RU2791380C1 - Способ работы газотурбинного газоперекачивающего агрегата и устройство для его осуществления - Google Patents

Способ работы газотурбинного газоперекачивающего агрегата и устройство для его осуществления Download PDF

Info

Publication number
RU2791380C1
RU2791380C1 RU2021139974A RU2021139974A RU2791380C1 RU 2791380 C1 RU2791380 C1 RU 2791380C1 RU 2021139974 A RU2021139974 A RU 2021139974A RU 2021139974 A RU2021139974 A RU 2021139974A RU 2791380 C1 RU2791380 C1 RU 2791380C1
Authority
RU
Russia
Prior art keywords
gas
methane
mixture
hydrogen
hydrogen mixture
Prior art date
Application number
RU2021139974A
Other languages
English (en)
Inventor
Константин Юрьевич Шабанов
Павел Геннадьевич Осипов
Леонид Павлович Шелудько
Юлия Эдгаровна Плешивцева
Владимир Васильевич Бирюк
Original Assignee
Общество с ограниченной ответственностью "Газпром трансгаз Самара"
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром трансгаз Самара" filed Critical Общество с ограниченной ответственностью "Газпром трансгаз Самара"
Application granted granted Critical
Publication of RU2791380C1 publication Critical patent/RU2791380C1/ru

Links

Images

Abstract

Способ работы газотурбинного газоперекачивающего агрегата компрессорной станции магистрального газопровода предусматривает выработку перегретого пара высокого давления за счет тепла газопарового рабочего тела расширенного в турбине, его смешение с подогретым природным газом, подаваемым из магистрального газопровода с получением метаносодержащей смеси, ее подогрев теплом расширенного рабочего тела, метаносодержащую смесь подают в первый адиабатический каталитический реактор с образованием метано-водородной смеси содержащей 5-6% водорода, подогрев этой смеси во втором каталитическом реакторе 620-680°С с увеличением в ней доли водорода до 25%, использование меньшей части этой смеси в качестве топлива газоперекачивающего агрегата, охлаждение большей части метано-водородной смеси до 35-40°С и ее подачу в магистральный газопровод. Изобретение позволяет использовать полученную метано-водородную смесь в качестве топлива газоперекачивающего агрегата, а также для ее подачи в магистральный газопровод. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к газоперекачивающим агрегатам компрессорных станций магистральных газопроводов.
Известен способ работы газотурбинной установки, включающий подачу в камеру сгорания сжатого воздуха и метаносодержащей парогазовой смеси, расширение продуктов сгорания в газовой турбине, утилизацию их теплоты с образованием пара высокого давления, конденсацию содержащегося в них водяного пара, смешивание природного газа с перегретым паром, их расширение в газовой турбине, выработку перегретого пара, его смешивание с природным газом, нагрев этой смеси продуктами сгорания газовой турбины, пропускание через адиабатический каталитический реактор с образованием в нем метаносодержащей парогазовой смеси, ее нагрева во втором теплообменнике и подача во второй адиабатический каталитический реактор с образованием в нем метановодородной парогазовой смеси, которую подают в камеру сгорания газотурбинной установки (Патент RU №2467187, F02C 3/28, 20.11.2012).
Недостатком способа является необходимость применения внешнего теплообменника сжигающего дополнительное топливо, так как температура продуктов сгорания на выходе из газовой турбины у лучших газовых турбин не превышает 600°С.
Известен способ работы газотурбинной установки на метаносодержащей парогазовой смеси (Патент RU №2639397 F02C 3/28), согласно которому природный газ смешивают с меньшей частью вырабатываемого в котле-утилизаторе перегретого пара высокого давления, нагревают полученную метаносодержащую смесь теплотой уходящих газов, подают в адиабатический каталитический реактор с получением метановодородной смеси, нагревают смесь до температуры 620-680°С теплом охлаждения камеры сгорания, сжатый в компрессоре воздух и метано-водородную смесь используют как топливо в камере сгорания, большую часть перегретого пара высокого давления подают в камеру сгорания, полученную газопаровую смесь расширяют в газовой турбине, тепло этой смеси используют для выработки перегретого пара высокого давления, производят контактную конденсацию паровой составляющей газопаровой смеси с сепарацией конденсата, который затем охлаждают в градирне, большую часть охлажденного конденсата разбрызгивают в охлажденной в поверхностях коттла-утилизатора газопаровой смеси и используют для контактной конденсации пара содержащегося в этой смеси, меньшую часть конденсата используют для выработки перегретого пара высокого давления.
Этот способ принят в качестве прототипа предлагаемого изобретения.
Преимуществами способа является упрощение конструкции, повышение мощности, экономичности и экологичности газотурбинной установки.
Недостатком способа является недостаточное количество получаемой в установке метано-водородной смеси и ее использование только в качестве топлива в газоперекачивающем агрегате.
Технический результат, получаемый в предлагаемом способе работы газотурбинного газоперекачивающего агрегата заключается в разработке способа работы газоперекачивающего агрегата с увеличением количества выработанной метано-водородной смеси и возможностью ее использования не только в качестве топлива, но и для ее подачи в магистральный газопровод.
Технический результат в предлагаемом способе работы газотурбинного газоперекачивающего агрегата достигается тем, что теплоту расширенных в газовой турбине продуктов сгорания используют для выработки перегретого пара высокого давления, большую часть перегретого пара высокого давления подают в камеру сгорания, полученную смесь природного газа и пара расширяют в газовой турбине и используют для выработки механической энергии, а его меньшую часть смешивают с природным газом с образованием метаносодержащей смеси, которую теплотой расширенной парогазовой смеси нагревают и подают в первый адиабатический каталитический реактор с образованием в нем метано-водородной смеси, полученную метано-водородную смесь нагревают во втором адиабатическом каталитическом реакторе до температуры 620-680°С увеличивая в ней долю водорода более 20%, эту метано-водородную смесь используют в качестве топлива в газоперекачивающем агрегате, при чем природный газ высокого давления, сжатый в нагнетателе газоперекачивающего агрегата, нагревают до 380-400°С теплом большей части метано-водородной смеси, вышедшей из второго каталитического реактора и смешивают с меньшей частью перегретого пара высокого давления, затем полученную при этом метаносодержащую смесь природного газа и перегретого пара высокого давления нагревают до 400-450°С теплом расширенного газопарового рабочего тела и подают в первый адиабатический каталитический реактор с образованием в нем метано-водородной смеси, содержащей 5% водорода; при этом меньшую часть метано-водородной смеси с долей водорода 25%, вышедшую из второго адиабатического каталитического реактора, используют в качестве топлива в газоперекачивающем агрегате, а ее большую часть охлаждают до 55-60°С теплом сжатого природного газа высокого давления и подают в магистральный газопровод.
Предлагаемый способ работы газотурбинного газоперекачивающего агрегата может быть реализован в газотурбинной установке, содержащей компрессор, камеру сгорания, газовую турбину, нагнетатель, котел-утилизатор с конвективным подогревателем, пароперегревателем, испарителем, оросительным устройством, сепаратором конденсата; градирню, бак конденсата, химводоочистку, смеситель перегретого пара и природного газа, первый и второй адиабатические каталитические реакторы, причем второй адиабатический каталитический реактор размещен в охлаждающей рубашке камеры сгорания, магистральный газопровод, трубопровод перегретого пара; сепаратор конденсата связан трубопроводами через градирню с оросительным устройством и через химводоочистку с поверхностями нагрева котла-утилизатора, камера сгорания связана с магистральным газопроводом и пароперегревателем, первый вход смесителя перегретого пара и природного газа связан с магистральным газопроводом, его второй вход связан с пароперегревателем, выход смесителя связан через конвективный подогреватель последовательно с первым и со вторым адиабатическими каталитическими реакторами, выход второго адиабатического каталитического реактора связан с камерой сгорания, причем устройство дополнительно снабжено охладителем метано-водородной смеси, газопроводом высокого давления, трубопроводом метано-водородной смеси, газопроводом охлажденной метано-водородной смеси; первый вход смесителя перегретого пара и природного газа связан с выходом нагнетателя через газопровод высокого давления и охладитель метано-водородной смеси, его второй вход связан с пароперегревателем, выход второго адиабатического каталитического реактора связан через трубопровод метано-водородной смеси, поверхность теплообмена охладителя метано-водородной смеси и газопровод охлажденной метано-водородной смеси с входом нагнетателя.
На Фиг. 1 приведена тепловая схема газоперекачивающего агрегата, используемого для осуществления предлагаемого способа, где 1 - градирня, 2 - бак конденсата, 3 котел-утилизатор, 4 - химводоочистка, 5 - сепаратор, 6 - оросительное устройство, 7 - пароперегреватель, 8 - смеситель перегретого пара и природного газа, 9 - охладитель метано-водородной смеси, 10 - первый адиабатический каталитический реактор, 11 - конвективный подогреватель, 12 - камера сгорания, 13 - второй адиабатический каталитический реактор, 14 - компрессор, 15 - газопаровая турбина, 16 - нагнетатель, 17 - магистральный газопровод, 18 - газопровод топливного газа, 19 - магистральный газопровод сжатого газа, 20 - трубопровод метано-водородной смеси, 21 - газопровод высокого давления, 22 - газопровод охлажденной метано-водородной смеси.
Способ работы газоперекачивающего агрегата с подачей метано-водородной смеси в камеру сгорания, в магистральный газопровод и устройство для его осуществления работают следующим образом. При пуске установки в компрессоре 14 сжимают воздух, в камеру сгорания 12 подают сжатый воздух, на ее выход подают перегретый пар из пароперегревателя 7, продукты сгорания расширяют с совершением работы в газопаровой турбине 15, приводящей нагнетатель 16. Расширенную газопаровую смесь направляют в котел-утилизатор 3, ее тепло используют для выработки перегретого пара высокого давления в пароперегревателе 7 и подогрева метаносодержащей смеси в конвективном подогревателе 11. В газопаровую смесь, охлажденную в поверхностях нагрева котла-утилизатора 3, подают через оросительное устройство 6 охлажденную в градирне 1 воду и производят конденсацию пара содержащегося в газопаровой смеси. В сепараторе 5 оделяют конденсат и подают в градирню 1 через бак конденсата 2. Большую часть охлажденной ней подают в оросительное устройство 6 для контактной конденсации пара. Меньшую часть конденсата из бака конденсата 2 подают через химводоочистку 4 в поверхности нагрева котла-утилизатора 3 для выработки перегретого пара высокого давления. Из пароперегревателя 7 на выход камеры сгорания 12 подают большую часть перегретого пара высокого давления с температурой 350°С. Природный газ из магистрального газопровода сжатого газа 19 по газопроводу высокого давления 21 подают в охладитель метано-водородной смеси 9, в теплообменную поверхность которого по трубопроводу метано-водородной смеси 20 подают метано-водородную смесь, вышедшую из второго адиабатического каталитического реактора 13, размещенного в охлаждающей рубашке камеры сгорания 12. Охлажденную до 55-60 градусов метано-водородную смесь в охладителе метано-водородной смеси 9, подают на вход нагнетателя 16 по газопроводу охлажденной метано-водородной смеси 22. При этом природный газ нагревают до температуры 350-400°С в охладителе метано-водородной смеси 9 и подают на первый вход смесителя 8 перегретого пара и природного газа. На его второй вход подают перегретый пар из пароперегревателя 7. Метаносодержащую смесь из выхода смесителя перегретого пара и природного газа 8 подают через конвективный подогреватель 11, где ее подогревают до 400-4500С, на вход первого адиабатического каталитического реактора 10 с получением в нем метано-водородной смеси содержащей 5-6% водорода. Выход первого каталитического реактора 10 связан с входом второго адиабатического каталитического реактора 13, в котором метано-водородную смесь нагревают до температуры 650-6800С с увеличением доли водорода в метано-водородной смеси до 25%, за счет теплоты охлаждения камеры сгорания 12. Меньшую часть этой метано-водородной смеси используют в основных режимах работы установки в качестве топлива сжигаемого в камере сгорания 12. Ее большую часть подают на вход нагнетателя 16 через трубопровод метано-водородной смеси 20, поверхность теплообмена охладителя метано-водородной смеси 9 и газопровод охлажденной метано-водородной смеси 22. Предлагаемый способ и устройство для его реализации позволяет:
- большую часть выработанной метано-водородной смеси, содержащей до 25% водорода, подавать в магистральный газопровод компрессорной станции.
- при применении предлагаемого способа на газоперекачивающих агрегатах компрессорных станций значительно увеличить долю водорода в транспортируемом газе магистральных газопроводов.

Claims (2)

1. Способ работы газотурбинного газоперекачивающего агрегата, согласно которому теплоту расширенных в газопаровой турбине продуктов сгорания используют для выработки перегретого пара высокого давления, большую часть перегретого пара высокого давления подают в камеру сгорания, полученную смесь продуктов сгорания и пара расширяют в газопаровой турбине и используют для выработки механической энергии, а его меньшую часть смешивают с природным газом с образованием метаносодержащей смеси, которую теплотой расширенной парогазовой смеси нагревают и подают в первый адиабатический каталитический реактор с образованием в нем метано-водородной смеси, полученную метано-водородную смесь нагревают во втором адиабатическом каталитическом реакторе до температуры 620-680°С, увеличивая в ней долю водорода более 20%, эту метано-водородную смесь используют в качестве топлива в газоперекачивающем агрегате, отличающийся тем, что природный газ высокого давления, сжатый в нагнетателе газоперекачивающего агрегата, нагревают до 380-400°С теплом большей части метано-водородной смеси, вышедшей из второго каталитического реактора и смешивают с меньшей частью перегретого пара высокого давления, затем полученную при этом метаносодержащую смесь природного газа и перегретого пара высокого давления нагревают до 400-450°С теплом расширенного газопарового рабочего тела и подают в первый адиабатический каталитический реактор с образованием в нем метано-водородной смеси, содержащей 5% водорода; при этом меньшую часть метано-водородной смеси с долей водорода 25%, вышедшую из второго адиабатического каталитического реактора, используют в качестве топлива в газоперекачивающем агрегате, а ее большую часть охлаждают до 55-60°С теплом сжатого природного газа высокого давления и подают в магистральный газопровод.
2. Устройство для осуществления способа работы газотурбинного газоперекачивающего агрегата, включающее компрессор, камеру сгорания, газопаровую турбину, нагнетатель, котел-утилизатор с конвективным подогревателем, пароперегревателем, испарителем, оросительным устройством, сепаратором конденсата; градирню, бак конденсата, химводоочистку, смеситель перегретого пара и природного газа, первый и второй адиабатические каталитические реакторы, причем второй адиабатический каталитический реактор размещен в охлаждающей рубашке камеры сгорания, магистральный газопровод, трубопровод перегретого пара; сепаратор конденсата связан трубопроводами через градирню с оросительным устройством и через химводоочистку с поверхностями нагрева котла-утилизатора, камера сгорания связана с магистральным газопроводом и пароперегревателем, первый вход смесителя перегретого пара и природного газа связан с магистральным газопроводом, его второй вход связан с пароперегревателем, выход смесителя связан через конвективный подогреватель последовательно с первым и со вторым адиабатическими каталитическими реакторами, выход второго адиабатического каталитического реактора связан с камерой сгорания, отличающееся тем, что устройство дополнительно снабжено охладителем метано-водородной смеси, газопроводом высокого давления, трубопроводом метано-водородной смеси, газопроводом охлажденной метано-водородной смеси; первый вход смесителя перегретого пара и природного газа связан с выходом нагнетателя через газопровод высокого давления и охладитель метано-водородной смеси, его второй вход связан с пароперегревателем, выход второго адиабатического каталитического реактора связан через трубопровод метано-водородной смеси, поверхность теплообмена охладителя метано-водородной смеси и газопровод охлажденной метано-водородной смеси с входом нагнетателя.
RU2021139974A 2021-12-28 Способ работы газотурбинного газоперекачивающего агрегата и устройство для его осуществления RU2791380C1 (ru)

Publications (1)

Publication Number Publication Date
RU2791380C1 true RU2791380C1 (ru) 2023-03-07

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1468311A (en) * 1974-02-16 1977-03-23 Linde Ag Recovery of energy from liquefied gases
RU2542272C2 (ru) * 2013-10-24 2015-02-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения метано-водородной смеси и водорода
RU2621448C2 (ru) * 2015-10-06 2017-06-06 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Способ работы комбинированной газопаровой установки
RU2639397C1 (ru) * 2016-12-29 2017-12-21 Общество с ограниченной ответственностью "Газпром трансгаз Самара" Способ работы газотурбинной установки на метаносодержащей парогазовой смеси и устройство для его осуществления
RU2689483C2 (ru) * 2017-10-30 2019-05-28 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Энергетическая установка с высокотемпературной парогазовой конденсационной турбиной

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1468311A (en) * 1974-02-16 1977-03-23 Linde Ag Recovery of energy from liquefied gases
RU2542272C2 (ru) * 2013-10-24 2015-02-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения метано-водородной смеси и водорода
RU2621448C2 (ru) * 2015-10-06 2017-06-06 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Способ работы комбинированной газопаровой установки
RU2639397C1 (ru) * 2016-12-29 2017-12-21 Общество с ограниченной ответственностью "Газпром трансгаз Самара" Способ работы газотурбинной установки на метаносодержащей парогазовой смеси и устройство для его осуществления
RU2689483C2 (ru) * 2017-10-30 2019-05-28 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Энергетическая установка с высокотемпературной парогазовой конденсационной турбиной

Similar Documents

Publication Publication Date Title
RU2467187C2 (ru) Способ работы газотурбинной установки
RU2561755C2 (ru) Способ работы и устройство газотурбинной установки
RU2708957C1 (ru) Газотурбинная установка газоперекачивающего агрегата
RU2624690C1 (ru) Газотурбинная установка и способ функционирования газотурбинной установки
RU2639397C1 (ru) Способ работы газотурбинной установки на метаносодержащей парогазовой смеси и устройство для его осуществления
RU2791380C1 (ru) Способ работы газотурбинного газоперекачивающего агрегата и устройство для его осуществления
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
WO2012162923A1 (zh) 燃气和蒸汽轮机系统
RU2587736C1 (ru) Установка для утилизации низконапорного природного и попутного нефтяного газов и способ её применения
RU2747704C1 (ru) Когенерационная газотурбинная энергетическая установка
RU2727274C1 (ru) Когенерационная газотурбинная энергетическая установка
RU2813644C1 (ru) Способ подготовки метано-водородного топлива с повышенным содержанием водорода для котельных агрегатов ТЭС и газотурбодетандерной энергетической установки
RU2774007C1 (ru) Способ работы контактной газотурбинной установки на метановодородной парогазовой смеси
RU2272914C1 (ru) Газопаровая теплоэлектроцентраль
RU2476690C2 (ru) Способ работы парогазовой установки
RU2773580C1 (ru) Теплофикационная парогазовая энергетическая установка с аккумулированием энергии
JPS61192816A (ja) 複合型発電システム
RU2076929C1 (ru) Способ получения пиковой мощности на парогазовой газотурбинной установке и парогазовая установка для осуществления способа
RU2272915C1 (ru) Способ работы газопаровой установки
RU121863U1 (ru) Парогазовая установка
RU2050443C1 (ru) Комбинированная парогазовая энергетическая установка
RU2395695C1 (ru) Способ работы парогазовой установки
RU2814174C1 (ru) Кислородно-топливная энергоустановка для совместного производства электроэнергии и водорода
RU2663830C2 (ru) Способ работы газотурбинной установки и устройство для его осуществления
RU2555609C2 (ru) Способ работы парогазовой энергетической установки и устройство для его осуществления