RU53016U1 - Судовой лазерный проточный флуориметр - Google Patents

Судовой лазерный проточный флуориметр Download PDF

Info

Publication number
RU53016U1
RU53016U1 RU2005133794/22U RU2005133794U RU53016U1 RU 53016 U1 RU53016 U1 RU 53016U1 RU 2005133794/22 U RU2005133794/22 U RU 2005133794/22U RU 2005133794 U RU2005133794 U RU 2005133794U RU 53016 U1 RU53016 U1 RU 53016U1
Authority
RU
Russia
Prior art keywords
optical
laser
fluorimeter
measuring
analyzer
Prior art date
Application number
RU2005133794/22U
Other languages
English (en)
Inventor
Александр Юрьевич Майор
Владимир Александрович Крикун
Олег Алексеевич Букин
Андрей Николаевич Павлов
Original Assignee
Тихоокеанский океанологический институт имени В.И. Ильичева Дальневосточного отделения Российской Академии наук (ТОИ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тихоокеанский океанологический институт имени В.И. Ильичева Дальневосточного отделения Российской Академии наук (ТОИ ДВО РАН) filed Critical Тихоокеанский океанологический институт имени В.И. Ильичева Дальневосточного отделения Российской Академии наук (ТОИ ДВО РАН)
Priority to RU2005133794/22U priority Critical patent/RU53016U1/ru
Application granted granted Critical
Publication of RU53016U1 publication Critical patent/RU53016U1/ru

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Полезная модель относится к устройству для бесконтактного исследования потоков жидкости посредством ее облучения лазерным импульсом и может быть использована в области экологии, лимнологии и океанологии при измерении в водной среде спектров флуоресценции органических веществ. Сущность устройства заключается в том, что оно содержит оптически связанные между собой источник лазерного излучения, поворотную призму, оптическую проточную кювету, светофильтр, оптический анализатор, связанный с компьютером, а также датчики измерения солености и температуры, при этом оптический анализатор выполнен на базе полихроматора и включает также электронно-оптический преобразователь (ЭОП), оптическую систему переноса изображения и черно-белую цифровую видеокамеру. Технический результат заключается в увеличении пространственного разрешения спектра сигнала флюоресценции, повышении помехозащищенности, надежности судового флуориметра, упрощении конструкции за счет исключения реперного канала измерения мощности лазера и механических деталей анализатора.

Description

Полезная модель относится к устройству для бесконтактного исследования потоков жидкости посредством ее облучения лазерным импульсом и может быть использовано в области экологии, лимнологии и океанологии при измерении в водной среде спектров флуоресценции органических веществ.
Известен флуориметр, содержащий импульсный источник света оптически соединенный через объектив со светофильтром возбуждения, кювету оптически связанную со светофильтром регистрации и трехканальную систему регистрации, каждый из каналов содержит фотоприемник соединенный со стробирующим интегратором, выходы которых соединены с аналого-цифровым преобразователем, кроме этого один из фотоприемников соединен через буферный усилитель с аналого-цифровым преобразователем, который через устройство управления соединен с устройством индикации, причем стробирующие интеграторы соединены с формирователем измерительных стробов, который соединен с устройством управления, и введены две светоделительные пластины, одна из которых оптически соединена со светофильтром возбуждения, а вторая с фокусирующей системой (з. PCT/RU 98/00401, №WO 99/31487, опубл. 24.06.1999)
Однако использование некогерентного источника света не позволяет достигать высокой чувствительности при измерении концентрации пигментов в забортной воде, а использование светофильтров при регистрации флуоресценции не дает возможности корректно восстановить форму спектральных линий.
Известны лидарные утройства для исследования биооптических свойств воды непосредственно с борта самолета (Sathyenranath S., Hoge F.E., Appl. Opt., 1994, v.33, p.1081) или судна (Babin М., Morel A., Gentili В., Remote sensing of sea surface Suninduced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence, J. Remote Sens., 1996, 17 (1), 2417-2448., Demidov A.A., Chekaluk A.M., Lapthenkova T.V., Fadeyev V.V., Remote laser monitoring of organic components of seawater from the ship's side. Meteor, i GidroL, 1988, 6, 62-70).
Однако, например, сигнал флуоресценции от хлорофилла А с использованием лидарных устройств возможно зарегистрировать только с самого верхнего слоя моря, поскольку длина волны линии флуоресценции хлорофилла равна 675 нм. Излучение
этого спектрального диапазона значительно поглощается морской водой, что не позволяет провести измерение спектров с глубины, обеспечивающих достоверное измерение пространственного распределения хлорофилла. Кроме того, при регистрации флуоресценции по лидарной схеме имеет место существенное влияние состояния морской поверхности на дисперсию интенсивности сигнала флуоресценции.
Наиболее близким к заявляемому устройству является судовой лазерный флуориметр для исследования спектров флуоресценции морской воды, состоящий из лазерного источника, излучение которого через поворотную призму попадает в оптически прозрачное входное окошко проточной кюветы, в которую при помощи насоса накачивается забортная жидкость. Излучение флуоресценции через выходное окно проточной кюветы, светофильтр и фокусирующий объектив направляется в оптический анализатор, включающий сканирующий монохроматор, ФЭУ (фотоэлектронный умножитель), интегратор и АЦП (аналого-цифровой преобразователь). Сканирующий монохроматор содержит в себе дифракционную решетку, положение которой изменяется при помощи шагового двигателя управляемого с компьютера. Полученные в монохроматоре спектральные линии при помощи ФЭУ, интегратора и АЦП переводятся в цифровую форму и подаются на компьютер для дальнейшей обработки. Флуориметр содержит также реперный канал измерения мощности лазера и кювету с датчиками для измерения солености и температуры забортной воды, соединенными с компьютером. (А.Ю.Майор, О.А.Букин, А.Н.Павлов, В.Д. Киселев "Судовой лазерный флуориметр для исследования спектров флуоресценции морской воды". Приборы и техника эксперимента, 2001, №4, с.151-154).
Однако известное устройство имеет недостаточное пространственное разрешение при измерении спектра сигнала флюоресценции из-за использования в оптическом анализаторе сканирующего монохроматора с шаговым двигателем. Кроме того, известный флуориметр содержит в себе механические части, которые требуют тщательной подстройки и постоянного контроля, конструктивно сложен, имеет значительные габариты.
Технической задачей заявляемой полезной модели является увеличение пространственного разрешения спектра сигнала флюоресценции, повышение помехозащищенности, надежности флуориметра, упрощение конструкции за счет
исключения реперного канала измерения мощности лазера и механических деталей оптического анализатора, а также уменьшение габаритов и веса устройства.
Поставленная задача решается лазерным проточным флуориметром, содержащим оптически связанные между собой источник лазерного излучения, поворотную призму, оптическую проточную кювету, светофильтр, оптический анализатор, связанный с компьютером, к которому подключены также датчики измерения солености и температуры, при этом оптический анализатор включает полихроматор, электронно-оптический преобразователь (ЭОП), оптическую систему переноса изображения и черно-белую цифровую видеокамеру.
На фиг. приведена блок-схема заявляемого флуориметра, где 1 - источник лазерного излучения, 2 - поворотная призма, 3 - проточная кювета, снабженная оптически прозрачными окнами 4 и 5, 6 - светофильтр; 7 - полихроматор, 8 - ЭОП (электронно-оптический преобразователь), 9 - оптическая система передачи изображения, 10 - черно-белая цифровая видеокамера, 11 - ЭВМ, 12 - насос, 13 - измерительная кювета, снабженная датчиками (на фиг. не показаны) для измерения температуры и солености проточной воды.
Устройство работает следующим образом. Излучение генерируется лазером 1, и, пройдя через отклоняющую призму 2, поступает в оптическую проточную кювету 3 через окно 4, индуцированный в кювете 3 сигнал флуоресценции попадает, через боковое окно 5, на входную щель полихроматора 7, который расположен за светофильтром 6, установленным для подавления лазерного рассеянного излучения. Непосредственно за полихроматором 4 располагается ЭОП 8, который усиливает изображение спектра флуоресценции, а оптическая система 9 передачи изображения переносит изображение спектра с выходного окна ЭОП 8 на черно-белую цифровую видеокамеру 10, сигнал с которой в оцифрованном виде передается на ЭВМ 11. Насос 12 обеспечивает прокачку забортной воды через проточную кювету 3 и измерительную кювету 13, в которой расположены связанные с компьютером 11 датчики для измерения температуры и солености морской воды, сведения с которых требуются для последующего вычисления концентраций органических веществ. Местонахождение измерительной кюветы 13, приведенное на фиг., является одним из вариантов ее расположения. Она может располагаться как перед так и после проточной кюветы 3.
Конкретное аппаратурное оформление устройства будет зависеть от поставленной задачи измерений, необходимой точности и условий использования.
Так, в качестве источника лазерного излучения используют стандартные лазерные источники, например, Nd-YAG лазер или любой другой, излучающий в видимом диапазоне 490-535 нм, с длительностью импульса порядка 10-20 нсек и энергией порядка 20 мДж. Используемый в устройстве полихроматор должен обеспечивать регистрацию спектра в диапазоне 530 нм - 700 нм без наложения порядков, обратной линейной дисперсией порядка 10-40 нм/мм и размером изображения как минимум 5×25 мм, например, для изучения фитопланктона используют полихроматор ОС-6 (МДП-1) или аналогичный другой.
Оптическая система переноса изображения представляет собой объектив, позволяющий перенести изображение с выходного экрана ЭОП на ПЗС матрицу видеокамеры. Технические характеристики объектива подбираются обычным образом с целью согласования размеров изображения на ЭОП и размеров ПЗС матрицы.
В качестве регистрирующего прибора используют любую черно-белую цифровую видео-камеру с чувствительностью не ниже 10-3 лК.
В отличие от прототипа, содержащего оптический одноканальный анализатор на базе сканирующего монохроматора, в заявляемом устройстве используется оптический многоканальный анализатор на базе полихроматора, который позволяет получать все линии спектра исследуемого потока жидкости за одно измерение, тогда как прототип за одно измерение дает возможность исследовать только одну линию спектра. Использование связки ЭОПа и черно-белой цифровой видеокамеры, вместо связки ФЭУ, нинтегратор, АЦП позволяет сохранить ту же контрастность линий, которая имеет место в известном устройстве, но при этом уменьшить время измерения спектра сигнала флуоресценции (примерно в 10 раз) и таким образом увеличить пространственное разрешение при измерении спектров флуоресценции по ходу судна, а также упростить конструкцию флуориметра за счет исключения реперного канала измерения мощности источника излучения и механических частей устройства. Кроме того, использование полихроматора, ЭОПа и черно-белой цифровой камеры позволяет значительно снизить габариты и вес флуориметра, а исключение из конструкции флуориметра механических движущихся частей значительно увеличивают ресурс прибора, помехозащищенность и надежность его работы в условиях морских экспедиций.

Claims (1)

  1. Лазерный проточный флуориметр, содержащий оптически связанные между собой источник лазерного излучения, поворотную призму, оптическую проточную кювету, светофильтр и оптический анализатор, соединенный с компьютером, к которому также подключены датчики измерения солености и температуры, отличающийся тем, что оптический анализатор состоит из полихроматора, электронно-оптического преобразователя, оптической системы передачи изображения и соединен с компьютером посредством черно-белой цифровой видеокамеры.
    Figure 00000001
RU2005133794/22U 2005-11-01 2005-11-01 Судовой лазерный проточный флуориметр RU53016U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005133794/22U RU53016U1 (ru) 2005-11-01 2005-11-01 Судовой лазерный проточный флуориметр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005133794/22U RU53016U1 (ru) 2005-11-01 2005-11-01 Судовой лазерный проточный флуориметр

Publications (1)

Publication Number Publication Date
RU53016U1 true RU53016U1 (ru) 2006-04-27

Family

ID=36656197

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005133794/22U RU53016U1 (ru) 2005-11-01 2005-11-01 Судовой лазерный проточный флуориметр

Country Status (1)

Country Link
RU (1) RU53016U1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2590232C2 (ru) * 2012-04-02 2016-07-10 ЭКОЛАБ ЮЭсЭй ИНК. Проточная камера для флуорометра реального времени
RU2652528C1 (ru) * 2017-06-05 2018-04-26 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Флуориметр с многоканальной системой возбуждения на светодиодах
RU2739968C1 (ru) * 2019-11-05 2020-12-30 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Оптоволоконный флуориметр с погружаемой термокамерой

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2590232C2 (ru) * 2012-04-02 2016-07-10 ЭКОЛАБ ЮЭсЭй ИНК. Проточная камера для флуорометра реального времени
RU2652528C1 (ru) * 2017-06-05 2018-04-26 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Флуориметр с многоканальной системой возбуждения на светодиодах
RU2739968C1 (ru) * 2019-11-05 2020-12-30 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Оптоволоконный флуориметр с погружаемой термокамерой

Similar Documents

Publication Publication Date Title
AU2007305640B2 (en) Ultraviolet radiation detector and apparatus for evaluating ultraviolet radiation protection effect
Jerlov Marine optics
US5450125A (en) Spectrally dispersive imaging lidar system
US20150041682A1 (en) Systems and Methods for Monitoring Phenanthrene Equivalent Concentrations
US20070103681A1 (en) Optical device for measuring optical properties of a sample and method relating thereto
US20110007311A1 (en) Method and arrangement for the time-resolved spectroscopy using a photon mixing detector
WO2012006826A1 (zh) 水下拉曼-荧光光谱联合探测装置
US20170052118A1 (en) Multiplexed excitation emission matrix spectroscopy
JP6804445B2 (ja) 吸光度測定装置への蛍光検出機能の統合
JP3815838B2 (ja) 粒子測定装置
Chekalyuk et al. Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments
RU53016U1 (ru) Судовой лазерный проточный флуориметр
US3649833A (en) In situ fluorometer using a synchronous detector
RU108844U1 (ru) Лазерный флуориметр
Galeener FM spectroscopy: Raman scattering and luminescence
CN210571971U (zh) 一种用于水环境污染监测的便携式激光拉曼荧光计系统和水环境污染监测装置
CN208902606U (zh) 一种专用光致发光光谱测量的ccd光谱仪
RU157814U1 (ru) Лазерный флуориметр для исследования подводной среды
CN109030427A (zh) 一种专用光致发光光谱测量的ccd光谱仪
RU75042U1 (ru) Бортовой измерительный комплекс параметров воды
US3754145A (en) In situ fluorometer
ファビアンヴォルク et al. Spatial resolution of a new micro-optical probe for chlorophyll and turbidity
RU57009U1 (ru) Судовой лазерный спектрометр
RU2775809C1 (ru) Способ определения концентрации фотопигментов фитопланктона, растворённого органического вещества и размерного состава взвеси в морской воде in situ
CN203324187U (zh) 一种基于荧光图像的藻类叶绿素a浓度检测装置

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20121102