиндра обеспечивает достижение оптимальной средней длины электрической дуги, что способствует устойчивой работе устройства, и необходимой плотности мощности теплового потока плазменной струи для обработки изделий.
Диаметр цилиндрического сечения внутреннего канала электрода dц равен меньшему диаметру сопла, который определяется выходным диаметром сопла dc, длиной сопла lс и углом раскрытия турбулентной плазменной струи β.
Полезная модель поясняется чертежом, на котором изображено устройство для плазменной обработки изделий, содержащее канал 1 для подачи рабочего газа, электрод 2 (катод) и электрод 3 (анод), преобразователь 4 потока рабочего газа, выполненный в виде сопла и соединенный с электродом 3. Преобразователь 4 потока рабочего газа имеет с электродом 3 общую рубашку охлаждения 5 и направлен на обрабатываемое изделие 6.
Устройство функционирует следующим образом: канал 1 для подачи рабочего газа обеспечивает его поступление в межэлектродный зазор, одновременно подается вода в рубашку охлаждения 5. Известным способом
(например, осциллятором) в межэлектродном зазоре возбуждают начальную электрическую дугу, обеспечивающую нагрев и ионизацию плазмообразующего газа. При достижении достаточного потенциала между электродами 2 и 3, за счет электропроводности нагретого плазмообразующего газа, образуется основная дуга, начальная дуга при этом отключается. Под действием осевой составляющей скорости потока плазмообразующего газа дуга растягивается на оси цилиндрического участка электрода 3 в направлении течения потока. Столб дуги стабилизируется на оси цилиндрического участка электрода 3 из-за градиента давления в вихре. Радиальный участок дуги замыкает столб дугового разряда на цилиндрический участок электрода 3.
Плазмообразующий газ, проходя через основную дугу, нагревается до температуры порядка 10000 К и стекает в виде плазменной струи из преобразователя 4 потока рабочего газа, выполненного в виде сопла, на обрабатываемое изделие 6.
Вследствие относительного перемещения устройства для плазменной обработки изделий происходит обработка поверхности изделия 6 в виде полосы.
Более высокая производительность закалки поверхности изделия по площади и по ресурсу работы устройства осуществляется за счет того, что горение дуги и нагрев газа осуществляется в цилиндрическом участке электрода, обеспечивающим необходимую среднюю длину дуги и, тем самым, достижение эффективных теплофизических параметров образуемой плазменной струи, таких как температура, степень ионизации и др. Охлаждаемый преобразователь рабочего газа, выполненный в виде сопла, повышает ресурс работы устройства в целом, тем самым обеспечивает оптимальную геометрию плазменной струи с одновременным увеличением площади ее поперечного сечения, что ведет к увеличению ширины упрочняемой зоны за один проход, достижению однородности эксплуатационных свойств по всей обработанной поверхности изделий.
Устройство для плазменной обработки изделий промышленно применимо для плазменной закалки калибров валков чистовых клетей для прокатки арматурных профилей позволяет за счет формирования столба дуги в цилиндрической части электрода, и увеличения оптимальной длины сопла обеспечить достижение необходимой плотности мощности теплового потока плазменной струи и осуществить термообработку поверхности изделий с повышенной производительностью.

Claims (1)

  1. Устройство для плазменной обработки изделий, содержащее канал для подачи рабочего газа, электроды, один из которых выполнен с внутренним каналом и рубашкой охлаждения, и соединен с преобразователем потока рабочего газа, выполненным в виде сопла с расширением в сторону истечения плазменной струи и образующим с ним общий внутренний канал переменного сечения, отличающееся тем, что электрод и преобразователь имеют общую рубашку охлаждения, при этом внутренний канал электрода выполнен цилиндрическим, а длину сопла lс определяют из условия lc=(1,4-1,7)dc, где dc - выходной диаметр сопла.
    Figure 00000001
RU2006145085/22U 2006-12-18 2006-12-18 Устройство для плазменной обработки изделий RU62857U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006145085/22U RU62857U1 (ru) 2006-12-18 2006-12-18 Устройство для плазменной обработки изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006145085/22U RU62857U1 (ru) 2006-12-18 2006-12-18 Устройство для плазменной обработки изделий

Publications (1)

Publication Number Publication Date
RU62857U1 true RU62857U1 (ru) 2007-05-10

Family

ID=38108202

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145085/22U RU62857U1 (ru) 2006-12-18 2006-12-18 Устройство для плазменной обработки изделий

Country Status (1)

Country Link
RU (1) RU62857U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773341C2 (ru) * 2017-09-22 2022-06-02 Кьельберг-Штифтунг Насадка для головки плазменной горелки, лазерной режущей головки и плазменной лазерной режущей головки, узлы, головка плазменной горелки и плазменная горелка с ней/ними, лазерная режущая головка с ней/ними и плазменная лазерная режущая головка с ней/ними

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773341C2 (ru) * 2017-09-22 2022-06-02 Кьельберг-Штифтунг Насадка для головки плазменной горелки, лазерной режущей головки и плазменной лазерной режущей головки, узлы, головка плазменной горелки и плазменная горелка с ней/ними, лазерная режущая головка с ней/ними и плазменная лазерная режущая головка с ней/ними

Similar Documents

Publication Publication Date Title
EP1195077B1 (en) Anode electrode for plasmatron structure
Toshifuji et al. Cold arc-plasma jet under atmospheric pressure for surface modification
US9277636B2 (en) Plasma torch
RU62857U1 (ru) Устройство для плазменной обработки изделий
RU2686505C1 (ru) Способ плазменной обработки металлических изделий
RU2614533C1 (ru) Электродуговой плазмотрон
RU128953U1 (ru) Устройство импульсного генератора плазмы на переменном токе
JPWO2009066395A1 (ja) プラズマ処理装置
KR100715292B1 (ko) 소재용융 공정용 고출력 공동형 플라즈마 토치
RU2401310C1 (ru) Способ и устройство для плазменной обработки тела вращения
RU2469517C1 (ru) Способ рекуперативного охлаждения электрода плазмотрона, плазмотрон для осуществления способа и электродный узел этого плазмотрона
RU175848U1 (ru) Плазмотрон для термической обработки широкополосного изделия
RU2584367C1 (ru) Плазмотрон
RU2558713C1 (ru) Устройство импульсного генератора плазмы на переменном токе
RU2366122C1 (ru) Плазмотрон для нанесения покрытий
RU2135629C1 (ru) Способ повышения долговечности электродных и сопловых устройств и технологический плазматрон для его осуществления
RU2482195C1 (ru) Способ плазменной обработки тела вращения
RU171565U1 (ru) Плазмотрон для плазменной обработки изделий
RU140498U1 (ru) Плазматрон для порошкового напыления
RU2506724C1 (ru) Электродуговой плазмотрон с водяной стабилизацией дуги
RU2546974C1 (ru) Плазматрон для нанесения покрытий в динамическом вакууме
RU80377U1 (ru) Устройство для плазменной обработки изделий
RU2792246C1 (ru) Способ и система плазменной сварки плавящимся электродом
RU2537410C2 (ru) Электрод-инструмент для прошивки отверстий
RU2225084C1 (ru) Плазматрон

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20131219