RU2813053C1 - Способ производства коррозионно-стойкой стали - Google Patents

Способ производства коррозионно-стойкой стали Download PDF

Info

Publication number
RU2813053C1
RU2813053C1 RU2023115978A RU2023115978A RU2813053C1 RU 2813053 C1 RU2813053 C1 RU 2813053C1 RU 2023115978 A RU2023115978 A RU 2023115978A RU 2023115978 A RU2023115978 A RU 2023115978A RU 2813053 C1 RU2813053 C1 RU 2813053C1
Authority
RU
Russia
Prior art keywords
steel
rare earth
corrosion
production
slag
Prior art date
Application number
RU2023115978A
Other languages
English (en)
Inventor
Татьяна Николаевна Иванова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет"
Application granted granted Critical
Publication of RU2813053C1 publication Critical patent/RU2813053C1/ru

Links

Abstract

Изобретение относится к металлургии, в частности к производству в дуговых сталеплавильных печах коррозионно-стойкой стали для производства труб и деталей нефтегазового оборудования, работающих под нагрузкой растягивающих напряжений в агрессивных средах с повышенной концентрацией хлоридов. Способ включает рафинирование стали в процессе выпуска и доводки на установке печь-ковш, а также порционное введение с электромагнитным перемешиванием в восстановительный период предварительно разогретых добавок РЗМ V - VIII групп d-переходных металлов Ni, V, W, Re. После термообработки стали при наличии остаточных напряжений 200-210 МПа работоспособность до разрушения составила 1200 часов, при снижении нагрузки до 100-120 МПа время до разрушения увеличилось на 30-40%. Использование в составе стали d-переходных тугоплавких РЗМ Ni, V, W, Re позволит увеличить время до коррозионного растрескивания на 80-90%. Полученную сталь используют в ядерной, атомной, нефтяной, химической промышленностях. 1 з.п. ф-лы, 1 табл., 1 пр.

Description

Изобретение относится к области металлургии, в частности к производству в дуговых сталеплавильных печах коррозионностойкой стали с добавками d-переходных редкоземельных металлов РЗМ V - VIII групп Ni, V, W, Re, предназначенной для производства труб и деталей нефтегазового оборудования, работающих под нагрузкой растягивающих напряжений в агрессивных средах, содержащих хлоридные (галоидные), роданидные, хлорорганические, сульфидные и щелочные соединения.
Имеется авторское свидетельство (изобретение 1678851 А1 23.09.1991 бюл. № 35, патентообладатель Днепропетровский металлургический институт), способ получения коррозионностойкой стали. В качестве раскислителей используют Al (2,3 кг/т), РЗМ (0,6 - 1,0 кг/т) и на дно ковша Ti (в 3 - 4 раза, превышающего его массу), присаживают в печь за 8 - 12, 4 - 7, 2 - 3 мин до выпуска плавки соответственно. Все РЗМ, обладают большой раскислительной способностью, освобождают хром, марганец и частично железо от кислорода и серы, переводя их в раствор. В данном изобретении конкретно не указано какие из известных 17 элементов РЗМ применяются. В остальном все результаты воспроизводимы. Тем не менее, предложенные составы стали использовали все возможности конкурентоспособного развития за счет повышения своих технологических и эксплуатационных свойств, экономических показателей, модификаций термообработки.
Известен способ производства трубной стали (патент 2555304 С1 10.07.2015 Бюл. № 19 Патентообладатель Публичное акционерное общество "Северский трубный завод"). Способ включает модифицирование металла кальцием после перегрева металла, содержащего не более 0,003 % серы и не более 0,01 % алюминия, над температурой ликвидус не менее 120°С, и длительной, не менее 20 минут, продувки металла аргоном в условиях вакуума. Разливку осуществляют в условиях электромагнитного перемешивания металла в кристаллизаторе при значениях тока 120-200 А и частотой 2,0-4,0 Гц, в зависимости от диаметра непрерывнолитой заготовки. Использование способа обеспечивает заданную чистоту металла по коррозионноактивным неметаллическим включениям, а также повышение стойкости труб при эксплуатации в агрессивных средах. Введение в технологическую схему производства коррозионностойких марок стали в качестве обязательного элемента обработку металла в условиях глубокого вакуума преследует цель изменения морфологии и измельчения включений алюминатов и глинозема в шпинелиды в присутствии растворенного в металле магния. Вакуумная обработка металла в ковшах с периклазоуглеродистой рабочей футеровкой, покрытой шлаковым гарнисажем, решает задачу исключения высоких концентраций магния в металле. Способ не всегда применим для малых партий выпуска сталей и не решает задачу повышения коррозионностойкой стойкости при работе в агрессивных средах под нагрузкой.
Существует способ производства (патент 2515403 С1, 10.05.2014 Бюл. № 13, патентообладатель ООО "Группа "Магнезит"). Способ включает подачу в печь металлолома, чугуна, железо-магниевого концентрата, шлакообразующего материала, углеродсодержащего материала, плавление шихты, формирование покровного шлака и выпуск стали в сталеразливочный ковш, при этом железо-магниевый концентрат вводят в виде брикетов размером 20-80 мм поверх металлического лома, причем 1-75% железо-магниевого концентрата вводят в завалку металлошихты на металлолом до начала периода плавления, а оставшиеся 25-99% железо-магниевого концентрата вводят не ранее 0,1 и не позднее 0,9 общей длительности периода плавления, причем железо-магниевый концентрат вводят в количестве, обеспечивающем достижение соотношения между содержанием оксида магния в шлаке и футеровке печи в пределах 0,05-0,16, при этом основность шлака обеспечивают на уровне 1,7-4,5 единиц, а в период формирования покровного шлака производят вдувание в шлак углеродсодержащего материала в количестве 0,1- 100 кг/т шлака для вспенивания шлака и восстановления железа из его оксидов. Изобретение позволяет увеличить усвоение железосодержащего материала и стойкость огнеупорной футеровке ДСП. Предлагаемый способ производства стали воспроизводим на любом стандартном оборудовании. Недостатки способа заключаются в том, что предложенные технологические решения не обеспечивают получения шлака, позволяющего в полной мере удалить образовавшиеся в результате внепечной обработки неметаллические включения и получить сталь повышенной чистоты.
Наиболее близким по технической сущности к предлагаемому изобретению является способ производства стали (патент 2533071 С1, 20.11.2014 Бюл. № 32, патентообладатель ОАО "Северсталь") (прототип). В способе осуществляют выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, рафинирование стали в процессе выпуска и доводки на установке печь-ковш. Во время выпуска в ковш присаживают флюс в количестве 4-10 кг/т стали, содержащий 40-85% Al2O3 и 2,0-12,0% СаО, алюминий в количестве 1,0-1,9 кг/т стали, известь в количестве 5-12 кг/т стали, кремний и марганецсодержащие ферросплавы в количестве 5-10 кг/т стали, во время доводки на установке печь-ковш на шлак присаживают алюминиевую сечку в количестве 0,3-2,0 кг/т стали, а в металл вводят кальцийсодержащие материалы из расчета 0,05-0,2 кг кальция на тонну стали. Во время выпуска отношение СаО/Al2O3 в шлаке должно составлять менее 3,5, а во время доводки на установке печь-ковш в металл вводят карбид кремния в количестве не более 1,2 кг/т стали. Способ позволяет повысить чистоту стали по коррозионноактивным неметаллическим включениям для исключения образования и развития локальной коррозии и увеличения эксплуатационной стойкости труб. Данный способ применяется для получения стальных труб массового производства, эксплуатирующихся в не жестких производственных условиях и не требующих самой высокой стойкости к агрессивной коррозии и высоких физико-механических свойств.
Технический результат изобретения состоит в создании способа производства коррозионностойкой стали с добавками d-переходных редкоземельных металлов РЗМ V - VIII групп Ni, V, W, Re, обеспечивающего равномерное распределение легирующих элементов по всему сечению и объему, снижение содержания неметаллических включений в стали, получении состава коррозионностойкой стали, предназначенной для производства труб и деталей нефтегазового оборудования, работающих под нагрузкой растягивающих напряжений в агрессивных средах, содержащих хлоридные (галоидные), роданидные, хлорорганические, сульфидные и щелочные соединения.
Указанный технический результат в способе производства коррозионностойкой стали, включающий выплавку стали в сталеплавильном агрегате, выпуск расплава стали в ковш, рафинирование стали в процессе выпуска и доводки на установке печь-ковш, достигается тем, что металлический лом, прокатную обрезь, ферросплавы, кремний- и марганецсодержащие материалы нагревают до температуры 1500°С для расплавления и испарения свинца, магнезии, с последующим повышением температуры до 2873°С для получения чистой по примесям стали, доводку стали осуществляют на установке ковш-печь с электромагнитным перемешиванием, при этом введение легирующих металлов осуществляют в следующем порядке: в восстановительный период порционно вводят предварительно разогретые добавки РЗМ V - VIII групп d-переходных металлов Ni, V, W и доводят дуговой нагрев до 1520 - 1670°С, в любое время плавки вводят РЗМ в виде Ni, Co, Cu, Mo и осуществляют продувку аргоном до 5 минут для повышения жидкоподвижности шлака и удаления пористости, вводят Mn, Cr, W, V, Nb, Ti, Si, Al, осуществляют контроль химического состава стали и продувку стали Са для жидкоподвижности шлака и удаления коррозионно-активных неметаллических включений (КАНВ), а в конце плавления после легирования упомянутыми металлами вводят разогретый до 1273°С Re, затем осуществляют выпуск плавки с электромагнитным перемешиванием для улучшения качества непрерывного литья и выравнивания химического состава по всему сечению и объему выплавляемого слитка. При выплавке стали по данному способу получают коррозионностойкую сталь содержащую, мас. %: углерод 0,02, марганец ≤ 2, кремний ≤ 1, хром 11 - 20, никель 12 - 18, молибден < 6,0, азот 0,01 - 0,05, медь менее 0,5 и не более 2,0, бор < 0,6, рений не менее 0,1 и не более 4,5, вольфрам < 4,0, фосфор ≤ 0,01, алюминий ≤ 0,01, титан ≤ 0,002, сера ≤ 0,01, ванадий ≤ 0,07, железо и неизбежные примеси остальное
Сущность предложенного способа заключается в следующем. Для промышленного производства стали с порционным введением d-переходных металлов Ni, V, W, Re предлагается использовать электродуговую печь ЭДП с электродами из графита с разогревом лома металла повышенной чистоты по примесям, чистой прокатной обрези, ферросплава, кремния и марганецсодержащих материалов, с нагревом до температуры 1500°С, чтобы расплавились и испарились свинец или магнезия и повышением до температуры 2873°С для получения чистой промышленной стали. Шлак и примеси (алюминий, грязь), которые не испаряются, всплывают наверх и удаляются наклоном печи или вытряхиванием. Качество стали оценивается химическим составом шлака. При удовлетворительном составе оставшейся стали в агрегате ковш-печь АКП с электромагнитным перемешиванием в восстановительный период порционно вводят предварительно разогретые добавки РЗМ V - VIII групп d-переходных металлов Ni, V, W, Re и доводят дуговой нагрев до 1520 - 1670°С и затем через выпускное отверстие выпускают состав наружу с электромагнитным перемешиванием, которое необходимо для выравнивания химического состава по объему и по всему сечению, и улучшения качества непрерывного литья. Порядок введения элементов РЗМ: Ni, Co, Cu, Mo, «мягкая» продувка состава с минимальным расходом аргона до 5 минут для повышения жидкотекучести и удаления пористости, Mn, Cr, W, V, Nb, Ti, Si, Al, контроль, «мягкая» продувка состава Са для жидкоподвижности и удаления коррозионно-активных неметаллических включений КАНВ, введение разогретого до 1273° Re (из молибденовой руды, медного, молибденового сульфидного сырья, свинцового шлама). Ni, Co, Cu, Mo из-за отсутствия окисления можно вводить в сталь в любое время плавки. Сродство Mn, Cr, W, V, Nb, Ti, Si, Al к кислороду нуждается в более позднем введении в сталь. Если выплавку продолжать в ЭДП, то легирующие добавки вводят: Cr, Mn, W, V, Al, Ti (без подачи кислорода) - после слива окислительного шлака в начале восстановительного периода, Ni - в завалку, Mo - в начале окислительного периода, Re - в конце плавления после легирования всеми элементами, перед разливкой стали. Весь процесс в ЭДП с разогревом 8 млн т. лома мощностью 115 МВт и получением 100 т. пригодной стали составил 40 минут.
Содержание рения и всех остальных известных легирующих элементов определяли на оптико-эмиссионном спектрометре EXPECT-6500 с индуктивно связанной плазмой ICP-OES 3-го поколения (Focused Photonics Inc., Корея), в котором используется технология двойного наблюдения и измерения элементов с относительно небольшими различиями в содержании в сложной матрице. Результаты измерений легирующих элементов показали, что состав стали при плавках в ЭДП идентичен заявленному. Масса потерь легирующих элементов от общих потерь в ЭДП не более 0,1 - 0,15 %. Отклонений химического состава и плотности по всему сечению и объему слитков не обнаружено, распределение легирующих элементов по длине, поперечному сечению, объему равномерное. Структура металла плотная, однородная. Дефекты в виде пор, раковин, трещин и неметаллических включений не обнаружены.
В ЭДП использование исходного материала сплава нержавеющей стали ультравысокой чистоты не примешивает к расплаву примесные элементы P, S, Sn, Pb и пр., но Si, Al, Ti, B, Zr могут примешиваться к расплаву из исходного материала для расплава. Поэтому для удаления элементов C, Si, Mn, Al, Ti, Zr и B необходимо ввести рафинирование. Выявленное влияние вредных примесей на эксплуатационные свойства стали представлены в таблице 1. Таким образом, применение шихтовых материалов повышенной чистоты, порционное введение d-переходных металлов Ni, V, W, Re с точным интервалом легирования позволяет сформировать мелкодисперсную структуру металла со стабильными свойствами. Выход годного 97 - 98%.
Экспериментально установлено, что элементы d-переходных тугоплавких РЗМ снижают содержание кислорода и серы, повышают содержание азота, но со снижением его активности, что обеспечивает более глубокую раскисленность стали и повышенную хладностойкость. При химическом взаимодействии d-переходных металлов Ni, V, W, Re с карбидом кремния вероятность образования карбидов металлов уменьшается, из-за того, что с увеличением веса атомов со стабильными конфигурациями d5 и долей нелокализованных электронов, необходимых для стабилизации sp3 - конфигурации атомов углерода в карбидах снижается. Распределение Re в растворе металла понижает скорость диффузионных процессов, повышает температуру солидуса и приводит к увеличению температурной прочности.
Определение условных пределов прочности (временное сопротивление) и текучести, деформации стали проводились на машине универсальной испытательной гидравлической горизонтальной РГМ-300-Г (Россия) на трубах диаметром 114 мм при непрерывно повышаемой нагрузке до 400 кН, со скоростью нагружения 25 Н/(мм2⋅с). Полученный образец подвергался термической обработке: температура закалки 1150 - 1200°С, охлаждающая среда - воздух. Можно утверждать, что легирование рением приводит к стабильному повышению значений условного предела текучести σ0,2 = 850…950 МПа, предела прочности σв = 1000 … 1100 МПа в интервале температур от 20 до 1200°С, деформация до разрушения увеличилась до 62%.
Рений повышает одновременно прочность и пластичность молибдена и вольфрама, выдерживает многократные охлаждения и нагревы, высокие ударные нагрузки, вибрации, контакт с агрессивными веществами при температуре 1000°С. Анализ результатов показывает, что условный предел текучести, предел прочности у сталей предлагаемого состава выше на 35 - 45 % по сравнению с существующими сталями, содержащими основные компоненты никель, хром, вольфрам, ванадий, молибден. Выявлено, что жаропрочность и жаростойкость максимальны с возрастанием объемной доли тугоплавких V, W и Re в стали, увеличивающих ее плотность, одновременно с повышением температуры снижаются размеры зерен, межзерновых прослоек и зоны накопления вредных примесей между ними, образуется более однородная структура стали с чистыми границами зерен и прочными связями между зернами.
Испытания на стойкость стали с добавками d-переходных тугоплавких РЗМ Ni, V, W, Re против хлоридного коррозионного растрескивания при воздействии растягивающих напряжений на трубе диаметром 114 мм в 44%-ном растворе MgCl2 показали следующее: при напряжении от 600 до 700 МПа время до разрушения составило 1700 - 1500 часов. С ростом растягивающих напряжений стойкость к коррозионному растрескиванию снижается. Для термообработанной стали заявленного состава, работающей в агрессивной среде с повышенной концентрацией хлоридов и при наличии остаточных напряжений 200 - 210 МПа, работоспособность до разрушения 1200 часов, при снижении нагрузки до 100 - 120 МПа, время до разрушения увеличилось на 30 - 40%. Использование в составе стали d-переходных тугоплавких РЗМ Ni, V, W, Re позволит увеличить время до коррозионного растрескивания на 80 - 90 %.
Предложенный способ получения коррозионностойкой стали и состав стали может быть применен в ядерной, атомной, нефтяной, химической промышленностях.
Дополнительные материалы
Сущность предложенного способа заключается в следующем.
Для промышленного производства стали с порционным введением d-переходных металлов Ni, V, W, Re предлагается использовать электродуговую печь ЭДП с электродами из графита с разогревом металлического лома, прокатную обрезь, ферросплавы, кремний- и марганецсодержащие материалы нагревают до температуры 1500°С для расплавления и испарения свинца, магнезии, с последующим повышением температуры 2873°С для получения чистой по примесям стали. Шлак и примеси (алюминий, грязь), которые не испаряются, всплывают наверх и удаляются наклоном печи или вытряхиванием. Качество стали оценивается химическим составом шлака. Доводку стали осуществляют на установке ковш-печь с электромагнитным перемешиванием. При этом введение легирующих металлов осуществляют в следующем порядке: в восстановительный период порционно вводят предварительно разогретые добавки РЗМ V - VIII групп d-переходных металлов Ni, V, W и доводят дуговой нагрев до 1520 - 1670°С, в любое время плавки вводят РЗМ в виде Ni, Co, Cu, Mo и осуществляют продувку аргоном до 5 минут для повышения жидкоподвижности шлака и удаления пористости, вводят Mn, Cr, W, V, Nb, Ti, Si, Al, осуществляют контроль химического состава и продувку стали Са для жидкоподвижности шлака и удаления коррозионно-активных неметаллических включений КАНВ. Влияние легирующих элементов и примесей на эксплуатационные свойства стали предлагаемого состава отражено в таблице 1. В конце плавления после легирования упомянутыми металлами вводят разогретый до 1273° Re (из молибденовой руды, медного, молибденового сульфидного сырья, свинцового шлама). Затем осуществляют выпуск плавки с электромагнитным перемешиванием для улучшения качества непрерывного литья и выравнивания химического состава по всему сечению и объему выплавляемого слитка.
Таблица 1. Влияние легирующих элементов и примесей на эксплуатационные свойства стали предлагаемого состава
Элемент Включения Воздействие Содержание
S, О Оксидные, сульфидные неметаллические ↓ усталостной прочности, пластичности, коррозионной стойкости ↓ масс. %
S ≤ 0,02 - 0,03 мас. %
O ≤ 0,005-0,008
P Твердый раствор ↑ закаливаемость
↓ ударной вязкости, охрупчивание, хладноломкость
↓ масс. %
P ≤ 0,02 - 0,03 мас. %
P + Cu P < Cu - раскислитель, P > Cu - нерастворимое соединение ↑ сопротивление коррозии
↓ хладноломкость
Cu 0,8 - 3,5 мас. %
Ni + Сu ↓ образование трещин, чувствительность к перегреву
↑ коррозионную стойкость
Ni ≤ 0,05 - 30
мас. %
N Формирует перлит и цементит
Нитридное упрочнение
↓ пластичность, вязкость, сопротивление хрупкому разрушению
↑ прочностные свойства, коррозионная стойкость
min %
N ≤ 0,002-0,05
мас. %
N+C Выделение карбидов и нитридов по границам зерен ↓ охрупчивание
N + Al Трещины сляба ↑ дефекты Al ≤ 0,01
Ti Трещины сляба ↑ дефекты Ti ≤ 0,0015 мас. %
Н Растворяется в железе, образует растворы внедрения между атомами железа ↓ пластичность, коррозионную стойкость, сопротивление деформации
↑ хрупкое разрушение, дефекты
min %
Н ≤ 0,0001-0,0005 мас. %
W При W > 4 % образуется железовольфрамовый карбид Fe3W3C
Стойкие труднорастворимые карбиды
↑ прокаливаемость, прочность, вязкость
↑ теплостойкость
W < 4 %
W < 13 % при С < 1,2 %
V Образование карбида ванадия VC при V = 1,5 % ↑ теплостойкость V < 1,2 %
VC ↓ C, тем быстрее V растворяется в твердом растворе и не переходит в карбиды ↑ жаростойкость, термодинамическая устойчивость V ≤ 3 % при С < 1,2 %
Re Образование карбидов ReC с меньшим содержанием С, неустойчивые растворимые карбиды ReSi
Отсутствуют реакции с N, H
При ↑ Т и подводе тока полностью растворим
↑ жаропрочность, жаростойкость, химическая стойкость, термодинамическая устойчивость 0, 1 % < Re < 4,5 %
↑ - увеличение, ↓ - снижение

Claims (2)

1. Способ производства коррозионностойкой стали, включающий выплавку стали в сталеплавильном агрегате, выпуск расплава стали в ковш, рафинирование стали в процессе выпуска и доводки на установке печь-ковш, отличающийся тем, что металлический лом, прокатную обрезь, ферросплавы, кремний- и марганецсодержащие материалы нагревают до температуры 1500°С для расплавления и испарения свинца, магнезии, с последующим повышением температуры до 2873°С для получения чистой по примесям стали, доводку стали осуществляют на установке ковш-печь с электромагнитным перемешиванием, при этом введение легирующих металлов осуществляют в следующем порядке: в восстановительный период порционно вводят предварительно разогретые добавки РЗМ V - VIII групп d-переходных металлов Ni, V, W и доводят дуговой нагрев до 1520 - 1670°С, в любое время плавки вводят РЗМ в виде Ni, Co, Cu, Mo и осуществляют продувку аргоном до 5 минут для повышения жидкоподвижности шлака и удаления пористости, вводят Mn, Cr, W, V, Nb, Ti, Si, Al, осуществляют контроль химического состава стали и продувку стали Са для жидкоподвижности шлака и удаления коррозионно-активных неметаллических включений (КАНВ), а в конце плавления после легирования упомянутыми металлами вводят разогретый до 1273°С Re, затем осуществляют выпуск плавки с электромагнитным перемешиванием для улучшения качества непрерывного литья и выравнивания химического состава по всему сечению и объему выплавляемого слитка.
2. Способ по п.1, отличающийся тем, что получают коррозионностойкую сталь, содержащую, мас. %: углерод 0,02, марганец ≤ 2, кремний ≤ 1, хром 11 - 20, никель 12 - 18, молибден < 6,0, азот 0,01 - 0,05, медь менее 0,5 и не более 2,0, бор < 0,6, рений не менее 0,1 и не более 4,5, вольфрам < 4,0, фосфор ≤ 0,01, алюминий ≤ 0,01, титан ≤ 0,002, сера ≤ 0,01, ванадий ≤ 0,07, железо и неизбежные примеси остальное
RU2023115978A 2023-06-19 Способ производства коррозионно-стойкой стали RU2813053C1 (ru)

Publications (1)

Publication Number Publication Date
RU2813053C1 true RU2813053C1 (ru) 2024-02-06

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424671B1 (en) * 1999-02-11 2002-07-23 National Research Development Corporation Process for making steel
JP2003082435A (ja) * 2001-07-04 2003-03-19 Sumitomo Metal Ind Ltd カーゴオイルタンク用鋼材
RU2307876C2 (ru) * 2002-12-20 2007-10-10 Сумитомо Метал Индастриз, Лтд. Высокопрочная мартенситная нержавеющая сталь с высокой коррозионной стойкостью к газообразному диоксиду углерода и сопротивлением коррозионному растрескиванию под напряжением в сероводородной среде
RU2344194C2 (ru) * 2006-10-02 2009-01-20 Открытое акционерное общество "Северсталь" Сталь повышенной коррозионной стойкости
RU2533071C1 (ru) * 2013-10-15 2014-11-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства стали
CN110983156A (zh) * 2019-11-27 2020-04-10 上海大学 一种富含合金化稀土元素的稀土耐蚀钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424671B1 (en) * 1999-02-11 2002-07-23 National Research Development Corporation Process for making steel
JP2003082435A (ja) * 2001-07-04 2003-03-19 Sumitomo Metal Ind Ltd カーゴオイルタンク用鋼材
RU2307876C2 (ru) * 2002-12-20 2007-10-10 Сумитомо Метал Индастриз, Лтд. Высокопрочная мартенситная нержавеющая сталь с высокой коррозионной стойкостью к газообразному диоксиду углерода и сопротивлением коррозионному растрескиванию под напряжением в сероводородной среде
RU2344194C2 (ru) * 2006-10-02 2009-01-20 Открытое акционерное общество "Северсталь" Сталь повышенной коррозионной стойкости
RU2533071C1 (ru) * 2013-10-15 2014-11-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства стали
CN110983156A (zh) * 2019-11-27 2020-04-10 上海大学 一种富含合金化稀土元素的稀土耐蚀钢及其制造方法

Similar Documents

Publication Publication Date Title
CN104532102A (zh) 风电用大规格渗碳轴承钢G20Cr2Ni4A制造新工艺
JP2018525520A (ja) マイクロアロイング乗用車カーボンハブベアリング用鋼及びその製造方法
WO2008018242A1 (ja) 二相ステンレス鋼
CN108950432B (zh) 一种高强度、高韧性低合金耐磨钢的制造方法
JP2014105341A (ja) 耐硫酸腐食性、耐粒界腐食性および表面性状に優れるFe−Ni−Cr系合金およびその製造方法
CN109295382B (zh) 一种高氮耐磨耐蚀合金及其制备方法
CN111961954A (zh) 一种铸态混合基体qt500-14球墨铸铁的制备方法
CN109280743A (zh) 一种轧辊用高强度耐磨钢及其生产方法
KR101574446B1 (ko) 열간 가공성 및 표면 성상이 우수한 붕소 함유 스테인리스강
JP2016191124A (ja) 高Mn含有Fe−Cr−Ni合金およびその製造方法
JP2012036434A (ja) 軸受鋼鋼材
CN109487155A (zh) 高压油缸液压杆用非调质钢及其生产方法
JP2012052224A (ja) 溶接熱影響部靭性に優れた鋼材
RU2813053C1 (ru) Способ производства коррозионно-стойкой стали
JP2005023346A (ja) 熱間加工性に優れたNi基合金の精錬方法
WO2019131035A1 (ja) 油井用低合金高強度継目無鋼管
RU2545856C2 (ru) Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
RU2221875C2 (ru) Способ производства бесшовных труб из углеродистой или низколегированной стали повышенной коррозионной стойкости
RU2542157C1 (ru) Способ выплавки стали в дуговой электропечи
WO2019131036A1 (ja) 油井用低合金高強度継目無鋼管
RU2333255C1 (ru) Способ выплавки стали
RU2363736C2 (ru) Способ и шихта для производства конструкционной стали с пониженной прокаливаемостью
RU2810410C1 (ru) Способ производства коррозионно-стойкой стали
RU2209845C1 (ru) Сталь
RU2747083C1 (ru) Способ производства электросварной трубы из низкоуглеродистой стали, стойкой против водородного растрескивания (варианты)