RU2797163C1 - Конвейерный вычислитель - Google Patents

Конвейерный вычислитель Download PDF

Info

Publication number
RU2797163C1
RU2797163C1 RU2023103152A RU2023103152A RU2797163C1 RU 2797163 C1 RU2797163 C1 RU 2797163C1 RU 2023103152 A RU2023103152 A RU 2023103152A RU 2023103152 A RU2023103152 A RU 2023103152A RU 2797163 C1 RU2797163 C1 RU 2797163C1
Authority
RU
Russia
Prior art keywords
information
partial
outputs
block
inputs
Prior art date
Application number
RU2023103152A
Other languages
English (en)
Inventor
Вячеслав Иванович Петренко
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет"
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет"
Application granted granted Critical
Publication of RU2797163C1 publication Critical patent/RU2797163C1/ru

Links

Images

Abstract

Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных устройствах для формирования кодовых последовательностей, а также в устройствах цифровой обработки сигналов и в криптографических приложениях. Техническим результатом изобретения является сокращение объема используемого оборудования, а также расширение функциональных возможностей за счет дополнительного формирования неполного частного. Устройство содержит (n−1) блоков формирования частичных остатков и (n−1) параллельных регистров, где n - разрядность входных чисел, причем блок формирования частичных остатков содержит сумматор и мультиплексор с соответствующими связями. 3 ил.

Description

Область техники, к которой относится изобретение.
Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных устройствах для формирования кодовых последовательностей, а также в устройствах цифровой обработки сигналов и в криптографических приложениях.
Уровень техники.
Из существующего уровня техники известно устройство для формирования остатка по произвольному модулю от числа, содержащее регистр и блок формирования частного и остатка, позволяющее выполнять вычисление остатка и неполного частного от чисел по произвольным модулям [1]. Технической проблемой, которая не может быть решена при использовании данного технического решения, является низкое быстродействие при вычислении остатков по модулю для потока чисел, так как вычисление остатка по модулю для очередного числа в потоке не может быть начато до тех пор, пока не завершено вычисление остатка по модулю для предыдущего числа.
Из существующего уровня техники известно вычислительное устройство, содержащее 2n−2 сумматоров и n−1 мультиплексоров, где n – разрядность входного числа, позволяющее выполнять вычисление остатка и неполного частного от чисел по произвольным модулям [2]. Технической проблемой, которая не может быть решена при использовании данного технического решения, является низкое быстродействие при вычислении остатков по модулю для потока чисел, так как вычисление остатка по модулю для очередного числа в потоке не может быть начато до тех пор, пока не завершено вычисление остатка по модулю для предыдущего числа.
Из существующего уровня техники известен комбинационный рекуррентный формирователь остатков, содержащий последовательно соединенные комбинационный формирователь частичных остатков, блок ключей и блок сумматоров по модулю, позволяющий выполнять приведение чисел по произвольным модулям [3]. Технической проблемой, которая не может быть решена при использовании данного технического решения, является низкое быстродействие при вычислении остатков по модулю для потока чисел, так как вычисление остатка по модулю для очередного числа в потоке не может быть начато до тех пор, пока не завершено вычисление остатка по модулю для предыдущего числа.
Из существующего уровня техники известно устройство для формирования остатка по произвольному модулю от числа, содержащее l=((k/N)−1) блоков формирования частичных остатков (где k – количество разрядов в двоичном представлении числа, от которого формируется остаток, с учетом добавленных для достижения кратности N разрядов), (l+1) блоков умножения по модулю, блока распределения коэффициентов и сумматора по модулю [4]. Технической проблемой, которая не может быть решена при использовании данного технического решения, является низкое быстродействие при вычислении остатков по модулю для потока чисел, так как формирование частичного остатка и выполнение операций умножения и сложения по модулю производится заново для каждого из чисел в потоке, кроме того, вычисление остатка по модулю для очередного числа в потоке не может быть начато до тех пор, пока не завершено вычисление остатка по модулю для предыдущего числа.
Наиболее близким к заявленному техническому решению по технической сущности и достигаемому техническому результату, выбранному в качестве прототипа, является устройство для формирования остатка по заданному модулю [5], содержащее блоки формирования частичных остатков, параллельные многоразрядные регистры, мультиплексор, компаратор, блок вычитания, в котором организована конвейеризация процесса вычисления остатков по заданному модулю для потока чисел на базе последовательного выполнения операций сложения (не по модулю) первичных остатков. Техническими проблемами, которые не могут быть решены при использовании данного технического решения, являются большой объем оборудования, обусловленный тем, что в каждом блоке формирования частичных остатков кроме основных параллельных регистров используются дополнительные (по количеству разрядов модуля) параллельные регистры для хранения частичных остатков, а также многовходовый комбинационный сумматор, который при разрядности более 32 фактически окажется сложно реализуемым, а также будет обладать большим временем суммирования. Кроме того, предложенная структура устройства может быть реализована для конкретных разрядностей модуля и при необходимости работы с модулями иной разрядности потребуется изменение структуры устройства.
Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является сокращение объема используемого оборудования за счет исключения дополнительных параллельных регистров и замены многовходовых комбинационных сумматоров на стандартный двухвходовый сумматор и как следствие уменьшение потребления энергии, а также расширение функциональных возможностей за счет дополнительного формирования неполного частного.
Раскрытие сущности изобретения.
Указанный технический результат при осуществлении изобретения достигается тем, что в конвейерный вычислитель содержащий (n−1) блоков формирования частичных остатков, (n−1) параллельных регистров, где – разрядность входных чисел, первые и вторые информационные входы устройства, первые информационные выходы устройства и тактовый вход устройства, соединенный с тактовым входом (n−1) параллельных регистров добавлены вторые информационные выходы устройства, при этом первые информационные входы устройства соединены с информационными входами первого параллельного регистра, два старших разряда информационных выходов которого соединены с первыми информационными входами первого блока формирования частичных остатков, вторые информационные входы устройства соединены со вторыми информационными входами блоков формирования частичных остатков, первые информационные выходы (n−1)-го блока формирования частичных остатков соединены с первыми информационными выходами устройства, второй информационный выход соединен с самым младшим разрядом вторых информационных выходов устройства, первые информационные выходы i-го блока формирования частичных остатков, i=(1, …, (n−2)), соединены с m младшими разрядами информационных входов (i+1)-го параллельного регистра, где m – разрядность модуля, m=(2, …, n), второй информационный выход соединен с (m+1)-м разрядом информационных входов (i+1)-го параллельного регистра, m младших разрядов информационных выходов которого соединены со (2, ... , (m+1))-ми разрядами первых информационных входов (i+1)-го блока формирования частичных остатков, с первым разрядом первых информационных входов которого соединён самый старший (n+m−1)-й разряд информационных выходов (i+1)-го параллельного регистра, (n+mi−1) старших разрядов информационных входов которого соединены с (n+mi−1) старшими разрядами информационных выходов i-го параллельного регистра, ((m+1), …, (m+n−2))-ые разряды информационных выходов (n−1)-го параллельного регистра соединены соответственно с ((n−1), …, 2)-ми разрядами вторых информационных выходов устройства, разрядность первого параллельного регистра равна n, а (2, …, (n−1))-го параллельного регистра равна (m+n−1), причём блок формирования частичных остатков содержит сумматор и мультиплексор, первые информационные входы сумматора и мультиплексора соединены с первыми информационными входами блока формирования частичных остатков, вторые информационные входы сумматора соединены со вторыми информационными входами блока формирования частичных остатков, информационные выходы сумматора соединены со вторыми информационными входами мультиплексора, а выход переноса соединён со вторым информационным выходом блока формирования частичных остатков и с управляющим входом мультиплексора, выходы которого соединены с первыми информационными выходами блока формирования частичных остатков, а на вход переноса сумматора подаётся сигнал логической единицы.
Сущность изобретения заключается в реализации следующего способа конвейерного вычисления остатка R от числа A по модулю P. Пусть
Figure 00000001
где A – целое положительное число, от которого необходимо вычислить остаток;
P – целое положительное число, называемое модулем;
Q – целое положительное число, являющееся неполным частным от деления A на P;
R — целое положительное число, являющееся остатком от деления A на P.
Причем
Figure 00000002
где a i ,
Figure 00000003
- коэффициенты, принимающие значение 0 или 1 в зависимости от значения числа A;
p i ,
Figure 00000004
- коэффициенты, принимающие значение 0 или 1 в зависимости от значения модуля P;
q i ,
Figure 00000005
- коэффициенты, принимающие значение 0 или 1 в зависимости от значения неполного частного Q;
r i ,
Figure 00000004
- коэффициенты, принимающие значение 0 или 1 в зависимости от значения остатка R;
n – количество разрядов в представлении числа A, m – количество разрядов в представлении модуля P,
Figure 00000006
Задача состоит в том, чтобы по известным A и P отыскать остаток R. Остаток R является в терминах теории чисел вычетом числа A по модулю P, поэтому говорят, что A сравнимо с R:
Figure 00000007
Значение остатка R может быть вычислено следующим образом:
Figure 00000008
Перепишем выражение (7) в следующем виде:
Figure 00000009
Из теории чисел известно, что операция приведения по модулю инвариантна к сложению и умножению, т. е. величина остатка не зависит от того, вычислен он от суммы (произведения) или от каждого слагаемого (сомножителя), а затем соответствующие частичные остатки просуммированы (перемножены) и от результата вычислен остаток по модулю.
Поэтому выражение (8) может быть представлено в следующем виде
Figure 00000010
В таком виде значительно облегчается задача нахождения остатка R и неполного частного Q от числа А по модулю P с использованием конвейерного режима.
Вначале на первом такте в первом слое конвейера от первого числа вычисляют первый частичный остаток t 1:
Figure 00000011
а также старший разряд неполного частного q n −2:
Figure 00000012
где ⌊x⌋ – целая часть числа x.
На втором такте во втором слое конвейера от первого числа вычисляют второй частичный остаток t 2:
Figure 00000013
а также (q n −3)-й разряд неполного частного:
Figure 00000014
При этом одновременно от второго числа в первом слое конвейера вычисляют первый частичный остаток t 1 в соответствии с (10), а также старший разряд неполного частного q n −2 в соответствии с (11).
На третьем такте в третьем слое конвейера от первого числа вычисляют третий частичный остаток t 3:
Figure 00000015
а также (q n −4)-й разряд неполного частного:
Figure 00000016
При этом одновременно от второго числа во втором слое конвейера вычисляют второй частичный остаток t 2 в соответствии с (12), а также (q n −3)-й разряд неполного частного в соответствии с (13), а от третьего числа в первом слое конвейера вычисляют первый частичный остаток t 1 в соответствии с (10) и (q n −2)-й разряд неполного частного в соответствии с (11).
На (n−1)-м такте в (n−1)-м слое конвейера от первого числа вычисляют (n−1)-й частичный остаток t n −1:
Figure 00000017
который и является искомым остатком R от первого числа A по модулю P, поступившего на вход конвейера, а также q 0-й разряд неполного частного
Figure 00000018
При этом в (1…(n−2))-м слоях конвейера будут находиться соответствующий частичный остаток, согласно вышеприведенным выражениям, от поступивших на его вход чисел, а также соответствующие разряды неполного частного. Соответственно на каждом следующем такте будем в (n−1)-м слое конвейера получать остатки и неполные частные от чисел, поступающих на вход по модулю P.
Операция приведения по модулю P в каждом слое конвейеризации выполняется исходя из следующих соображений.
По определению величина t i −1 лежит в диапазоне 0≤t i −1P−1, поэтому величина
Figure 00000019
до приведения ее по модулю может принимать значения в диапазоне от 0 до 2P−1, так как a n i −1 может принимать значение 0 или 1. Приведение по модулю величины t i осуществляется по следующим правилам:
Figure 00000020
Причем, если справедливо выражение (19), то (q n i −1)-й разряд неполного частного принимает значение равное 0, если же справедливо выражение (20), то (q n i −1)-й разряд неполного частного принимает значение равное 1.
Краткое описание чертежей.
Сущность изобретения поясняется чертежами.
На фиг. 1 представлена схема конвейерного вычислителя. Конвейерный вычислитель содержит (n−1) параллельных регистров 1.1 ÷ 1.n−1, (n−1) блоков формирования частичных остатков 2.1 ÷ 2.n−1, где – разрядность входных чисел, первые информационные входы 3 устройства, вторые информационные входы 4 устройства, первые информационные выходы 5 устройства, вторые информационные выходы 6 устройства, тактовый вход 7 устройства. Тактовый вход 7 устройства соединен с тактовыми входами (n−1) параллельных регистров 1.1 ÷ 1.n−1. Первые информационные входы 3 устройства соединены с информационными входами первого параллельного регистра 1.1, два старших разряда информационных выходов которого соединены с первыми информационными входами первого блока формирования частичных остатков 2.1, вторые информационные входы устройства соединены со вторыми информационными входами блоков формирования частичных остатков 2.1 ÷ 2.n−1, информационные выходы (n−1)-го блока формирования частичных остатков 2.n−1 соединены с первыми информационными выходами 5 устройства. Второй информационный выход (n−1)-го блока формирования частичных остатков 2.n−1 соединен с самым младшим разрядом вторых информационных выходов 6 устройства. Первые информационные выходы i-го блока формирования частичных остатков 2.i, i=(1, …, (n−2)), соединены с m младшими разрядами информационных входов (i+1)-го параллельного регистра 1.i+1, где m – разрядность модуля, m=(2, …, n), а (n−1) – разрядность неполного частного, второй информационный выход соединен с (m+1)-м разрядом информационных входов (i+1)-го параллельного регистра 1.i+1, m младших разрядов информационных выходов которого соединены со (2, ... , (m+1))-ми разрядами первых информационных входов (i+1)-го блока формирования частичных остатков 2.i+1, с первым разрядом первых информационных входов которого соединён самый старший (n+m−1)-й разряд информационных выходов (i+1)-го параллельного регистра 1.i+1, (n+mi−1) старших разрядов информационных входов которого соединены с (n+mi−1) старшими разрядами информационных выходов i-го параллельного регистра 1.i, ((m+1), …, (n−2))-ые разряды информационных выходов (n−1)-го параллельного регистра 1.n−1 соединены соответственно с ((n−1), …, 2)-ми разрядами вторых информационных выходов 6 устройства, разрядность первого параллельного регистра 1.1 равна n, а 1.2, …,1.n−1-го параллельного регистра равна (m+n−1).
На фиг. 2 представлена схема блока формирования частичных остатков 2.i, i=1, …, (n−1). Блок формирования частичных остатков 2.i содержит сумматор 8 и мультиплексор 9. Первые информационные входы сумматора 8 и мультиплексора 9 соединены с первыми информационными входами блока формирования частичных остатков 2.i, вторые информационные входы сумматора 8 соединены со вторыми информационными входами блока формирования частичных остатков 2.i, информационные выходы сумматора 8 соединены со вторыми информационными входами мультиплексора 9, а выход переноса соединён со вторым информационным выходом блока формирования частичных остатков 2.i и с управляющим входом мультиплексора 9, выходы которого соединены со вторыми информационными выходами блока формирования частичных остатков 2.i, а на вход переноса сумматора 8 подаётся сигнал логической единицы.
На фиг. 3 представлено распределение разрядности параллельных регистров 1.1 ÷ 1.n−1. Первый параллельный регистр 1.1 имеет разрядность n, равную разрядности входных чисел, а параллельные регистры 1.2, …, 1.n−1 имеют разрядность равную (m+n−1), где m – разрядность модуля.
Осуществление изобретения.
Конвейерный вычислитель работает следующим образом (см. Фиг. 1).
В исходном состоянии параллельные регистры 1.1÷1.n−1 обнулены. На тактовый вход 7 устройства поступают тактовые импульсы. На первые информационные входы 3 устройства с каждым тактовым импульсом подаются числа A i , от которых необходимо вычислить остаток по модулю P. На вторые информационные входы 4 устройства, в течение всего цикла формирования остатков, подаётся инверсный код модуля P.
На первом такте первое число A записывается в параллельный регистр 1.1. При этом два старших разряда a n −1 и a n −2 первого числа A с выходов параллельного регистра 1.1 поступают на первые информационные входы блока формирования частичных остатков 2.1, который вычисляет значение первого частичного остатка от первого числа в соответствии с выражением (10), а также значение старшего разряда q n −2 неполного частного в соответствии с (11). С первых информационных выходов блока формирования частичных остатков 2.1 m – разрядное значение первого частичного остатка первого числа поступает на (1...m)-ые разряды информационных входов второго параллельного регистра 1.2. Значение старшего разряда q n −2 неполного частного первого числа со второго информационного выхода блока формирования частичных остатков 2.1 поступает на (m+1)-й разряд информационных входов параллельного регистра 1.2. На (m+2)…(m+n−2)-ые разряды информационных входов этого же параллельного регистра 1.2 поступают значения (1…n−2)-ых разрядов первого входного числа с информационных выходов первого параллельного регистра 1.1.
На втором такте в первый параллельный регистр 1.1 с первых информационных входов 3 устройства записывается второе число, а во второй параллельный регистр 1.2 записывается первый частичный остаток t 1 первого числа с первых информационных выходов блока формирования частичных остатков 2.1, значение старшего разряда неполного частного q n −2 с его второго информационного выхода и значения (1…(n−2)) разрядов первого числа с информационных выходов параллельного регистра 1.1. В результате на первый разряд первых информационных входов блока формирования частичных остатков 2.2 с информационных выходов второго параллельного регистра 1.2 поступит значение (n−2) разряда первого числа, а на остальные разряды поступит значение первого частичного остатка от первого числа с информационных выходов первого блока формирования частичных остатков 2.1.
В результате на первых информационных выходах блока формирования частичных остатков 2.1 будет сформирован первый частичной остаток t 1 от второго числа, на втором информационном выходе блока формирования частичных остатков 2.1 будет сформировано значение старшего разряда q n −2 неполного частного второго числа, на первых информационных выходах блока формирования частичных остатков 2.2 будет сформирован второй частичный остаток t 2 от первого числа в соответствии с (12), а на втором информационном выходе блока формирования частичных остатков 2.2 будет сформировано значение q n −3 разряда неполного частного первого числа в соответствии с (13).
На (n−1)-ом такте на первых информационных выходах (n−1)-го блока формирования частичных остатков 2.(n−1) будет сформирован (n−1)-й частичный остаток t n −1 от первого числа, являющийся остатком от числа по модулю P, который и поступит на информационные выходы 5 устройства. На втором информационном выходе (n−1)-го блока формирования частичных остатков 2.(n−1) будет сформирован q 0 разряд неполного частного первого числа, который вместе с (q n −2, … , q 1) разрядами неполного частного первого числа с (m+1) … (m+n−2) разрядов информационных выходов 1.n-1 параллельного регистра поступят на вторые информационные выходы 6 устройства, образуя неполное частное первого числа, поступившего на первые информационные входы 3 устройства на первом такте, по модулю P.
На последующих тактах на первых информационных выходах 5 устройства будут последовательно сформированы остатки от второго, третьего и последующих чисел, поступивших на первые информационные входы 3 устройства, а на вторых информационных выходах 6 устройства будут последовательно сформированы неполные частные от второго, третьего и последующих чисел, поступивших на первые информационные входы 3 устройства.
Блок формирования частичных остатков 2.i, i=(1, …, (n−1)) реализует выражения (19) и (20) следующим образом (см. Фиг. 2). Так как на вторые информационные входы сумматора 8 поступает инверсный код модуля P, а на вход переноса сигнал логической единицы, то сумматор 8 реализует операцию вычитания t i P. В случае, если t i P на выходе переноса сумматора 8 появляется сигнал логической единицы, который, поступая на управляющий вход мультиплексора 9, скоммутирует с его выходами вторые информационные входы, если же t i <P, то на выходе переноса сумматора 8 будет сигнал логического нуля и на выходы мультиплексора 9 будут скоммутированы его первые информационные входы. В результате на выходах мультиплексора 9 всегда будет значение t i mod P, которое поступает на первые информационные выходы блока формирования частичных остатков 2.i. Сигнал с выхода переноса сумматора 8 также поступает на второй информационный выход блока формирования частичных остатков 2.i и является соответствующим разрядом неполного частного.
Техническим результатом изобретения является сокращение объема используемого оборудования за счет исключения дополнительных параллельных регистров и заменой многовходовых комбинационных сумматоров на стандартный двухвходовый сумматор и как следствие уменьшение потребления энергии, а также расширение функциональных возможностей за счет дополнительного формирования неполного частного.
Изобретение позволяет в конвейерном режим осуществлять формирование неполных частных и остатков по модулю от чисел, поступающих на его вход.
Источники информации.
1. Патент на изобретение RU 2012137 C1. Устройство для формирования остатка по произвольному модулю от числа. Опубликован 30.04.1994.
2. Патент на изобретение RU 2348965 C1. Вычислительное устройство. Опубликован 10.03.2009, Бюл. №7.
3. Патент на изобретение RU 2029435 C1. Комбинационный рекуррентный формирователь остатков. Опубликован 20.02.1995.
4. Патент на изобретение RU 2324972 C2. Устройство для формирования остатка по произвольному модулю от числа. Опубликован 20.05.2008. Бюл. №14.
5. Патент на изобретение RU 2421781 C1. Устройство для формирования остатка по заданному модулю. Опубликован 20.06.2011. Бюл. №17.

Claims (1)

  1. Конвейерный вычислитель, содержащий (n−1) блоков формирования частичных остатков, (n−1) параллельных регистров, где n - разрядность входных чисел, первые и вторые информационные входы устройства, первые информационные выходы устройства и тактовый вход устройства, соединенный с тактовыми входами (n−1) параллельных регистров, отличающийся тем, что в него добавлены вторые информационные выходы устройства, при этом первые информационные входы устройства соединены с информационными входами первого параллельного регистра, два старших разряда информационных выходов которого соединены с первыми информационными входами первого блока формирования частичных остатков, вторые информационные входы устройства соединены со вторыми информационными входами блоков формирования частичных остатков, первые информационные выходы (n−1)-го блока формирования частичных остатков соединены с первыми информационными выходами устройства, второй информационный выход соединен с самым младшим разрядом вторых информационных выходов устройства, первые информационные выходы i-го блока формирования частичных остатков, i=(1, …, (n−2)), соединены с m младшими разрядами информационных входов (i+1)-го параллельного регистра, где m – разрядность модуля, m=(2, …, n), второй информационный выход соединен с (m+1)-м разрядом информационных входов (i+1)-го параллельного регистра, m младших разрядов информационных выходов которого соединены со (2, ..., (m+1))-ми разрядами первых информационных входов (i+1)-го блока формирования частичных остатков, с первым разрядом первых информационных входов которого соединён самый старший (n+m−1)-й разряд информационных выходов (i+1)-го параллельного регистра, (n+m−i−1) старших разрядов информационных входов которого соединены с (n+m−i−1) старшими разрядами информационных выходов i-го параллельного регистра, ((m+1), …, (m+n−2))-е разряды информационных выходов (n−1)-го параллельного регистра соединены соответственно с ((n−1), …, 2)-ми разрядами вторых информационных выходов устройства, разрядность первого параллельного регистра равна n, а (2, …, (n−1))-го параллельного регистра равна (m+n−1), причём блок формирования частичных остатков содержит сумматор и мультиплексор, первые информационные входы сумматора и мультиплексора соединены с первыми информационными входами блока формирования частичных остатков, вторые информационные входы сумматора соединены со вторыми информационными входами блока формирования частичных остатков, информационные выходы сумматора соединены со вторыми информационными входами мультиплексора, а выход переноса соединён со вторым информационным выходом блока формирования частичных остатков и с управляющим входом мультиплексора, выходы которого соединены с первыми информационными выходами блока формирования частичных остатков, а на вход переноса сумматора подаётся сигнал логической единицы.
RU2023103152A 2023-02-13 Конвейерный вычислитель RU2797163C1 (ru)

Publications (1)

Publication Number Publication Date
RU2797163C1 true RU2797163C1 (ru) 2023-05-31

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807555B2 (en) * 1999-11-01 2004-10-19 Kabushiki Kaisha Toshiba Modular arithmetic apparatus and method having high-speed base conversion function
RU2348965C1 (ru) * 2007-05-25 2009-03-10 Государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный университет" Вычислительное устройство
RU2421781C1 (ru) * 2009-10-19 2011-06-20 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева Устройство для формирования остатка по заданному модулю
CN103699358A (zh) * 2013-12-05 2014-04-02 西安交通大学 一种适用于大数的快速模平方运算电路
RU2661797C1 (ru) * 2017-06-13 2018-07-19 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Вычислительное устройство
RU2756408C1 (ru) * 2020-07-29 2021-09-30 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Вычислительное устройство

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807555B2 (en) * 1999-11-01 2004-10-19 Kabushiki Kaisha Toshiba Modular arithmetic apparatus and method having high-speed base conversion function
RU2348965C1 (ru) * 2007-05-25 2009-03-10 Государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный университет" Вычислительное устройство
RU2421781C1 (ru) * 2009-10-19 2011-06-20 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева Устройство для формирования остатка по заданному модулю
CN103699358A (zh) * 2013-12-05 2014-04-02 西安交通大学 一种适用于大数的快速模平方运算电路
RU2661797C1 (ru) * 2017-06-13 2018-07-19 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Вычислительное устройство
RU2756408C1 (ru) * 2020-07-29 2021-09-30 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Вычислительное устройство

Similar Documents

Publication Publication Date Title
KR100591761B1 (ko) 몽고메리 모듈러 곱셈기 및 캐리 저장 가산을 이용한몽고메리 모듈러 곱셈 방법
Gokhale et al. Design of Vedic-multiplier using area-efficient Carry Select Adder
US5023827A (en) Radix-16 divider using overlapped quotient bit selection and concurrent quotient rounding and correction
US5132925A (en) Radix-16 divider using overlapped quotient bit selection and concurrent quotient rounding and correction
Savas et al. Multiplier architectures for GF (p) and GF (2n)
Kalaiyarasi et al. Design of an efficient high speed radix-4 Booth multiplier for both signed and unsigned numbers
Patronik et al. Design of Reverse Converters for the New RNS Moduli Set $\{2^{n}+ 1, 2^{n}-1, 2^{n}, 2^{n-1}+ 1\} $($ n $ odd)
Jaberipur et al. Efficient realisation of arithmetic algorithms with weighted collection of posibits and negabits
US3878985A (en) Serial-parallel multiplier using booth{3 s algorithm with combined carry-borrow feature
US5025408A (en) Bit serial multiplier with parallel-in-serial-out carry and partial product shift registers
Tynymbayev et al. Devices for multiplying modulo numbers with analysis of the lower bits of the multiplier
US5661673A (en) Power efficient booth multiplier using clock gating
Asadi et al. CORLD: In-stream correlation manipulation for low-discrepancy stochastic computing
RU2696223C1 (ru) Арифметико-логическое устройство для формирования остатка по произвольному модулю от числа
RU2299461C1 (ru) Умножитель по модулю
RU2797163C1 (ru) Конвейерный вычислитель
RU2717915C1 (ru) Вычислительное устройство
RU2348965C1 (ru) Вычислительное устройство
RU2791440C1 (ru) Конвейерный формирователь остатков по произвольному модулю
US7607165B2 (en) Method and apparatus for multiplication and/or modular reduction processing
RU2804380C1 (ru) Конвейерный вычислитель
KR100836737B1 (ko) 중국인 나머지 정리(crt)와 캐리 저장 가산 기반의모듈러 곱셈 장치 및 방법
RU2661797C1 (ru) Вычислительное устройство
RU2796555C1 (ru) Вычислительное устройство
RU2797164C1 (ru) Конвейерный умножитель по модулю