RU2476690C2 - Способ работы парогазовой установки - Google Patents

Способ работы парогазовой установки Download PDF

Info

Publication number
RU2476690C2
RU2476690C2 RU2011113174/06A RU2011113174A RU2476690C2 RU 2476690 C2 RU2476690 C2 RU 2476690C2 RU 2011113174/06 A RU2011113174/06 A RU 2011113174/06A RU 2011113174 A RU2011113174 A RU 2011113174A RU 2476690 C2 RU2476690 C2 RU 2476690C2
Authority
RU
Russia
Prior art keywords
air
water
cooling
heat exchanger
steam
Prior art date
Application number
RU2011113174/06A
Other languages
English (en)
Other versions
RU2011113174A (ru
Inventor
Александр Альбертович Агеев
Владимир Альбертович Агеев
Original Assignee
Александр Альбертович Агеев
Владимир Альбертович Агеев
Агеев Константин Александрович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Альбертович Агеев, Владимир Альбертович Агеев, Агеев Константин Александрович filed Critical Александр Альбертович Агеев
Priority to RU2011113174/06A priority Critical patent/RU2476690C2/ru
Publication of RU2011113174A publication Critical patent/RU2011113174A/ru
Application granted granted Critical
Publication of RU2476690C2 publication Critical patent/RU2476690C2/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к теплоэнергетике. Предложен способ работы парогазовой установки, в которой воздушным компрессором сжимают воздух с промежуточным охлаждением, который подают в зону горения камеры сгорания, в которую одновременно подают топливо, образовавшиеся продукты сгорания смешивают в зоне смешения камеры сгорания с водяным паром с получением на выходе из камеры сгорания парогазовой смеси, которую в качестве рабочего тела направляют в парогазовую турбину, в которой энергию потока парогазовой смеси преобразуют в механическую энергию вращения ротора турбины, далее водяной пар частично конденсируют в вакуумном конденсаторе, разрежение в котором создается вакуумным компрессором, отводящим не сконденсированные газообразные продукты сгорания, сконденсированную воду нагревают в теплообменниках, при этом установку снабжают дополнительным теплообменником охлаждения воздуха, в который направляют часть воздуха после первого каскада сжатия на нагрев питательной воды, выходящей из теплообменника охлаждения уходящих газов. Изобретение позволяет повысить экономичность парогазовой установки. 4 з.п. ф-лы, 4 ил.

Description

Изобретение относится к теплоэнергетике, в частности к парогазовым установкам (ПГУ), работающим на смеси пара и продуктов сгорания топлива.
Известен способ работы газотурбинной установки, заключающийся в сжатии воздуха, сжигании в нем топлива, смешивании полученных продуктов сгорания с дополнительным сжатым воздухом и отбором части продуктов сгорания после их расширения в турбине и совместном их сжатии с дополнительно сжимаемым воздухом при одновременном уменьшении расхода последнего (см. авторское свидетельство SU №1744290, кл. F02C 3/34, 30.06.1992).
Данный способ, хотя и осуществляет рациональный процесс сгорания, но требует дополнительной энергии для дополнительно сжимаемого охлаждающего воздуха, что снижает кпд процесса.
Известен способ работы ПГУ, включающий образование рабочей парогазовой смеси, расширение последней в турбине с совершением работы, осушение потока парогазовой смеси путем введения в него воды с температурой ниже температуры конденсации воды в парогазовой смеси, удаление осушенных газов и отвод конденсата (см. авторское свидетельство SU №547121, кл. F01K 21/04, 07.12.1982).
Однако при данном способе работы установки имеют место большие потери теплоты (скрытая теплота конденсации), так как не вся вода удаляется из парогазовой смеси и воды из-за недоохлаждения парогазовой смеси, поскольку необходимо подать большое количество холодной воды, что, в свою очередь, приводит к тому, что сливаемая вода из конденсатора будет также холодной, а значит теплота, возвращаемая через утилизационный контур, будет уменьшена, т.е. больше тепла будет потеряно в окружающую среду и еще больше энергии необходимо будет затратить для получения холодной воды.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ работы ПГУ, заключающийся в том, что компрессором сжимают окружающий воздух с промежуточным охлаждением, который подают в зону горения камеры сгорания, в которую одновременно подают топливо, образовавшиеся продукты сгорания смешивают в зоне смешения камеры сгорания с водяным паром с получением на выходе из камеры сгорания парогазовой смеси, которую в качестве рабочего тела направляют в парогазовую турбину, в которой энергию потока парогазовой смеси преобразуют в механическую энергию вращения ротора турбины, далее водяной пар конденсируют в вакуумном конденсаторе, разрежение в котором создается вакуумным компрессором, отводящим не сконденсировавшиеся газообразные продукты сгорания, а сконденсированную воду нагревают в теплообменниках (см. патент RU №2412359, кл. F01K 21/04, 30.12.2009 г.).
Данный способ работы ПГУ обеспечивает отсутствие перегрева парогазовой смеси на входе в вакуумный конденсатор, но предъявляет жесткие требования к соотношению степеней сжатия воздушного компрессора первого каскада сжатия и вакуумного компрессора. Это связано с тем, что, с одной стороны, давление перед вакуумным компрессором определяется необходимостью конденсации достаточного количества водяного пара из парогазовой смеси для обеспечения рециркуляции охлаждающего пара, а с другой стороны, фиксированное количество питательной воды, нагреваемое сжатыми в вакуумном компрессоре уходящими газами в теплообменнике охлаждения уходящих газов определено необходимостью поддерживать минимальную температуру этих уходящих газов на выходе из теплообменника. Остальное количество питательной воды, необходимое для рециркуляции охлаждающего пара, подают в теплообменник промежуточного охлаждения воздуха после первого каскада сжатия в воздушном компрессоре. Если пропускаемое через этот теплообменник количество питательной воды ниже оптимального, то это приводит к росту температуры воздуха на входе в воздушный компрессор второго каскада сжатия.
В данном способе работы ПГУ при необходимости восполнения утечек воды из цикла необходимо либо осуществлять подпитку водой извне, либо поддерживать давление в вакуумном конденсаторе выше расчетного, что существенно снижает эффективность цикла.
Кроме того, при отрицательных значениях температуры воздуха на входе в воздушный компрессор имеет место обледенение воздухозаборного устройства. Это обстоятельство, в свою очередь, приводит к изменению вырабатываемой мощности и требует проведения периодического регулирования расходов воды, воздуха и топлива, то есть режим работы ПГУ носит переменный характер в течение каждых суток, что снижает ресурс работы ПГУ.
Достигаемое в данном способе работы ПГУ более высокое давление в камере сгорания при заданной начальной температуре рабочего тела по сравнению с этим давлением в эксплуатируемых в настоящее время классических газотурбинных установках усложняет их модернизацию по данному способу работы.
Задача изобретения: повышение экономичности ПГУ, обеспечение более полной конденсации водяного пара из парогазовой смеси, обеспечивающей не только рециркуляцию охлаждающего пара в ПГУ, но и возможность накопления воды, существенное расширение температурного диапазона изменения погодных условий, не влияющего на номинальный режим работы ПГУ и исключение обледенения воздухозаборного устройства.
Технический результат заключается в том, что:
- снижают температуру воздуха перед вторым каскадом сжатия, направляя избыток тепла воздуха после первого каскада сжатия на дополнительный нагрев питательной воды, выходящей из теплообменника охлаждения уходящих газов;
- снижают температуру воздуха перед вторым каскадом сжатия, нагревая теплом воздуха после первого каскада сжатия топливо;
- после конденсации пара в вакуумном конденсаторе осуществляют второй этап конденсации пара из парогазовой смеси в требуемом количестве при давлении, близком к атмосферному давлению при более высоких температурах конденсации, что также позволяет направить в теплообменник охлаждения воздуха для нагрева в качестве части питательной воды более горячую воду с выхода атмосферного конденсатора;
- поддерживают расчетную температуру воздуха на входе в воздушный компрессор за счет нагрева воздуха теплом отработавшей циркуляционной охлаждающей воды;
- снижают расчетное давление воздуха и охлаждающего пара на входе в камеру сгорания после предварительного расширения генерируемого при высоком давлении охлаждающего пара в отдельной паровой турбине до расчетного значения.
Указанная задача решается, а технический результат достигается за счет того, что способ работы ПГУ заключается в том, что воздушным компрессором сжимают воздух с промежуточным охлаждением, который подают в зону горения камеры сгорания, в которую одновременно подают топливо, образовавшиеся продукты сгорания смешивают в зоне смешения камеры сгорания с водяным паром с получением на выходе из камеры сгорания парогазовой смеси, которую в качестве рабочего тела направляют в парогазовую турбину, в которой энергию потока парогазовой смеси преобразуют в механическую энергию вращения ротора турбины, далее водяной пар частично конденсируют в вакуумном конденсаторе, разрежение в котором создается вакуумным компрессором, отводящим не сконденсированные газообразные продукты сгорания, сконденсированную воду нагревают в теплообменниках, при этом:
- установку снабжают дополнительным теплообменником охлаждения воздуха, в который направляют часть воздуха после первого каскада сжатия на нагрев питательной воды, выходящей из теплообменника охлаждения уходящих газов;
- установку снабжают воздушным топливоподогревателем, в который направляют воздух после дополнительного теплообменника охлаждения воздуха для подогрева топлива;
- установку снабжают атмосферным конденсатором, в котором в требуемом количестве конденсируют водяной пар из парогазовой смеси, выходящей из теплообменника, охлаждающего уходящие газы;
- установку снабжают воздухоподогревателем и, если температура окружающего воздуха ниже температуры отработавшей нагретой циркуляционной охлаждающей воды, воздух подают в воздухоподогреватель для нагрева до температуры выше 0"С теплом отработавшей нагретой циркуляционной охлаждающей воды, а подогретый воздух направляют на вход в воздушный компрессор;
- установку снабжают паровой турбиной, на вход которой направляют генерируемый при высоком давлении охлаждающий пар, в паровой турбине пар расширяют и направляют далее в камеру сгорания.
Разделение потоков нагретого воздуха после первого каскада сжатия воздуха для нагрева питательной воды позволяет снизить температуру воздуха перед вторым каскадом сжатия. Это приводит к уменьшению работы воздушного компрессора второго каскада сжатия, при этом тепло от избытка воздуха после первого каскада сжатия оставляют в цикле и передают питательной воде, что приводит к повышению экономичности ПГУ.
Подогрев топлива теплом от воздуха перед вторым каскадом сжатия воздуха позволяет снизить температуру воздуха перед вторым каскадом сжатия. Это приводит к уменьшению работы воздушного компрессора второго каскада сжатия, при этом тепло от избытка воздуха после первого каскада сжатия оставляют в цикле и передают топливу, что приводит к повышению экономичности ПГУ.
Включение в схему ПГУ атмосферного конденсатора позволяет при необходимости сконденсировать свыше 90% пара, образующегося при сгорании топлива. Часть выходящей из атмосферного конденсатора воды подают в качестве питательной воды на вход теплообменника промежуточного охлаждения воздуха. В результате, как показывают расчеты, в режиме работы ПГУ с накоплением воды наличие атмосферного конденсатора повышает эффективность ПГУ, обеспечивает рециркуляцию охлаждающего пара и позволяет осуществлять накопление воды при значительном снижении температуры уходящих газов.
Увеличение температуры воздуха на входе в воздушный компрессор, как известно, приводит к увеличению его работы и, как следствие, к росту потерь газотурбинного двигателя. Однако при этом возрастает количество тепла, которое передается питательной воде от промежуточного охлаждения сжимаемого воздуха. Соответственно, в предлагаемом способе повышается энтальпия впрыскиваемого в камеру сгорания водяного пара, и его больше требуется для охлаждения камеры сгорания. Далее этот дополнительный водяной пар совершает работу в турбине. В связи с небольшим увеличением расхода охлаждающего пара возрастает унос скрытой теплоты конденсации (СТК) в конденсаторе. Данное возрастание уносимого из цикла тепла компенсируется частичным возвратом СТК в цикл в результате подогрева воздуха на входе в воздушный компрессор теплом нагретой отработавшей циркуляционной воды. Проведенные расчеты показывают, что кпд цикла практически не изменяется, но при этом стабилизируется температура воздуха на входе в воздушный компрессор.
Общий расход циркуляционной охлаждающей воды намного превышает необходимый для того, чтобы поддерживать расчетную температуру воздуха на входе в воздушный компрессор выше 0°С, что гарантированно обеспечивает постоянство температуры воздуха перед воздушным компрессором, а при минусовых значениях температуры окружающего воздуха исключается обледенение воздухозаборного устройства. Температуру воздуха на входе в воздушный компрессор можно держать постоянной, регулируя при необходимости расход отработавшей нагретой циркуляционной воды через воздухоподогреватель. Данное обстоятельство, в свою очередь, приводит к постоянству вырабатываемой мощности и работе ПГУ на номинальном режиме в широком диапазоне изменения температуры окружающего воздуха, что повышает ресурс ПГУ.
При включении в схему паровой турбины, параметры пара перед ней не превышают характерных параметров в типовых паровых турбинах. При этом давление в камере сгорания перед парогазовой турбиной находится в диапазоне давлений, характерных для типовых газовых энергетических турбин. Вариант выполнения схемы ПГУ со встроенной паровой турбиной существенно упрощает модернизацию газовых турбин действующих стационарных газотурбинных установок по предлагаемому способу работы ПГУ. Модернизированные агрегаты установки: камера сгорания и парогазовая турбина конструктивно будут иметь незначительные отличия от соответствующих типовых агрегатов.
На фиг.1-4 представлены варианты выполнения принципиальной тепловой схемы ПГУ с парогазовой турбиной. На фиг.1-4 не показано типовое оборудование, присутствующее в парогазовых схемах, например система подачи топлива, блоки химводоподготовки, блок деаэрации, конденсатные и питательные насосы и т.п. Также не показана схема парового охлаждения горячих частей проточной части парогазовой турбины. Теплообменники для генерации охлаждающего пара на фиг.1-4 являются элементами парогенератора, схемы которого могут отличаться от изображенных на фиг.1-4.
ПГУ содержит воздушный компрессор первого каскада сжатия 1, воздушный компрессор второго каскада сжатия 2, камеру сгорания 3, парогазовую турбину высокого давления (ТВД) 4, парогазовую турбину низкого давления (ТНД) 5, электрогенератор 6, вакуумный конденсатор 7, вакуумный компрессор 8, теплообменник охлаждения уходящих газов 9, теплообменник промежуточного охлаждения воздуха 10, дополнительный теплообменник промежуточного охлаждения воздуха 11, догревающий теплообменник 12, воздухоподогреватель 13, атмосферный конденсатор 14, емкость-накопитель 15, градирню 16, воздушный топливоподогреватель 17 и в варианте схемы на Фиг.4 паровую турбину 18.
На Фиг.1 воздушный компрессор 1 входом подключен к выходу из воздухоподогревателя 13, а выходом подключен к входу воздуха в теплообменник 10 и входу воздуха в теплообменник 11. Теплообменник 10 своим выходом воздуха соединен с выходом воздуха из топливоподогревателя 17 и входом воздушного компрессора 2, теплообменник 11 своим выходом воздуха соединен с входом воздуха в топливоподогреватель 17. Воздушный компрессор сжатия 2 своим выходом соединен с входом воздуха в камеру сгорания 3, вход топлива в которую присоединен к выходу топлива из топливоподогревателя 17, а паровой вход камеры сгорания 3 подключен к выходу воды/водяного пара из теплообменника 12. Выходом парогазовой смеси камера сгорания 3 подключена к входу в ТВД 4, которая выходом парогазовой смеси подключена к входу парогазовой смеси в теплообменник 12, а выход парогазовой смеси из теплообменника 12 подключен к входу в ТНД 5. Вакуумный конденсатор 7 входом для парогазовой смеси подключен к выходу из ТНД 5, выходом для не сконденсировавшихся газообразных продуктов сгорания - к входу вакуумного компрессора 8. Вакуумный конденсатор 7 входом для воды подключен к выходу воды из градирни 16, выходом для воды вакуумный конденсатор 7 соединен с входом воды в градирню 16, с входом воды в атмосферный конденсатор 14 и с входом воды в теплообменник 9, выход воды из которого соединен с входом воды в теплообменник 11 (Фиг.1). В зависимости от варианта выполнения принципиальной тепловой схемы ПГУ выход воды из вакуумного конденсатора 7 допускает подключение к входу воды в теплообменник 10 (Фиг.2) и к входу воды в воздухоподогреватель 13 (Фиг.2) в различном сочетании между Фиг.1-4. Вход воды в атмосферный конденсатор 14 также допускает подключение к выходу воды из градирни 16 (Фиг.3). Выход воды из воздухоподогревателя 13 соединен с входом воды в градирню 16 и емкостью-накопителем 15. Вход воздуха в воздухоподогреватель 13 соединен с атмосферой. Выход не сконденсировавшихся газообразных продуктов сгорания из вакуумного конденсатора 7 подключен к входу вакуумного компрессора 8. Выход не сконденсировавшихся газообразных продуктов сгорания из вакуумного компрессора 8 соединен с входом не сконденсировавшихся газообразных продуктов сгорания теплообменника 9, а выход охлажденных не сконденсировавшихся газообразных продуктов сгорания из теплообменника 9 соединен с входом в атмосферный конденсатор 14. Выход газов из атмосферного конденсатора 14 сообщается с атмосферой, а выход воды соединен с входом воды в теплообменник 10 и воздухоподогреватель 13. В зависимости от варианта выполнения принципиальной тепловой схемы ПГУ выход воды из атмосферного конденсатора 14 допускает подключение к входу воды в градирню 16 (Фиг.3) и емкости-накопителю 15 (Фиг.3) в различном сочетании между Фиг.1-4. Выход воды/водяного пара из теплообменника 11 соединен с входом для воды/водяного пара из теплообменника 11 в теплообменнике 12, выход воды/водяного пара из теплообменника 10 соединен с входом для воды/водяного пара из теплообменника 10 в теплообменнике 12.
В схеме ПГУ с паровой турбиной (Фиг.4) выход охлаждающего пара теплообменника 12 соединен с входом в паровую турбину 18, выход которой соединен с паровым входом камеры сгорания 3. Паровая турбина может быть выполнена на отдельном валу и иметь отдельный генератор.
ПГУ в варианте схемы, показанном на Фиг.1, работает следующим образом.
Атмосферный воздух предварительно нагревают в воздухоподогревателе 13, затем сжимают с промежуточным охлаждением в теплообменниках 10 и 11 и подают в зону горения камеры сгорания 3, в которую подают топливо, которое предварительно подогревают в топливоподогревателе 17, и полученную горючую смесь сжигают. Одновременно в зону смешения камеры сгорания 3 вводят водяной пар из теплообменника 12. Образовавшуюся парогазовую смесь направляют в ТВД 4, расширяют и далее направляют через теплообменник 12 в ТНД 5, где расширяют и затем направляют в вакуумный конденсатор 7. Не сконденсировавшиеся газообразные продукты сгорания отводят из вакуумного конденсатора 7 вакуумным компрессором 8, охлаждают в теплообменнике 9 и подают в атмосферный конденсатор 14, где охлаждают водой с выхода из вакуумного конденсатора 7 и далее выпускают в атмосферу.
Часть воды из вакуумного конденсатора 7 подают в теплообменник 9, а другую часть воды направляют в градирню 16. Одну часть воды с выхода атмосферного конденсатора 14 направляют в теплообменник 10 для ее нагрева, другую часть воды направляют в воздухоподогреватель 13 для нагрева воздуха. Из воздухоподогревателя 13 воду далее подают в градирню 16, откуда подают на вход в вакуумный конденсатор 7. Излишки сконденсированной воды, если это предусмотрено режимом работы ПГУ, направляют в емкость-накопитель 15.
Настоящее изобретение может быть использовано в энергетике, судостроении, на газоперекачивающих станциях и в других отраслях промышленности, где используют установки с парогазовым циклом.

Claims (5)

1. Способ работы парогазовой установки заключается в том, что воздушным компрессором сжимают воздух с промежуточным охлаждением, который подают в зону горения камеры сгорания, в которую одновременно подают топливо, образовавшиеся продукты сгорания смешивают в зоне смешения камеры сгорания с водяным паром с получением на выходе из камеры сгорания парогазовой смеси, которую в качестве рабочего тела направляют в парогазовую турбину, в которой энергию потока парогазовой смеси преобразуют в механическую энергию вращения ротора турбины, далее водяной пар частично конденсируют в вакуумном конденсаторе, разрежение в котором создается вакуумным компрессором, отводящим несконденсированные газообразные продукты сгорания, сконденсированную воду нагревают в теплообменниках, при этом установку снабжают дополнительным теплообменником охлаждения воздуха, в который направляют часть воздуха после первого каскада сжатия на нагрев питательной воды, выходящей из теплообменника охлаждения уходящих газов.
2. Способ работы парогазовой установки по п.1, отличающийся тем, что установку снабжают воздушным топливоподогревателем, в который направляют воздух после дополнительного теплообменника охлаждения воздуха для подогрева топлива.
3. Способ работы парогазовой установки по п.1, отличающийся тем, что установку снабжают атмосферным конденсатором, в котором в требуемом количестве конденсируют водяной пар из парогазовой смеси, выходящей из теплообменника, охлаждающего уходящие газы.
4. Способ работы парогазовой установки по п.1, отличающийся тем, что установку снабжают воздухоподогревателем и, если температура окружающего воздуха ниже температуры отработавшей нагретой циркуляционной охлаждающей воды, воздух подают в воздухоподогреватель для нагрева до температуры выше 0°С теплом отработавшей нагретой циркуляционной охлаждающей воды, а подогретый воздух направляют на вход в воздушный компрессор.
5. Способ работы парогазовой установки по п.1, отличающийся тем, что установку снабжают паровой турбиной, на вход которой направляют генерируемый при высоком давлении охлаждающий пар, в паровой турбине пар расширяют и направляют далее в камеру сгорания.
RU2011113174/06A 2011-04-06 2011-04-06 Способ работы парогазовой установки RU2476690C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011113174/06A RU2476690C2 (ru) 2011-04-06 2011-04-06 Способ работы парогазовой установки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011113174/06A RU2476690C2 (ru) 2011-04-06 2011-04-06 Способ работы парогазовой установки

Publications (2)

Publication Number Publication Date
RU2011113174A RU2011113174A (ru) 2012-10-20
RU2476690C2 true RU2476690C2 (ru) 2013-02-27

Family

ID=47144750

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011113174/06A RU2476690C2 (ru) 2011-04-06 2011-04-06 Способ работы парогазовой установки

Country Status (1)

Country Link
RU (1) RU2476690C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690604C1 (ru) * 2018-08-17 2019-06-04 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Парогенерирующая установка

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561770C2 (ru) * 2013-12-25 2015-09-10 Александр Альбертович Агеев Способ работы парогазовой установки

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879616A (en) * 1973-09-17 1975-04-22 Gen Electric Combined steam turbine and gas turbine power plant control system
EP0487244A2 (en) * 1990-11-20 1992-05-27 General Electric Company Reheat steam cycle for a steam and gas turbine combined cycle system
RU2208684C1 (ru) * 2001-11-27 2003-07-20 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Способ работы парогазовой установки
RU2230921C2 (ru) * 2001-03-12 2004-06-20 Александр Николаевич Уварычев Способ работы парогазовой электростанции на комбинированном топливе (твердом с газообразным или жидким) и парогазовая установка для его реализации
UA27810U (en) * 2007-07-27 2007-11-12 Kyiv Polytechnical Institute Gas-steam turbine plant
RU2412359C1 (ru) * 2009-12-30 2011-02-20 Александр Альбертович Агеев Способ работы парогазовой установки

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879616A (en) * 1973-09-17 1975-04-22 Gen Electric Combined steam turbine and gas turbine power plant control system
EP0487244A2 (en) * 1990-11-20 1992-05-27 General Electric Company Reheat steam cycle for a steam and gas turbine combined cycle system
RU2230921C2 (ru) * 2001-03-12 2004-06-20 Александр Николаевич Уварычев Способ работы парогазовой электростанции на комбинированном топливе (твердом с газообразным или жидким) и парогазовая установка для его реализации
RU2208684C1 (ru) * 2001-11-27 2003-07-20 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Способ работы парогазовой установки
UA27810U (en) * 2007-07-27 2007-11-12 Kyiv Polytechnical Institute Gas-steam turbine plant
RU2412359C1 (ru) * 2009-12-30 2011-02-20 Александр Альбертович Агеев Способ работы парогазовой установки

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690604C1 (ru) * 2018-08-17 2019-06-04 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Парогенерирующая установка

Also Published As

Publication number Publication date
RU2011113174A (ru) 2012-10-20

Similar Documents

Publication Publication Date Title
RU2215165C2 (ru) Способ регенерации тепла выхлопных газов в преобразователе органической энергии с помощью промежуточного жидкостного цикла (варианты) и система регенерации тепла выхлопных газов
CA2798681C (en) Method for operating a combined cycle power plant
JP4898854B2 (ja) 発電プラント
CN103967544A (zh) 燃气-蒸汽联合循环发电机组余热利用系统
KR20150050443A (ko) 개선된 효율을 갖는 조합형 순환 발전소
US20110016870A1 (en) Method and apparatus for improved gas turbine efficiency and augmented power output
CN210176512U (zh) 一种利用燃机余热的海水淡化系统
RU2335641C2 (ru) Способ повышения кпд и мощности двухконтурной атомной станции
CN111908542A (zh) 一种利用燃机余热的海水淡化系统及方法
RU2412359C1 (ru) Способ работы парогазовой установки
RU2476690C2 (ru) Способ работы парогазовой установки
RU2561770C2 (ru) Способ работы парогазовой установки
RU2596293C2 (ru) Способ утилизации энергии геотермальных вод
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
RU2411368C2 (ru) Способ работы энергетической установки с газотурбинным блоком
KR101753526B1 (ko) 복합화력발전시스템
KR101935637B1 (ko) 복합화력발전시스템
RU2611138C1 (ru) Способ работы парогазовой установки электростанции
CN104594964A (zh) 一种新型单轴天然气联合循环供热机组系统
RU2693567C1 (ru) Способ работы парогазовой установки электростанции
RU2625892C1 (ru) Способ работы парогазовой установки, работающей с использованием парового охлаждения
RU2439446C1 (ru) Нагреватель текучей среды
WO2015187064A2 (ru) Всережимная парогазовая установка
RU2605879C2 (ru) Парогазовая установка электростанции
RU2756940C1 (ru) Способ работы парогазовой установки электростанции

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210407