RU2820201C1 - Способ культивирования Cyanobacterium sp. для получения полисахаридов - Google Patents

Способ культивирования Cyanobacterium sp. для получения полисахаридов Download PDF

Info

Publication number
RU2820201C1
RU2820201C1 RU2023118566A RU2023118566A RU2820201C1 RU 2820201 C1 RU2820201 C1 RU 2820201C1 RU 2023118566 A RU2023118566 A RU 2023118566A RU 2023118566 A RU2023118566 A RU 2023118566A RU 2820201 C1 RU2820201 C1 RU 2820201C1
Authority
RU
Russia
Prior art keywords
agar
polysaccharides
cyanobacterium
carried out
cultivation
Prior art date
Application number
RU2023118566A
Other languages
English (en)
Inventor
Ольга Олеговна Бабич
Станислав Алексеевич Сухих
Вячеслав Федорович Долганюк
Екатерина Андреевна Буденкова
Вероника Дмитриевна Анохова
Егор Владимирович Каширских
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта)
Application granted granted Critical
Publication of RU2820201C1 publication Critical patent/RU2820201C1/ru

Links

Abstract

Изобретение относится к биотехнологии. Предложен способ получения смеси природных полисахаридов, заключающийся в том, что получение ведут в два этапа, на первом этапе накапливают биомассу Cyanobacterium sp. путем ее культивирования на питательной среде ВВМ следующего состава (г/л): MgSO4×7H2O - 0,075; KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; СаС2(×2H2O) - 0,025; NaNO3 - 0,75; агар-агар - 17; дистиллированная вода – остальное; в стерильных условиях в режиме свет/темнота 12/12 ч, белый свет с интенсивностью 5000 lx в термостатируемом шейкере со скоростью ротора 100 об/мин в течение 21 сут; на втором этапе меняют питательную среду на безнитратную и бессульфатную следующего состава (г/л): KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; агар-агар - 17; дистиллированная вода - остальное; и культивирование ведут при рН=6,0 со скоростью вращения ротора 100 об/мин в течение 21 сут. Изобретение обеспечивает расширение арсенала способов получения комплекса биологически активных соединений - смеси природных полисахаридов. 2 з.п. ф-лы, 3 пр.

Description

Изобретение относится к биотехнологии водорослей и может быть использовано для получения смеси природных полисахаридов.
Мезофильная цианобактерия Cyanobacterium sp., также называемые Cyanophyta, представляют собой тип грамотрицательных бактерий, которые получают энергию посредством фотосинтеза [Kultschar and Llewellyn, 2018]. Цианобактерии используют фотосинтетические пигменты, такие как каротиноиды, фикобилины и различные формы хлорофилла, которые поглощают энергию света. В отличие от гетеротрофных прокариот, цианобактерии имеют внутреннюю мембрану. Фототрофные прокариоты, цианобактерии дифференцированы в специализированные органеллы, такие как хлоропласта, хромопласты, этиопласты и лейкопласты, известные под общим названием пластиды.
Цианобактерии продуцируют внеклеточные полисахариды, содержащие сульфатные группы. У цианобактерий синтез полисахаридов осуществляется в цитоплазме [Kehr and Dittmann, 2015, Costa et al., 2021]. Основные стадии синтеза полисахаридов в микроводорослях: образование активированных Сахаров (прекурсоров); их сборка с помощью гликозилтрансфераз и экспорт полимеров во внеклеточное пространство или встраивание в мембрану клетки [Dantas et al., 2019, Tiwari et al., 2020].
Природные полисахариды являются эффективными иммуностимуляторами растений, животных и человека, проявляют антилипемический эффект, оказывают радиопротекторное, противоопухолевое, противовирусное и антибактериальное действие, используются как криопротекторы. Чаще всего полисахариды микроводорослей и цианобактерий представлены гетерополисахаридами, которые состоят из шести или более различных моносахаров [Pereira et al., 2009]. В составе полисахаридов цианобактерий обнаружены такие сахара, как глюкоза, галактоза, манноза, рибоза, арабиноза, ксилоза, фукоза и рамноза. Известно, что цианобактерии являются одним из наиболее богатых и легко возобновляемых источников широко известных, интересных по структуре и биологической активности водорастворимых полисахаридов.
В связи с этим перспективным сырьем для получения полисахаридов являются цианобактерии, встречающиеся в естественных водоемах и открытом море. Это затрудняет получение сырья с заданными свойствами, т.е. известным высоким содержанием полисахаридов. Известны патенты, в которых выход полисахаридов из микроводорослей при известных способах выделения, как правило, не превышает 5-11% [патент РФ №2645965, МПК С08В 37/18, опубл. 28.02.2018], а из макроводорослей, в том числе из фукуса - 3,9% от сухой массы водоросли [патент РФ №2240816, МПК, A61K 35/80 A61K 31/715, опубл. 27.11.2004; патент РФ №2135518, МПК С08В 37/00, С08В 37/18, С07Н 1/08, опубл. 27.08.1999; патент РФ №2028153, МПК A61K 35/80, опубл. 1995; патент РФ 1642725, МПК С08В 37/18, опубл. 15.11.1983].
Кроме того, использование культивируемых микроводорослей для производства полисахаридов ограничивается тем, что в основном предприятия, занимающиеся культивированием микрововодрослей, ориентированы на производство пищевого продукта и отчуждение части урожая для производства полисахарида им экономически невыгодно.
Наиболее близким к представляемому способу является способ получения полисахарида ламинарана из микроводоросли Streblonema sp. [патент РФ. №2645965 С1, МПК, С08В 37/18, опубл. 28.02.2018].
В данном изобретении проблема решается за счет того, что обогащение микроводоросли Streblonema sp.полисахаридом ламинараном ведут в два этапа, на первом этапе накапливают биомассу микроводоросли Streblonema sp. путем ее культивирования на питательной среде не менее 10 суток, температуре 8-18°С и освещенности - от 35 до 100 мкЕ/м2 с еженедельной заменой питательной среды, на втором этапе непосредственно накапливают ламинаран в микроводоросли Streblonema sp., для чего в накопленной биомассе микроводоросли Streblonema sp.меняют состав питательной среды на безнитратную, и затем на ней в течение не менее 7 суток культивируют микроводоросль Streblonema sp., при температуре 8-18°С и освещенности - от 35 до 100 мкЕ/м2. Содержание ламинарана в микроводоросли при реализации данного способа составляет, % от сух. масс. 21.9±3.0.
Техническая проблема, стоящая перед представляемым изобретением: найти новый источник получения полисахаридов и разработать технологический процесс, позволяющий выделить высокое содержание полисахаридов.
Техническая проблема решается тем, что в качестве сырья для получения комплекса биологически активных соединений (смеси природных полисахаридов) предложено использовать Cyanobacterium sp., представляющую собой тип грамотрицательных бактерий, способную получать энергию посредством фотосинтеза.
Заявителем впервые обнаружено, что в качестве альтернативного источника для получения растворимых полисахаридов может быть использована цианобактерия Cyanobacterium sp.
Установлено, что она обладает высокой скоростью роста, а благодаря своим микроскопическим размерам она может культивироваться в контролируемых условиях, что позволяет получать биомассу с воспроизводимым химическим составом, что в конечном результате позволит снизить себестоимость конечного продукта.
Заявленная техническая проблема решается также тем, что обогащение Cyanobacterium sp. полисахаридами ведут в два этапа, на первом этапе накапливают биомассу Cyanobacterium sp. путем ее культивирования на питательной среде ВВМ в стерильных условиях, в режиме свет/темнота 12/12 ч, белый свет с интенсивностью 5000 lx. Культивирование проводят в термостатируемом шейкере (или аналогичном оборудовании) со скоростью ротора 100 об/мин. Продолжительность культивирования составляет 21 сутки.
В качестве питательной среды используют питательную среду ВВМ, следующего состава (г/л): MgSO4×7H2O - 0,075; KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; NaNO3 - 0,75; агар-агар - 17; дистиллированная вода остальное.
Накопление полисахаридов в биомассе Cyanobacterium sp. (второй этап) обеспечивается культивированием на питательной среде без добавления NaNO3 и Mg2SO4.
В качестве безнитратной и бессульфатной питательной среды используют питательную среду, следующего состава (г/л): KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; агар-агар - 17; дистиллированная вода остальное.
Использование безнитратной и бессульфатной среды приводит к повышению содержания полисахаридов.
Культивирование на безнитратной и бессульфатной питательной среде при рН=6,0 при скорости вращения ротора 100 об/мин ведут 21 сутки. Заявителем установлено, что именно, начиная с 14 суток культивирования, наблюдается значительное повышение содержания полисахаридов в Cyanobacterium sp.
Смесь полисахаридов, состоящая из уроновых кислот и нейтральных Сахаров, может выделяться методом экстракции. Экстракцию полисахаридов из культуральной жидкости Cyanobacterium sp.ведут изопропиловым спиртом при модуле экстракции 1:3 и температуре 5°С. При данных параметрах экстракции наблюдается наибольший выход полисахаридов 4030,77 мг/г.
Пример 1
На первом этапе накапливают биомассу Cyanobacterium sp.путем ее культивирования на питательной среде ВВМ в стерильных условиях, в режиме свет/темнота 12/12 ч, белый свет с интенсивностью 5000 lx. Культивирование проводят в термостатируемом шейкере со скоростью ротора 100 об/мин. Продолжительность культивирования составляет 21 сутки.
В качестве питательной среды используют питательную среду ВВМ, следующего состава (г/л): MgSO4×7H2O - 0,075; KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCL2(×2H2O) - 0,025; NaNO3 - 0,75; агаро-агар - 17; дистиллированная вода остальное.
Накопление полисахаридов в биомассе Cyanobacterium sp. (второй этап) обеспечивается культивированием на питательной среде без добавления NaNO3 и Mg2SO4.
В качестве безнитратной и бессульфатной питательной среды используют питательную среду, следующего состава (г/л): KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; агар-агар - 17; дистиллированная вода остальное.
Культивирование на безнитратной и бессульфатной питательной среде при рН=6,0 при скорости вращения ротора 100 об/мин ведут 21 сутки.
Смесь полисахаридов, состоящая из уроновых кислот и нейтральных Сахаров, выделяют методом экстракции. Экстракцию полисахаридов из культуральной жидкости Cyanobacterium sp. ведут изопропиловым спиртом при модуле экстракции 1:3 и температуре 5°С. При данных параметрах экстракции наблюдается наибольший выход полисахаридов 4030,77 мг/г. в 10 раз больше чем в других примерах.
Пример 2
На первом этапе накапливают биомассу Cyanobacterium sp. путем ее культивирования на питательной среде ВВМ в стерильных условиях, в режиме свет/темнота 12/12 ч, белый свет с интенсивностью 5000 lx. Культивирование проводят в термостатируемом шейкере со скоростью ротора 100 об/мин. Продолжительность культивирования составляла 7 суток.
В качестве питательной среды используют питательную среду ВВМ, следующего состава (г/л): MgSO4×7H2O - 0,075; KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; NaNO3 - 0,75; агар-агар - 17; дистиллированная вода остальное.
Накопление полисахаридов в биомассе Cyanobacterium sp.(второй этап) обеспечивается культивированием на питательной среде без добавления NaNO3 и Mg2SO4 следующего состава (г/л): KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; агар-агар - 17; дистиллированная вода остальное.
Культивирование на безнитратной и бессульфатной питательной среде при рН=6,0 при скорости вращения ротора 100 об/мин ведут 7 суток,
Смесь полисахаридов, состоящая из уроновых кислот и нейтральных сахаров выделяют методом экстракции изопропиловым спиртом при модуле экстракции 1:1 и температуре 25°С. При данных параметрах экстракции наблюдается наибольший выход полисахаридов 423,08 мг/г.
Пример 3
На первом этапе накапливают биомассу Cyanobacterium sp. путем ее культивирования на питательной среде ВВМ в стерильных условиях, в режиме свет/темнота 12/12 ч, белый свет с интенсивностью 5000 lx. Культивирование проводят в термостатируемом шейкере со скоростью ротора 100 об/мин. Продолжительность культивирования составляла 28 суток.
В качестве питательной среды используют питательную среду ВВМ, следующего состава (г/л): MgSO4×7H2O - 0,075; KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; NaNO3 - 0,75; агар-агар - 17; дистиллированная вода остальное.
Накопление полисахаридов в биомассе Cyanobacterium sp.(второй этап) обеспечивается культивированием на питательной среде без добавления NaNO3 и Mg2SO4 следующего состава (г/л): KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3Н2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; агар-агар - 17; дистиллированная вода остальное.
Культивирование на безнитратной и бессульфатной питательной среде при рН=8,0 при скорости вращения ротора 100 об/мин ведут 28 суток.
Смесь полисахаридов, состоящую из уроновых кислот и нейтральных Сахаров выделяют методом экстракции изопропиловым спиртом при модуле экстракции 1:1 и температуре 25°С. При данных параметрах экстракции наблюдается наибольший выход полисахаридов 539,12 мг/г.
Как видно из представленных примеров, Cyanobacterium sp. может стать альтернативным источником получения комплекса биологически активных соединений - природных полисахаридов. Разработанный заявителем способ не только позволяет наработать необходимое количество биомассы Cyanobacterium sp., но и значительно повысить в ней содержание целевого продукта полисахаридов.

Claims (3)

1. Способ получения смеси природных полисахаридов, заключающийся в том, что получение ведут в два этапа, на первом этапе накапливают биомассу Cyanobacterium sp. путем ее культивирования на питательной среде ВВМ следующего состава (г/л): MgSO4×7H2O - 0,075; KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; СаС2(×2H2O) - 0,025; NaNO3 - 0,75; агар-агар - 17; дистиллированная вода – остальное; в стерильных условиях в режиме свет/темнота 12/12 ч, белый свет с интенсивностью 5000 lx в термостатируемом шейкере со скоростью ротора 100 об/мин в течение 21 сут; на втором этапе меняют питательную среду на безнитратную и бессульфатную следующего состава (г/л): KH2PO4 - 0,175; KCl - 0,025; K2HPO4(×3H2O) - 0,075; Fe+EDTA - 1,00 мл; CaCl2(×2H2O) - 0,025; агар-агар - 17; дистиллированная вода - остальное; и культивирование ведут при рН=6,0 со скоростью вращения ротора 100 об/мин в течение 21 сут.
2. Способ по п. 2, отличающийся тем, что культивирование Cyanobacterium sp. для накопления биомассы и ее обогащения смесью природных полисахаридов ведут при температуре 26°С.
3. Способ по п. 2, отличающийся тем, что смесь полисахаридов из культуральной жидкости Cyanobacterium sp. выделяют экстракцией, проводят изопропиловым спиртом при модуле экстракции 1:3 и температуре 5°С.
RU2023118566A 2023-07-12 Способ культивирования Cyanobacterium sp. для получения полисахаридов RU2820201C1 (ru)

Publications (1)

Publication Number Publication Date
RU2820201C1 true RU2820201C1 (ru) 2024-05-30

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA19138U (en) * 2006-03-09 2006-12-15 Nat Univ Food Technologies Process for preparation of polysaccharide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA19138U (en) * 2006-03-09 2006-12-15 Nat Univ Food Technologies Process for preparation of polysaccharide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ДАНЦЮК Н.В. и др. "Рабочая коллекция живых культур каротиногенных микроводорослей института Биологии южных морей имени А.О. Ковалевского"; Морской биологический журнал, 2021, т.6, N 4, с.3-18. *
СИНЕТОВА М.А. и др. "Характеристика биотехнологического потенциала штаммов цианобактерий и микроводорослей IPPAS"; Биотехнология, 2019, т.35, N 3, с.22. *

Similar Documents

Publication Publication Date Title
CA2825856C (en) Process for production of microalgae, cyanobacteria and metabolites thereof
Vergnes et al. Bicarbonate concentration induces production of exopolysaccharides by Arthrospira platensis that mediate bioflocculation and enhance flotation harvesting efficiency
US9447442B2 (en) Production of biofuel from tissue culture sources
RU2464307C1 (ru) Штамм бактерии cluconacetobacter hansenii gh-1/2008 - продуцент бактериальной целлюлозы
Aoyagi Application of plant protoplasts for the production of useful metabolites
Ghosh et al. Effect of macronutrient supplements on growth and biochemical compositions in photoautotrophic cultivation of isolated Asterarcys sp.(BTA9034)
Li et al. Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans
Han et al. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161
Bajwa et al. Osmotic stress induced by salinity for lipid overproduction in batch culture of Chlorella pyrenoidosa and effect on others physiological as well as physicochemical attributes
Ekelhof et al. Enhanced extracellular polysaccharide production and growth by microalga Netrium digitus in a porous substrate bioreactor
Bayu et al. Biological and technical aspects on valorization of red microalgae genera Porphyridium
KR20120110295A (ko) 조류 배양용 배지 조성물 및 조류 배양 방법
RU2820201C1 (ru) Способ культивирования Cyanobacterium sp. для получения полисахаридов
US20090148928A1 (en) Heterotrophic Shift
Sudibyo et al. Modification of growth medium of mixed-culture species of microalgae isolated from southern java coastal region
de Morais et al. Algal Bioreactors for Polysaccharides Production
Bhattacharjya et al. Depiction of growth specific changes in concentration of storage products in centric marine diatom Chaetoceros gracilis
KR20200027520A (ko) 2종 이상의 탄소 공급원을 사용하는 람노리피드의 향상된 생산
CN106488985B (zh) 固醇代谢的抑制剂使微藻内甘油三酯累积的应用及其方法
Mokrosnop Dynamics of chlorophyll and paramylon accumulation in Euglena gracilis cells at mixotrophic cultivation
Ozkan Screening diatom strains belonging to Cyclotella genus for chitin nanofiber production under photobioreactor conditions: Chitin productivity and characterization of physicochemical properties
RU2645965C1 (ru) Микроводоросль Streblonema sp. в качестве сырья для получения ламинарана и способ повышения его содержания в микроводоросли Streblonema sp.
Navvabi et al. Exopolysaccharides from Marine Microalgae
Vasileva et al. Biotechnological perspectives of the red microalga Porphyridium cruentum
Deprá et al. Bioactive polysaccharides from microalgae: A close look at the biomedical applications