RU2803708C1 - Automated spectrometer for the study of liquid media - Google Patents

Automated spectrometer for the study of liquid media Download PDF

Info

Publication number
RU2803708C1
RU2803708C1 RU2023109672A RU2023109672A RU2803708C1 RU 2803708 C1 RU2803708 C1 RU 2803708C1 RU 2023109672 A RU2023109672 A RU 2023109672A RU 2023109672 A RU2023109672 A RU 2023109672A RU 2803708 C1 RU2803708 C1 RU 2803708C1
Authority
RU
Russia
Prior art keywords
optical
ventilation system
aerosol generator
analysis unit
automated
Prior art date
Application number
RU2023109672A
Other languages
Russian (ru)
Inventor
Алексей Владимирович Буланов
Владимир Александрович Крикун
Original Assignee
Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук
Application granted granted Critical
Publication of RU2803708C1 publication Critical patent/RU2803708C1/en

Links

Abstract

FIELD: optical instrumentation.
SUBSTANCE: automated spectrometer for analysing liquids. Spectrometer consists of a control and analysis unit equipped with a Wi-Fi antenna, an optical unit, a liquid supply pipeline, a flow and measuring cell, connected by a detachable coupling. The control and analysis unit is based on a microcomputer and includes a CCD matrix, a monochromator, and a battery. The optical block contains an ND:YAG laser with an optical focusing system. The flow cell contains an aerosol generator. The measuring cell is equipped with a ventilation system that ensures the performance of the aerosol generator is equalized with the performance of the ventilation system, a quartz window for introducing laser radiation, and a system for focusing stimulated radiation at the input of an optical fibre connected to the monochromator of the control and analysis unit.
EFFECT: increased detection sensitivity and reproducibility of results, as well as automation of measurements.
5 cl, 1 dwg

Description

Изобретение относится к приборостроению для проведения исследований параметров жидких сред методами лазерно-искровой спектроскопии (ЛИС), и может быть использовано в спектральном анализе при экологическом мониторинге естественных вод, в том числе морских, в океанологии.The invention relates to instrument making for studying the parameters of liquid media using laser spark spectroscopy (LSS) methods, and can be used in spectral analysis for environmental monitoring of natural waters, including sea waters, in oceanology.

Известен лазерно-искровой спектрометр с микропозиционированием (п. РФ № 95844 U1) для бесконтактного определения элементного состава естественных вод. Сущность устройства состоит в том, что оно содержит фемтосекундный лазерный комплекс, включающий генератор, лазер, систему поворотных зеркал, фокусирующую оптику, собирающую оптическую систему, полихроматор, регистрирующую камеру, персональный компьютер, и позиционирующее устройство для размещения исследуемого образца. При анализе жидких сред образец находится в прозрачной кювете.A known laser-spark spectrometer with micropositioning (RF item No. 95844 U1) for non-contact determination of the elemental composition of natural waters. The essence of the device is that it contains a femtosecond laser complex, including a generator, a laser, a system of rotating mirrors, focusing optics, a collecting optical system, a polychromator, a recording camera, a personal computer, and a positioning device for placing the sample under study. When analyzing liquid media, the sample is placed in a transparent cuvette.

Основным недостатком данного устройства является использование громоздкого фемтосекундного лазера не пригодного к использованию, например, в экспедиционных условиях, а также отсутствие возможности учета флуктуаций испаряемой массы от импульса к импульсу.The main disadvantage of this device is the use of a bulky femtosecond laser, which is not suitable for use, for example, in expeditionary conditions, as well as the inability to take into account fluctuations of the evaporated mass from pulse to pulse.

Известен лазерно-искровой спектрометр жидких сред для анализа текущей жидкости в реальном времени являющийся по технической сущности наиболее близким к предлагаемому (п. США № 6741345 B1). Спектрометр содержит в своем составе регистрирующий блок, мощный ND:YAG лазер с системой фокусировки луча на поверхности потока жидкости, находящейся в проточной кювете. Кювета оборудована системой ламинарной циркуляции, исключающей образование пузырьков на поверхности исследуемой жидкости. Для исключения возникновения плазменного разряда на частицах водяного аэрозоля над ламинарным потоком жидкости над кюветой установлена вентиляционная система, очищающая камеру кюветы от частиц и капель жидкости, генерированных лазерным импульсом. Излучение индуцированной в жидкости плазмы собирается системой фокусирующих линз на вход оптического волокна, по которому передается в ПЗС матрицу или фотоумножитель регистрирующего блока, представляющего собой персональный компьютер ПК.A known laser-spark spectrometer of liquid media for analysis of flowing liquid in real time, which in technical essence is closest to the proposed one (US item No. 6741345 B1). The spectrometer contains a recording unit, a powerful ND:YAG laser with a system for focusing the beam on the surface of the liquid flow located in the flow cell. The cuvette is equipped with a laminar circulation system, which eliminates the formation of bubbles on the surface of the liquid being tested. To prevent the occurrence of a plasma discharge on water aerosol particles above the laminar liquid flow above the cuvette, a ventilation system is installed that cleans the cuvette chamber from particles and liquid droplets generated by the laser pulse. The radiation of the plasma induced in the liquid is collected by a system of focusing lenses at the input of the optical fiber, through which it is transmitted to the CCD matrix or photomultiplier of the recording unit, which is a personal computer PC.

Среди недостатков описанного в прототипе решения можно выделить сложность системы, обеспечивающей ламинарность потока жидкости; необходимость наличия системы вентиляции в проточной кювете, для исключения возникновения плазменного разряда в аэрозоле, возникающем над потоком жидкости, необходимость присутствия оператора для проведения исследования, низкую энергоэффективность устройства.Among the disadvantages of the solution described in the prototype, one can highlight the complexity of the system that ensures laminarity of fluid flow; the need for a ventilation system in the flow cell to prevent the occurrence of a plasma discharge in the aerosol arising above the liquid flow, the need for an operator to be present to conduct the study, and the low energy efficiency of the device.

Заявляемая новая конструкция спектрометра лишена перечисленных недостатков, пригодна для работы в полевых условиях, позволяет проводить лазерно-искровой спектральный анализ жидких сред в автоматическом режиме и обеспечивает хорошую воспроизводимость измерений за счет атомизации пробы до состояния мелкодисперсного аэрозоля при помощи, например, ультразвука.The proposed new design of the spectrometer is devoid of these disadvantages, is suitable for work in field conditions, allows laser-spark spectral analysis of liquid media in automatic mode and provides good reproducibility of measurements due to atomization of the sample to the state of a fine aerosol using, for example, ultrasound.

Технический результат - высокая чувствительность детектирования, обеспечивающаяся возбуждением спектрального пробоя в мелкодисперсном аэрозоле, а не в жидкости, а также автоматизация устройства и проведение измерений in-situ.The technical result is high detection sensitivity, ensured by the excitation of spectral breakdown in a fine aerosol, and not in a liquid, as well as automation of the device and in-situ measurements.

Заявляемый спектрометр для анализа жидкостей, включает выполненный на базе микрокомпьютера блок управления и анализа и содержит Wi-Fi антенну, ПЗС-матрицу, монохроматор и аккумулятор; оптический блок, снабженный ND:YAG лазером с системой оптической фокусировки; трубопровод подачи жидкости в проточную кювету, путем разъемной муфты соединенную с измерительной кюветой, при этом проточная кювета снабжена генератором аэрозоля, а измерительная кювета соединена с системой вентиляции, обеспечивающей выравнивание производительности генератора аэрозоля с производительностью системы вентиляции, кварцевым окном для введения излучения лазера и системой фокусирования индуцированного излучения на вход оптического волокна, соединенного с монохроматором блока управления и анализа.The inventive spectrometer for the analysis of liquids includes a microcomputer-based control and analysis unit and contains a Wi-Fi antenna, a CCD matrix, a monochromator and a battery; an optical unit equipped with an ND:YAG laser with an optical focusing system; a pipeline for supplying liquid to a flow cell, connected by a detachable coupling to the measuring cell, wherein the flow cell is equipped with an aerosol generator, and the measuring cell is connected to a ventilation system that ensures equalization of the performance of the aerosol generator with the performance of the ventilation system, a quartz window for introducing laser radiation and a focusing system induced radiation to the input of an optical fiber connected to the monochromator of the control and analysis unit.

Для повышения точности исследования состава жидкости спектрометр дополнительно может быть оборудован соединенными с микрокомпьютером датчиками температуры, например, DS18B20 либо аналогичным, солености типа 304SS и другими. Датчики могут быть установлены в отдельном блоке или непосредственно в проточной кювете.To increase the accuracy of studying the composition of a liquid, the spectrometer can additionally be equipped with temperature sensors connected to a microcomputer, for example, DS18B20 or similar, salinity sensors like 304SS and others. The sensors can be installed in a separate unit or directly in the flow cell.

Спектрометр может быть дополнительно оборудован блоком анализа газового состава жидкости, который через трубопровод подачи жидкости последовательно соединяется с проточной кюветой и содержит в своем составе систему душирования жидкости, систему сепарации воздуха, газоанализатор с отдельным микрокомпьютером. Дополнительный блок позволяет получить дополнительную информацию о концентрации различных газов, растворенных в исследуемой жидкости.The spectrometer can be additionally equipped with a unit for analyzing the gas composition of a liquid, which is connected in series to a flow cell through a liquid supply pipeline and contains a liquid asphyxiation system, an air separation system, and a gas analyzer with a separate microcomputer. An additional block allows you to obtain additional information about the concentration of various gases dissolved in the test liquid.

Спектрометр может быть реализован в нескольких вариантах выполнения, не изменяющих общую техническую схему, так, например, все блоки могут находиться в одном герметичном корпусе, или оптический блок и проточная с измерительной кюветы могут находиться в отдельных корпусах.The spectrometer can be implemented in several embodiments without changing the general technical design, for example, all blocks can be located in one sealed housing, or the optical unit and the flow cell with a measuring cell can be located in separate housings.

В качестве генератора аэрозоля может быть установлен, например, ультразвуковой генератор, например, MIRKIP YWF-01.For example, an ultrasonic generator, for example MIRKIP YWF-01, can be installed as an aerosol generator.

На фиг. приведен вариант принципиальной схемы одного из возможных вариантов заявляемого спектрометра, где 1 - WIFI антенна, 2 - Микрокомпьютер, 3 - ПЗС матрица, 4 - LiPo аккумулятор, 5 - Монохроматор, 6 - корпус, 7 - Nd:Yag лазер, 8 - Оптоволокно, 9 и 10- фокусирующие линзы, 11 - измерительная кювета, 12 - система вентиляции, 13- Трубопровод подачи жидкости, 14- Проточная кювета, 15- Генератор мелкодисперсного аэрозоля,- 16- Блок дополнительных датчиков, 17 - Жидкостный насос.In fig. a variant of the schematic diagram of one of the possible variants of the proposed spectrometer is shown, where 1 - WIFI antenna, 2 - Microcomputer, 3 - CCD matrix, 4 - LiPo battery, 5 - Monochromator, 6 - housing, 7 - Nd:Yag laser, 8 - Optical fiber, 9 and 10 - focusing lenses, 11 - measuring cell, 12 - ventilation system, 13 - Liquid supply pipeline, 14 - Flow cell, 15 - Fine aerosol generator, - 16 - Additional sensor block, 17 - Liquid pump.

Спектрометр работает следующим образом: с персонального компьютера центра управления, через беспроводной Wi-Fi интерфейс (1) на микрокомпьютер (2) устройства отправляют исходные параметры процесса и команду начала измерений. Микрокомпьютер (2) открывает клапан, расположенный в трубопроводе (13), обеспечивающий подачу жидкости в проточную кювету (14). После этого включает генератор (15) аэрозоля и систему вентиляции (12), посылает команду на лазерный излучатель (7), который генерирует лазерный импульс, фокусируемый при помощи линзы (9) в объем мелкодисперсного аэрозоля, заполняющего измерительную кювету (11). Излучение индуцированной в жидкости плазмы собирается фокусирующей линзой (10) и передается в оптоволокно (8), по которому сигнал попадает на щель монохроматора (5), совмещенного с ПЗС матрицей (3), которая оцифровывает сигнал и передает его на микрокомпьютер (2), где происходит регистрация полученных данных, их предварительный анализ, архивирование во внутренней памяти и передача в центр управления.The spectrometer operates as follows: from the personal computer of the control center, through the wireless Wi-Fi interface (1) to the microcomputer (2), the devices send the initial process parameters and the command to start measurements. The microcomputer (2) opens a valve located in the pipeline (13), allowing fluid to flow into the flow cell (14). After this, it turns on the aerosol generator (15) and the ventilation system (12), sends a command to the laser emitter (7), which generates a laser pulse, focused by means of a lens (9) into the volume of fine aerosol filling the measuring cell (11). The radiation from the plasma induced in the liquid is collected by a focusing lens (10) and transmitted to an optical fiber (8), through which the signal reaches the slit of a monochromator (5), combined with a CCD matrix (3), which digitizes the signal and transmits it to a microcomputer (2), where the received data is recorded, preliminary analyzed, archived in internal memory and transferred to the control center.

Проба забортной воды забирается из кингстонов судна при помощи жидкостного насоса (17), и по трубопроводу (13) в случае установки дополнительных измерительных датчиков направляется в блок датчиков (16), содержащих как минимум датчики температуры и солености, затем в проточную кювету (14). Исследуемая жидкость при помощи генератора (15), преобразуется в аэрозоль, который втягивается в измерительную кювету (11) при помощи системы вентиляции (12), обеспечивающей выравнивание производительности генератора аэрозоля с производительностью системы вентиляции. Система вентиляции, включает, например, вентилятор, установленный в сообщающейся с измерительной кюветой трубе, снабженной регулируемой заслонкой. Вентилятор одновременно выносит из системы по трубопроводу (на фиг. не показан) избыток аэрозоля, не позволяя ему конденсироваться на оптических элементах и обеспечивает равномерность заполнения измерительной кюветы.. В прототипе система вентиляции работает на полное удаление аэрозоля, чтобы пробой происходил именно в жидкости.A sample of seawater is taken from the ship's seawalls using a liquid pump (17), and through a pipeline (13), if additional measuring sensors are installed, it is sent to a sensor block (16), containing at least temperature and salinity sensors, then to a flow cell (14) . The liquid under test is converted into an aerosol using a generator (15), which is drawn into the measuring cell (11) using a ventilation system (12), which ensures that the performance of the aerosol generator is equalized with the performance of the ventilation system. The ventilation system includes, for example, a fan installed in a pipe communicating with the measuring cell, equipped with an adjustable damper. The fan simultaneously removes excess aerosol from the system through a pipeline (not shown in the figure), preventing it from condensing on the optical elements and ensuring uniform filling of the measuring cell. In the prototype, the ventilation system works to completely remove the aerosol so that breakdown occurs in the liquid.

За счет предложенной конструкции комплекса, обеспечивающей автоматизацию устройства и проведение измерений in-situ, использования в качестве среды измерения аэрозоль, а не поверхность воды, ND:YAG лазера, и предложенной конструкции измерительного блока из проточной и измерительной кювет, стало возможным повысить воспроизводимость измерений и уменьшить потери энергии на возбуждение плазменного разряда в образце, а использование дополнительных приборов и датчиков позволяет получить данные, необходимые для дальнейшей правильной интерпретации результатов эксперимента.Due to the proposed design of the complex, which ensures automation of the device and carrying out in-situ measurements, the use of an aerosol rather than the surface of water as a measurement medium, an ND:YAG laser, and the proposed design of a measuring unit consisting of a flow and measuring cell, it became possible to increase the reproducibility of measurements and reduce energy losses for the excitation of a plasma discharge in the sample, and the use of additional instruments and sensors makes it possible to obtain the data necessary for further correct interpretation of the experimental results.

Claims (5)

1. Автоматизированный спектрометр для анализа жидкостей, состоящий из снабженного Wi-Fi антенной блока управления и анализа, выполненного на базе микрокомпьютера, и включающего ПЗС матрицу, монохроматор и аккумулятор; оптического блока, содержащего ND:YAG лазер с системой оптической фокусировки; трубопровода подачи жидкости, проточной и измерительной кювет, соединенных разъемной муфтой, при этом проточная кювета содержит генератор аэрозоля, а измерительная - оборудована системой вентиляции, обеспечивающей выравнивание производительности генератора аэрозоля с производительностью системы вентиляции, кварцевым окном для введения излучения лазера, системой фокусирования индуцированного излучения на вход оптического волокна, соединенного с монохроматором блока управления и анализа.1. An automated spectrometer for the analysis of liquids, consisting of a microcomputer-based control and analysis unit equipped with a Wi-Fi antenna, and including a CCD matrix, a monochromator and a battery; an optical unit containing an ND:YAG laser with an optical focusing system; liquid supply pipeline, flow and measuring cells connected by a detachable coupling, wherein the flow cell contains an aerosol generator, and the measuring cell is equipped with a ventilation system that ensures the performance of the aerosol generator is equalized with the performance of the ventilation system, a quartz window for introducing laser radiation, a system for focusing induced radiation on input of an optical fiber connected to the monochromator of the control and analysis unit. 2. Автоматизированный спектрометр по п.1, отличающийся тем, что в качестве генератора аэрозоля установлен ультразвуковой генератор.2. Automated spectrometer according to claim 1, characterized in that an ultrasonic generator is installed as an aerosol generator. 3. Автоматизированный спектрометр по п.1, отличающийся тем, что система вентиляции выполнена в виде вентилятора, установленного в трубе, снабженной регулируемой заслонкой.3. Automated spectrometer according to claim 1, characterized in that the ventilation system is made in the form of a fan installed in a pipe equipped with an adjustable damper. 4. Автоматизированный спектрометр по п.1, отличающийся тем, что дополнительно снабжен датчиками температуры и солености.4. Automated spectrometer according to claim 1, characterized in that it is additionally equipped with temperature and salinity sensors. 5. Автоматизированный спектрометр по п.4, отличающийся тем, что датчики установлены в проточной кювете.5. Automated spectrometer according to claim 4, characterized in that the sensors are installed in a flow cell.
RU2023109672A 2023-04-17 Automated spectrometer for the study of liquid media RU2803708C1 (en)

Publications (1)

Publication Number Publication Date
RU2803708C1 true RU2803708C1 (en) 2023-09-19

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741345B2 (en) * 2001-02-08 2004-05-25 National Research Council Of Canada Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
US7414720B2 (en) * 2001-07-27 2008-08-19 Herbert Wachtel Measuring particle size distribution in pharmaceutical aerosols
WO2019147475A1 (en) * 2018-01-23 2019-08-01 Becton, Dickinson And Company Systems for dynamic light detection obscuration and methods for using thereof
EP3679353A2 (en) * 2017-09-05 2020-07-15 Swisens AG Aerosol particle measuring device for determining materials in real time by means of fluorescence lifetime measurement in the frequency range

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741345B2 (en) * 2001-02-08 2004-05-25 National Research Council Of Canada Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
US7414720B2 (en) * 2001-07-27 2008-08-19 Herbert Wachtel Measuring particle size distribution in pharmaceutical aerosols
EP3679353A2 (en) * 2017-09-05 2020-07-15 Swisens AG Aerosol particle measuring device for determining materials in real time by means of fluorescence lifetime measurement in the frequency range
WO2019147475A1 (en) * 2018-01-23 2019-08-01 Becton, Dickinson And Company Systems for dynamic light detection obscuration and methods for using thereof

Similar Documents

Publication Publication Date Title
US20060262900A1 (en) Measurement apparatus and method for determining the material composition of a sample by combined X-ray fluorescence analysis and laser-induced breakdown spectroscopy
CN105044052A (en) Laser spectrum analysis method and device for elements in liquid
CN107167450A (en) Gas in Oil of Transformer and micro- water on-line detecting system
CN106124452A (en) A kind of deep sea in-situ gas detector
CN110514621A (en) Ocean original position pCO2Sensor
CN105548128A (en) Method and device for detecting chlorophyll of coastal zone water body in situ through double optical path method
CN111610175A (en) Flow-through phytoplankton species and cell density detection device and detection method
CN112730383B (en) Optical fiber array LIBS detection system for online detection
CN109507170B (en) Miniaturized electrolyte contact glow discharge emission spectrum device
EA031459B1 (en) Method and apparatus for online analysis by laser-induced spectroscopy
CN105277530A (en) Flow injection microscope raman spectrum device for water pollutant detection and detection method
CN204287043U (en) Based on soil heavy metal cadmium and the copper content detection device of induced with laser spectral technique
CN209570499U (en) The on-Line Monitor Device of Formaldehyde Determination
RU2803708C1 (en) Automated spectrometer for the study of liquid media
CN106066320A (en) Seawater bacteria detecting system based on multiwavelength laser Induction of bacterial intrinsic fluorescence
CN111610161B (en) Circulation system, seawater nutrient salt in-situ measurement device and measurement method
CN111175260B (en) Ocean TOC sensor based on ultraviolet three-dimensional fluorescence and using method
CN210571971U (en) Portable laser Raman fluorometer system for monitoring water environment pollution and water environment pollution monitoring device
Wyatt et al. Discrimination of phytoplankton via light‐scattering properties
RU2337349C1 (en) Method of determining air biological contamination and device to this effect
Lindgren et al. Development of a Wall Film Thickness Measuring Device
JP3858844B2 (en) Gas monitoring apparatus and gas monitoring method for underground fixation of carbon dioxide gas
RU10462U1 (en) LASER GAS ANALYZER
CN104614363A (en) Raman spectrum testing system based on liquid core waveguide
CN105784671A (en) Method for detecting nitrite on line through liquid core fiber resonance Raman spectrum