RU2739968C1 - Оптоволоконный флуориметр с погружаемой термокамерой - Google Patents

Оптоволоконный флуориметр с погружаемой термокамерой Download PDF

Info

Publication number
RU2739968C1
RU2739968C1 RU2019135358A RU2019135358A RU2739968C1 RU 2739968 C1 RU2739968 C1 RU 2739968C1 RU 2019135358 A RU2019135358 A RU 2019135358A RU 2019135358 A RU2019135358 A RU 2019135358A RU 2739968 C1 RU2739968 C1 RU 2739968C1
Authority
RU
Russia
Prior art keywords
water
fiber
submersible
fluorescence
optic
Prior art date
Application number
RU2019135358A
Other languages
English (en)
Inventor
Сергей Серофимович Вознесенский
Евгений Леонидович Гамаюнов
Александр Юрьевич Попик
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН)
Priority to RU2019135358A priority Critical patent/RU2739968C1/ru
Application granted granted Critical
Publication of RU2739968C1 publication Critical patent/RU2739968C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к системам для in situ исследований и может быть использовано для экологического контроля и диагностики состояния акваторий по измерениям видовой концентрации и состояния фотосинтезирующих микроводорослей типа фитопланктона. Задача изобретения заключается в создании оптоволоконного флуориметра с погружаемым измерительным модулем для экспресс-исследования экологического состояния акваторий, позволяющего определять видовой состав и концентрацию фотосинтезирующих микроводорослей (фитопланктона), а также выполнять в реальном времени как непрерывные, так и эпизодические исследования фитопланктона морских и пресноводных водоемов в широком диапазоне глубин. Поставленная задача достигается тем, что погружаемый измерительный модуль дополнительно снабжен термокамерой, внутри которой расположены оптоволоконный датчик флуоресценции и датчик температуры. Изменение температуры в термокамере осуществляется с помощью управляемых нагревательных и охлаждающих элементов. Технический результат - возможность измерения параметров и флуоресценции воды как при естественной температуре в точке измерения, так и при температурах, задаваемых путем нагрева или охлаждения воды в термокамере, что делает возможным определение состава и концентрации отдельных видов микроводорослей. 1 ил.

Description

Изобретение относится к системам для insitu исследований и может быть использовано в технологиях исследования окружающей среды, в частности, для экологического контроля и диагностики состояния акваторий, по результатам измерений состава и концентрации фотосинтезирующих микроводорослей фитопланктона.
Известен лазерно-флуоресцентный анализатор (патент РФ №2263897, кл. G01N 21/64, 2005 г. Бюл. №31), состоящий из источника излучения, оптического волокна для ввода излучения в среду и системы детектирования. Для регистрации сигнала включено второе волокно, при этом использован волоконно-оптический зонд, устанавливаемый в протоке исследуемой среды, причем волокна закреплены в одной плоскости так, что их оптические апертуры перекрываются. Анализатор предназначен для дистанционного мониторинга загрязнений водной среды.
Однако устройство не позволяет выполнять измерение концентрации и состава фотосинтезирующих микроводорослей, не дает данных о глубине погружения волоконно-оптического зонда, и температуре среды. Отсутствие устройства для погружения волоконно-оптического зонда затрудняет выполнение продолжительных измерений.
Известен судовой лазерный спектрометр (патент РФ №57009, кл. G01N 21/64, 2006 г. Бюл. №27), состоящий из надводной и погружаемой частей, соединенных друг с другом посредством двух световодов, обеспечивающих прием и передачу излучаемого и принимаемого оптических сигналов. Судовая часть включает источник излучения, в качестве которого установлен двухчастотный лазер, систему согласования излучаемого сигнала со световодом излучаемого сигнала, и систему регистрации и обработки данных. Система включает последовательно соединенные полихроматор, электронно-оптический преобразователь, цифровую видеокамеру и персональный компьютер. Погружаемая часть выполнена в виде кюветы, снабженной кабель-тросом, и состоит из системы формирования излучаемого сигнала, соединенной со световодом излучаемого сигнала, измерительной ячейки и системы согласования со световодом принимаемого сигнала.
Известное устройство позволяет измерять флуоресценцию воды и получать данные о концентрации хлорофилла в составе фотосинтезирующих водорослей, но не позволяет судить о видовом составе микроводорослей. Подсоединение судовой части непосредственно к волокнам, опущенным в воду, не позволяет применять автоматические устройства для спуска кюветы в воду, например, лебедку, что позволило бы снизить трудоемкость и время выполнение измерений.
Известен бортовой измерительный комплекс параметров воды с погружаемым модулем на оптоволоконной связи (патент РФ №75042, кл. G01N 21/01, 2008 г. Бюл. №20), содержащий излучатели и спектрометр с компьютером, выполненные в виде надводной части, а также погружаемый в воду с помощью оптоволоконного кабель-троса модуль, внутри которого размещены оптические датчики флуоресценции, прозрачности, солености, давления, температуры и др. Сигналы датчиков об измеренных ими величинах передаются по оптоволоконному кабелю в блок регистрации и излучения, расположенный внутри катушки с наматываемым на нее оптоволоконным кабелем. Передача данных на компьютер осуществляется через токосъемники.
Известное устройство измеряет спектр флуоресценции воды, но не предоставляет информацию о временных изменениях флуоресцентного излучения. Так же устройство имеет погружаемый модуль, смена воды в котором происходит под действием гидродинамического давления, возникающего при движении судна, поэтому выполнять измерение параметров воды на заданной глубине не возможно.
Известен способ идентификации микроводорослей (патент РФ №2619640, кл. G01N 21/00, 2017. Бюл. №14), который предусматривает измерение спектра флуоресцентного излучения пробы, помещаемой в термокамеру, температура в которой изменяется в диапазоне от 5 С до 80 С, что позволяет определять видовой состав микроводорослей в пробе воды путем сравнения температурной зависимости спектра флуоресценции пробы с температурными зависимостями спектров флуоресценции известных микроводорослей.
Для реализации указанного способа требуется создание специального устройства обеспечивающего нагрев и охлаждение пробы воды, облучение пробы светом и измерение интенсивности флуоресцентного излучения присутствующих в воде микроводорослей.
Известен бортовой измерительный комплекс параметров воды (патент РФ №96662, кл. G01N 21/01, 2010 г. Бюл. №22), состоящий из надводной и погружаемой частей, соединенных друг с другом посредством оптоволоконного кабель-троса, намотанного на барабан лебедки с электромеханическим приводом, и обеспечивающего передачу излучаемых и принимаемых оптических сигналов. Надводная часть включает блок генерации и приема излучения и персональный компьютер. Барабан лебедки содержит токосъемники, предназначенные для передачи электрических сигналов. Погружаемая часть выполнена в виде модуля, содержащего датчики параметров воды и имеющего элементы защиты от фоновой засветки. Кабель-трос помещен в защитную оболочку и содержит часть включает блок генерации и приема излучения и персональный компьютер. Барабан лебедки содержит токосъемники, предназначенные для передачи электрических сигналов. Погружаемая часть выполнена в виде модуля, содержащего датчики параметров воды и имеющего элементы защиты от фоновой засветки. Кабель-трос помещен в защитную оболочку и содержит электрические провода, при этом он разделен как минимум на две части: бортовую и погружаемую. На барабане лебедки дополнительно установлены оптические вращающиеся соединители по числу волокон кабель-троса, передающие излучение из погружаемой части кабель-троса в бортовую часть кабель-троса. Лебедка снабжена устройством для укладки погружаемой части кабель-троса. В надводной части между лебедкой и компьютером дополнительно размещен электронный блок, содержащий источники питания для привода лебедки и электронных датчиков погружаемого модуля, а также преобразователь интерфейсов для связи с погружаемым модулем, который снабжен устройством для прокачивания воды через датчики параметров воды.
Известное устройство не позволяет измерять флуоресценцию воды в требуемом диапазоне температур, необходимом для измерения температурных зависимостей интенсивности флуоресценции и выявления их особенностей, что требуется для определения видового состава микроводорослей.
В основу изобретения положена задача создания оптоволоконного флуориметра для экспресс-исследования экологического состояния акваторий, позволяющего определять видовой состав и концентрацию фотосинтезирующих микро-водорослей (фитопланктона), а также выполнять в реальном времени как непрерывные, так и эпизодические исследования фитопланктона морских и пресноводных водоемов в широком диапазоне глубин без извлечения проб воды на поверхность для последующего исследования.
Технический результат, достигаемый в заявляемом изобретении, заключается в возможности измерения параметров и флуоресценции воды в водоемах как при естественной температуре в точке измерения, так и при температурах, задаваемых путем нагрева или охлаждения воды в измеряемом объеме, что позволяет определить состав и концентрацию отдельных видов микроводорослей и не требует взятия и извлечения проб воды на поверхность для их последующего исследования.
Указанный технический результат достигается следующим образом.
Оптоволоконный флуориметр состоит из надводной и погружаемой частей, соединенных друг с другом кабель-тросом, намотанным на барабан лебедки с электромеханическим приводом. Кабель-трос обеспечивает передачу излучаемых и принимаемых оптических и электрических сигналов.
Надводная часть оптоволоконного флуориметра состоит из лебедки и бортового блока, в состав которого входят персональный компьютер, источник и приемник оптического излучения. Источником излучения может быть твердотельный лазер, лазерный диод или светодиод большой яркости. Приемник излучения выполнен с использованием светочувствительных приборов, например, фотоэлектронного умножителя, p-i-n диодов или приборов с зарядовой связью (ПЗС). Связь между бортовым блоком и лебедкой осуществляется с помощью бортового кабеля.
Погружаемая часть оптоволоконного флуориметра состоит из кабель-троса и погружаемого измерительного модуля, выполненного в виде двух частей:
Одна часть - герметичная, внутри которой установлен интерфейсный блок с подключенными к нему датчиками параметров среды.
Другая часть оптоволоконного флуориметра состоит из проточной термокамеры, обмен воды в которой осуществляется с помощью погружного насоса. Внутри проточной термокамеры расположены датчик температуры и оптоволоконный датчик флуоресценции, а также, дополнительно встроены элементы для нагрева и охлаждения воды. В качестве нагревательных и охлаждающих элементов, например, могут быть использованы элементы на эффекте Пельтье.
Связь между бортовым блоком и интерфейсным блоком, расположенном в погружаемым измерительном модуле, осуществляется по электрическим проводам кабель-троса. Связь датчика флуоресценции с бортовой частью осуществляется с помощью оптических волокон.
Лебедка содержит оптические вращающиеся соединители для стыковки двух оптических волокон бортового кабеля с оптическими волокнами в кабель-тросе, идущими к датчику флуоресценции. Электрическая связь осуществляется с помощью токосъемника, через который осуществляется подача электропитания и интерфейсная связь с погружаемым измерительным модулем.
Оптоволоконный флуориметр с погружаемой проточной термокамерой выполнен в виде мобильной системы и может быть установлен на различных судах, в том числе, не предназначенных для ведения научных исследований: малых катерах и яхтах, судах торгового и рыболовного флота.
Применение такого оптоволоконного флуориметра позволит существенно снизить стоимость обследования водных акваторий за счет сокращения численности состава экспедиций и требуемого времени на сбор и обработку экспериментальных данных.
Сущность заявляемого изобретения поясняется чертежом, где:
8 - источник излучения;
9 - компьютер;
10 - приемник излучения;
11 - погружаемый измерительный модуль;
12 - термокамера;
13 - оптический датчик флуоресценции;
14 - нагреватель/охладитель;
15 - датчик температуры в термокамере;
16 - интерфейсный блок;
17 - датчики параметров среды;
18 - датчик натекания;
19 - погружной насос для прокачки воды
Оптоволоконный флуориметр с погружаемой термокамерой состоит из погружаемого модуля 11 и бортовой части, включающей лебедку 2 с электромеханическим приводом 1 и бортовой блок. В состав бортового блока входят источник излучения 8, приемник излучения 10 и персональный компьютер 9.
Бортовой блок соединен с лебедкой 2 с помощью бортового кабеля 7. Погружаемый модуль И соединяется с бортовой частью кабель-тросом 3. К источнику излучения 8 и приемнику излучения 10 подключены оптические волокна, соединяющие их с датчиком флуоресценции 13.
Кабель-трос 3 намотан на барабане лебедки 2, с помощью которой погружаемый измерительный модуль 11 опускается в воду и удерживается на нужной глубине. Кабель-трос 3 содержит оптические волокна и электрический кабель, заключенные в прочную водонепроницаемую оболочку. На оси барабана лебедки 2 с обеих сторон размещены вращающиеся оптические соединители 4 и 6.
Через вращающийся оптический соединитель 4 происходит передача оптического излучения от источника 8 на оптическое волокно кабель-троса 3 к датчику флуоресценции 13, установленному в погружаемом измерительном модуле 11.
Через вращающийся оптический соединитель 6 происходит передача оптического излучения флуоресценции от датчика флуоресценции 13 к приемнику излучения 10. Вращающийся электрический соединитель 5 обеспечивает передачу электроэнергии и сигналов интерфейса. Датчик флуоресценции 13 размещен внутри термокамеры 12. Датчик температуры 15 размещен в термокамере 12 таким образом, чтобы не затенять оптическое излучение из датчика флуоресценции 13. Протекание воды через термокамеру 12
Через вращающийся оптический соединитель 4 происходит передача оптического излучения от источника 8 на оптическое волокно кабель-троса 3 к датчику флуоресценции 13, установленному в погружаемом измерительном модуле 11.
Через вращающийся оптический соединитель 6 происходит передача оптического излучения флуоресценции от датчика флуоресценции 13 к приемнику излучения 10. Вращающийся электрический соединитель 5 обеспечивает передачу электроэнергии и сигналов интерфейса. Датчик флуоресценции 13, элементы нагревателя/охладителя 14 и датчик температуры 15 размещены в проточной термокамере 12. Протекание воды через проточную термокамеру 12 обеспечивается насосом 19. Датчики 15, 17 и 18 соединены с интерфейсным блоком 16. Управление нагревателем/охладителем 14 и насосом 19 осуществляется через интерфейсный блок 16. Управление работой лебедки 2, источником излучения 8, приемником излучения 10 и интерфейсным блоком погружаемого измерительного модуля осуществляется с помощью специальной программы, функционирующей на персональном компьютере 9.
Оптоволоконный флуориметр с погружаемой проточной термокамерой работает следующим образом.
По команде, передаваемой компьютером 9, электромеханический привод лебедки 1 приводит в движение барабан, в результате чего происходит стравливание кабель-троса 3 и спуск погружаемого измерительного модуля 11 на заданную глубину. Контроль глубины погружения выполняется с помощью датчика давления, входящего в состав группы датчиков параметров среды 17. Опрос датчиков 17 осуществляется интерфейсным блоком 16, который передает данные в персональный компьютер 9. При достижении заданной глубины происходит остановка вращения барабана лебедки 2 и удержание погружаемого измерительного модуля 11. При достижении заданной глубины включается погружной насос 19 и в проточной термокамере 12 обновляется вода, затем выполняется цикл измерения флуоресценции пробы воды при температуре окружающей среды, а также и при других заданных температурах, что обеспечивается нагревом или охлаждением пробы в проточной термокамере 12.
Измерение спектра флуоресценции выполняется следующим образом.
По команде компьютера 9 происходит включение источника света 8 и его излучение направляется в оптическое волокно, по которому свет передается через вращающийся оптический соединитель 4 к датчику флуоресценции 13. Одновременно с началом работы источника излучения 8 включается приемник излучения 10. Возбужденное в датчике 13 флуоресцентное излучение улавливается приемным оптическим волокном и передается через вращающийся оптический соединитель 6 в приемник излучения 10, где формируется спектр интенсивности флуоресценции, который передается на компьютер 9 для сохранения и последующей обработки. Параллельно с измерением спектра флуоресценции фитопланктона измеряются и другие параметры окружающей среды: температура, освещенность, соленость, перечень которых определяется составом датчиков 17, установленных на погружаемом измерительном модуле 11.
Для измерения спектра флуоресценции при температурах, отличающихся от температуры среды, включается нагреватель/охладитель 14, управление работой которого осуществляется с компьютера 9 через интерфейсный блок 16. Контроль температуры в проточной термокамере 12 осуществляется датчиком температуры 15.
После завершения цикла измерения происходит спуск или подъем погружаемого измерительного модуля 11 с помощью лебедки 2 и повторение цикла измерения на следующей заданной глубине.
Заявляемое техническое решение, в отличие от прототипа, позволяет:
- выполнять измерения в естественной среде на разных глубинах в реальном времени без предварительного сбора образцов;
- измерять спектры флуоресценции воды не только при температуре окружающей среды, но и при любых заданных температурах, значения которых могут быть как выше, так и ниже температуры окружающей среды;
- строить и сохранять температурные зависимости оптических спектров флуоресценции воды в широком диапазоне температур и глубин;
- использовать температурные спектры флуоресценции для оперативного/быстрого определения видового состава микроводорослей без необходимости взятия и извлечения проб воды на поверхность для их последующего исследования;
- существенно сократить время, необходимое для определения видового состава микроводорослей, измеряя спектры флуоресценции в широком диапазоне температур.

Claims (1)

  1. Оптоволоконный флуориметр, включающий надводную и погружаемую части, соединенные между собой оптоволоконным кабель-тросом, намотанным на барабан лебедки с электромеханическим приводом, при этом надводная часть включает источник и приемник оптического излучения и персональный компьютер, барабан лебедки содержит вращающиеся оптические и электрические соединители, погружаемая часть выполнена в виде погружаемого измерительного модуля, содержащего датчики параметров воды и устройство для прокачивания воды, отличающийся тем, что погружаемый измерительный модуль содержит проточную термокамеру со встроенными датчиком температуры и оптоволоконным датчиком флуоресценции, дополнительно снабженную элементами для нагрева и охлаждения воды.
RU2019135358A 2019-11-05 2019-11-05 Оптоволоконный флуориметр с погружаемой термокамерой RU2739968C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019135358A RU2739968C1 (ru) 2019-11-05 2019-11-05 Оптоволоконный флуориметр с погружаемой термокамерой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019135358A RU2739968C1 (ru) 2019-11-05 2019-11-05 Оптоволоконный флуориметр с погружаемой термокамерой

Publications (1)

Publication Number Publication Date
RU2739968C1 true RU2739968C1 (ru) 2020-12-30

Family

ID=74106486

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019135358A RU2739968C1 (ru) 2019-11-05 2019-11-05 Оптоволоконный флуориметр с погружаемой термокамерой

Country Status (1)

Country Link
RU (1) RU2739968C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1147289A1 (ru) * 1982-06-28 1985-03-30 Belyaev Aleksandr A Способ определени жароустойчивости растений
RU2263897C2 (ru) * 2003-11-12 2005-11-10 Кочемировский Владимир Алексеевич Лазерно-флуоресцентный анализатор
RU53016U1 (ru) * 2005-11-01 2006-04-27 Тихоокеанский океанологический институт имени В.И. Ильичева Дальневосточного отделения Российской Академии наук (ТОИ ДВО РАН) Судовой лазерный проточный флуориметр
RU57009U1 (ru) * 2006-04-03 2006-09-27 Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Судовой лазерный спектрометр
RU96662U1 (ru) * 2010-03-17 2010-08-10 Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (статус государственного учреждения) (ИАПУ ДВО РАН) Бортовой измерительный комплекс параметров воды
RU108844U1 (ru) * 2011-04-05 2011-09-27 Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН) Лазерный флуориметр
RU124393U1 (ru) * 2012-05-25 2013-01-20 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Оптоволоконный флуориметр с погружаемым измерительным модулем
RU2619640C1 (ru) * 2016-05-05 2017-05-17 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Способ идентификации микроводорослей

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1147289A1 (ru) * 1982-06-28 1985-03-30 Belyaev Aleksandr A Способ определени жароустойчивости растений
RU2263897C2 (ru) * 2003-11-12 2005-11-10 Кочемировский Владимир Алексеевич Лазерно-флуоресцентный анализатор
RU53016U1 (ru) * 2005-11-01 2006-04-27 Тихоокеанский океанологический институт имени В.И. Ильичева Дальневосточного отделения Российской Академии наук (ТОИ ДВО РАН) Судовой лазерный проточный флуориметр
RU57009U1 (ru) * 2006-04-03 2006-09-27 Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Судовой лазерный спектрометр
RU96662U1 (ru) * 2010-03-17 2010-08-10 Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (статус государственного учреждения) (ИАПУ ДВО РАН) Бортовой измерительный комплекс параметров воды
RU108844U1 (ru) * 2011-04-05 2011-09-27 Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН) Лазерный флуориметр
RU124393U1 (ru) * 2012-05-25 2013-01-20 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Оптоволоконный флуориметр с погружаемым измерительным модулем
RU2619640C1 (ru) * 2016-05-05 2017-05-17 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Способ идентификации микроводорослей

Similar Documents

Publication Publication Date Title
US20230227759A1 (en) Field-deployable Multiplexed Sampling and Monitoring Device and Bacterial Contamination Measurement Method
EP2389447B1 (en) Chlorophyll and turbidity sensor system
CN105954192B (zh) 一种基于光谱测量技术的双光路水体环境在线测量装置
CN104730054A (zh) 一种一体化探头式光电水质多参数在线测量系统
CN106124452B (zh) 一种深海原位气体检测仪
US20070103681A1 (en) Optical device for measuring optical properties of a sample and method relating thereto
US20150000384A1 (en) Optical analysis of emissions from stimulated liquids
US20090189074A1 (en) Detection of heavy oil using fluorescence polarization
Chipman et al. Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems
CN102519916A (zh) 一种在线检测农药浓度的方法和装置
CN101566573B (zh) 沉积物-海水界面溶解氧的两维分布探测装置
RU2739968C1 (ru) Оптоволоконный флуориметр с погружаемой термокамерой
RU124393U1 (ru) Оптоволоконный флуориметр с погружаемым измерительным модулем
CN104849250A (zh) 便携式智能植物生理状态检测系统及方法
CN110132922A (zh) 一种叶绿素浓度的快速在线检测方法
RU2719637C1 (ru) Способ подводного спектрального анализа морской воды и донных пород
CN108181273A (zh) 一种船载式多功能双探头藻类荧光参数在线检测装置
CN111175260B (zh) 基于紫外三维荧光的海洋toc传感器与使用方法
CN101539520A (zh) 坐基式珊瑚礁初级生产力荧光检测系统
CN106645032A (zh) 一种荧光法多参数水质电极
CN112505008A (zh) 一种海洋营养盐多组分监测系统及其工作方法
CN205404410U (zh) 一种双光路法海岸带水体叶绿素原位监测装置
CN204613107U (zh) 便携式智能植物生理状态检测系统
EP4435408A1 (en) An automated optical spectroscopy device for water analysis
RU75042U1 (ru) Бортовой измерительный комплекс параметров воды