WO2015187064A2 - Всережимная парогазовая установка - Google Patents

Всережимная парогазовая установка Download PDF

Info

Publication number
WO2015187064A2
WO2015187064A2 PCT/RU2015/000418 RU2015000418W WO2015187064A2 WO 2015187064 A2 WO2015187064 A2 WO 2015187064A2 RU 2015000418 W RU2015000418 W RU 2015000418W WO 2015187064 A2 WO2015187064 A2 WO 2015187064A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
waste heat
heat boiler
steam
turbine
Prior art date
Application number
PCT/RU2015/000418
Other languages
English (en)
French (fr)
Other versions
WO2015187064A3 (ru
Inventor
Максим Юрьевич АЛТУХОВ
Павел Андреевич БЕРЕЗИНЕЦ
Андрей Михайлович БОЧАРОВ
Владислав Фролович ГУТОРОВ
Александр Георгиевич ЗАРЕВСКИЙ
Ирина Николаевна КРЫЛОВА
Игорь Анатольевич ЛОБАЧ
Вероника Николаевна МАРКИНА
Игорь Иванович ПУШКАРЕВ
Галина Евгеньевна ТЕРЁШИНА
Петр Петрович ТРУСЕНКОВ
Анатолий Григорьевич ТУМАНОВСКИЙ
Original Assignee
Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ"
Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ", Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" filed Critical Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ"
Publication of WO2015187064A2 publication Critical patent/WO2015187064A2/ru
Publication of WO2015187064A3 publication Critical patent/WO2015187064A3/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to the field of power engineering and can be used at power plants with cogeneration plants.
  • the technical results of the present invention are to increase the maneuverability of vocational schools when generating both thermal and electric energy, as well as increasing the efficiency of vocational schools.
  • the superheater is connected by a pipeline to the inlet of the inlet, the output of which is connected to the heating plant and a condenser.
  • the exhaust gases of GT 1 enter KU 2 and sequentially pass through a high-pressure steam superheater (PeVD), a high pressure evaporator (IED), a high pressure economizer (EED), a low pressure superheater (PeND), a low pressure evaporator (IND), gas condensate heater (GPC), after which they are released into the atmosphere.
  • the KU provides a device for additional combustion of fuel in the gas turbine exhaust stream, made in the form of two chambers - KS-1 and KS-2 (two stages of additional combustion).
  • the KS-1 chamber is located at the entrance to the KU before PeVD
  • the second KS-2 chamber is located in the main gas duct after the KU in front of GPK 3.
  • the KS-1 chamber is designed to increase the parameters of the generated steam, the KS-2 chamber to increase the heat load of water -Water heat exchanger (VVTO) 8 and heat supply to external consumers.
  • High and low pressure steam from the KU enters the PT 4.
  • a condensation unit designed for condensation of the exhaust steam consists of a condenser 5, a vacuum pump (HV), condensate pumps (KH) and a vacuum deaerator (VD) 6. Condensate with the help of SC through the VD is fed directly to the CCP.
  • HV vacuum pump
  • KH condensate pumps
  • VD vacuum deaerator
  • Condensate with the help of SC through the VD is fed directly to the CCP.
  • the condensate temperature in front of it is maintained not lower than 60 ° ⁇ by means of HP or recirculation pumps (LV) 7.
  • the condensate is directed to a low-pressure drum (BND), which has a built-in deaeration device, evaporates to the IND, and the resulting steam is then superheated to the HDPE and sent to the PT 4.
  • BND low-pressure drum
  • Feed water from the low-pressure drum by the high-pressure feed pumps It is fed to the EIA, where it is heated, and then enters the high-pressure drum of the high pressure washer.
  • the BVD water evaporates in the IED, the resulting steam is overheated in the PeVD and sent to the Fri 4.
  • the heating plant consists of a steam boiler connected to the heat removal of the PT, and the VVTO located in the recirculation line of the gas compressor station.
  • the most economical operating modes of vocational schools are those without additional fuel combustion in KS-1 and KS-2.
  • the electric power is changed by the load of the gas turbine and the heat pump, and the heat supply is changed by the change in the steam consumption in the heating selection and the condensate flow through the VVTO.
  • the maximum electric power is achieved when additional fuel is burned in the compressor station of the first stage, the heat release is ensured, as in the previous case, by changing the steam consumption in the heating exhaust and the condensate flow through the IHE.
  • An increase in heat supply can be achieved by burning additional fuel in the compressor station of the second stage and a corresponding increase in water flow through the IWE.
  • the maximum heat release and minimum electric power are provided when both chambers of additional fuel combustion are switched on and the PT is switched off. In this case, the entire steam flow generated in the KU is used It is used in the network water heater, and the maximum water flow is pumped through the VVTO.

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение предназначено для использования на электрических станциях с теплофикационными установками. Схема комбинированной парогазовой установки может быть также применена при реконструкции устаревших ТЭЦ и на вновь строящихся автономных источниках тепло- и электроснабжения. Теплофикационная парогазовая энергетическая установка содержит по меньшей мере одну газовую турбину, в выхлопном газовом тракте которой установлен котел-утилизатор, устройство для дополнительного сжигания топлива вне камеры сгорания газовой турбины, по меньшей мере одну паровую турбину, подключенную к по меньшей мере одному котлу-утилизатору, а также газовый подогреватель конденсата паровой турбины, установленный в газоходе указанного выхлопного газового тракта за каждым котлом-утилизатором. Отличие: устройство для дополнительного сжигания топлива выполнено в виде двух камер сгорания, одна из которых установлена в газоходе на входе в котел-утилизатор, а вторая - в газоходе после котла-утилизатора перед газовым подогревателем конденсата. Установка может работать в трех режимах: в базовом режиме, в режиме снятия пиковых нагрузок, в режиме частичной нагрузки. Изобретение позволяет повысить маневренность, экономичность и надежность в работе ПТУ.

Description

ВСЕРЕЖИМНАЯ ПАРОГАЗОВАЯ УСТАНОВКА
Область техники
Изобретение относится к области теплоэнергетики и может быть использова- но на электрических станциях с теплофикационными установками.
Предшествующий уровень техники
Известна парогазовая установка (ПТУ) ("Энергомашиностроение", 1978, N 4, с. 5-7) с высокотемпературной газовой турбиной (ГТ), в которой генерация пара осуществляется как за счет теплоты отходящих газов после турбины, так и за счет подачи топлива в дополнительную камеру сгорания (КС). Для охлаждения проточной части ГТ часть пара отбирается из соответствующей по давлению ступени паровой турбины (ПТ). Пройдя охлаждающий тракт ГТ, пар смешивается с основным потоком пара в камере смешения, установ- ленной между цилиндром высокого давления и цилиндром низкого давления ПТ. Указанная схема не позволяет в широком диапазоне регулировать как тепловую, так и электрическую мощность, так как в дополнительную КС вводится лишь небольшая масса топлива.
Раскрытие изобретения
Техническими результатами настоящего изобретения являются повышение маневренности ПТУ при выработке как тепловой, так и электрической энер- гии, а также повышение экономичности ПТУ.
Указанные технические результаты достигаются тем, что в теплофикацион- ной парогазовой энергетической установке, содержащей по меньшей мере одну ГТ, в выхлопном газовом тракте которой установлен котел-утилизатор (КУ), устройство для дополнительного сжигания топлива вне КС газовой турбины, по меньшей мере одну ПТ, подключенную к по меньшей мере од- ному КУ, а также газовый подогреватель конденсата (ГПК) паровой турбины, установленный в газоходе указанного выхлопного газового тракта за каждым КУ согласно изобретению устройство для дополнительного сжигания топли- ва выполнено в виде двух КС, одна из которых установлена в газоходе на входе в КУ, а вторая - в газоходе после КУ перед ГПК.
Пароперегреватель связан трубопроводом с входом ПТ, выход которой со- единен с теплофикационной установкой и конденсатором.
Причинно-следственная связь между отличительными признаками изобрете- ния и достигаемыми техническими результатами состоит в следующем.
Всережимность ПТУ обеспечивается независимым регулированием электри- ческой мощности и отпуском тепловой энергии, возможностью глубокой разгрузки по электрической мощности ( до 25-30 % от номинального значе- ния) и нагружением до пикового значения (120 % от номинального значе- ния), возможностью изменения при этом отпуска тепла в соответствии с гра- фиком отопительной нагрузки (от пикового значения до её отсутствия). Эта проблема решается применением одно- или двухступенчатого сжигания до- полнительного топлива в КС КУ. Перед КУ установлена КС первой ступени, а перед ГПК - КС второй ступени.
Отсутствие жесткой связи между отпуском тепла и электроэнергии допускает участие ПТУ в регулировании частоты и мощности в энергосистеме.
Технические преимущества предлагаемой ПТУ по сравнению с известными заключается в том, что установка имеет высокую маневренность при выра- ботке как тепловой, так и электрической энергии, так как способна работать в трех режимах:
- в базовом;
- в режиме снятия пиковых нагрузок;
- в режиме частичной нагрузки. Схема КУ с камерами дополнительного сжигания топлива - КС до котла и КС после котла перед ГПК - позволяет значительно поднять температуру га- зов в тракте котла, оптимизировать различные режимы работы ГТУ и паро- вой турбины и повысить в целом экономичность ПТУ при работе на всех режимах.
Краткое описание фигур чертежа На чертеже изображена принципиальная схема ПТУ.
Подробное описание изобретения
Выхлопные газы ГТ 1 поступают в КУ 2 и последовательно проходят паро- перегреватель высокого давления (ПеВД), испаритель высокого давления (ИВД), экономайзер высокого давления (ЭВД), перегреватель низкого давле- ния (ПеНД), испаритель низкого давления (ИНД), газовый подогреватель конденсата (ГПК), после которого выбрасываются в атмосферу. В КУ преду- сматривается устройство для дополнительного сжигания топлива в потоке выхлопных газов ГТУ, выполненное в виде двух камер - КС-1 и КС-2 (две ступени дополнительного сжигания). Камера КС-1 расположена на входе в КУ перед ПеВД, вторая камера КС-2 расположена в основном газоходе после КУ перед ГПК 3. Камера КС-1 предназначена для повышения параметров вырабатываемого пара, камера КС-2 - для увеличения тепловой нагрузки во- до-водяного теплообменника (ВВТО) 8 и отпуска тепла внешним потребите- лям. Пар высокого и низкого давления из КУ поступает в ПТ 4. Конденсаци- онная установка, предназначенная для конденсации отработавшего пара, со- стоит из конденсатора 5, вакуумного насоса (ВН), конденсатных насосов (КН) и вакуумного деаэратора (ВД) 6. Конденсат с помощью КН через ВД подаётся непосредственно в ГПК. Для исключения кислородной коррозии последних рядов труб ГПК температура конденсата перед ним поддержива- ется не ниже 60°С посредством ВД или рециркуляционных насосов (РН) 7.
з После ГПК конденсат направляется в барабан низкого давления (БНД), кото- рый имеет встроенное деаэрационное устройство, испаряется в ИНД, а полу- ченный пар затем перегревается в ПеНД и направляется в ПТ 4. Питательная вода из барабана низкого давления питательными насосами ПН высокого давления подается в ЭВД, где подогревается, а затем поступает в барабан вы- сокого давления БВД. После БВД вода испаряется в ИВД, полученный пар перегревается в ПеВД и направляется в ПТ 4. Теплофикационная установка состоит из парового бойлера, подключенного к теплофикационному отбору ПТ, и ВВТО, находящегося в линии рециркуляции ГПК.
Рассмотрим основные режимы работы теплофикационной парогазовой энер- гетической установки.
Базовый режим
Наиболее экономичными режимами работы ПТУ являются режимы без до- полнительного сжигания топлива в КС- 1 и КС-2. Электрическая мощность в этом случае изменяется нагрузкой ГТУ и ПТ, а отпуск тепла - изменением расхода пара в отопительный отбор и расхода конденсата через ВВТО.
Режим снятия пиковых нагрузок
Максимальная электрическая мощность достигается при сжигании дополни- тельного топлива в КС первой ступени, отпуск тепла при этом обеспечивает- ся, как и в предыдущем случае, изменением расхода пара в отопительный от- бор и расхода конденсата через ВВТО. Увеличение отпуска тепла может до- стигаться при сжигании дополнительного топлива в КС второй ступени и со- ответствующем увеличении расхода воды через ВВТО.
Режим частичной нагрузки
Предельный отпуск тепла и минимальная электрическая мощность обеспечи- ваются при включенных обеих камерах сжигания дополнительного топлива и отключении ПТ. В этом случае весь расход пара, вырабатываемый в КУ, ис- пользуется в подогревателе сетевой воды, а через ВВТО прокачивается симальный расход воды.

Claims

Формула изобретения
Теплофикационная парогазовая энергетическая установка, содержащая по меньшей мере одну газовую турбину, в выхлопном газовом тракте которой установлен котел-утилизатор, устройство для дополнительного сжигания топлива вне камеры сгорания газовой турбины, по меньшей мере одну паро- вую турбину, подключенную к по меньшей мере одному котлу-утилизатору, а также газовый подогреватель конденсата паровой турбины, установленный в газоходе указанного выхлопного газового тракта за каждым котлом- утилизатором, отличающаяся тем, что устройство для дополнительного сжигания топлива выполнено в виде двух камер сгорания, одна из которых установлена в газоходе на входе в котел-утилизатор, а вторая - в газоходе после котла-утилизатора перед газовым подогревателем конденсата.
PCT/RU2015/000418 2014-06-04 2015-07-09 Всережимная парогазовая установка WO2015187064A2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014122473 2014-06-04
RU2014122473 2014-06-04

Publications (2)

Publication Number Publication Date
WO2015187064A2 true WO2015187064A2 (ru) 2015-12-10
WO2015187064A3 WO2015187064A3 (ru) 2016-01-28

Family

ID=54767530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000418 WO2015187064A2 (ru) 2014-06-04 2015-07-09 Всережимная парогазовая установка

Country Status (1)

Country Link
WO (1) WO2015187064A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953201A (zh) * 2016-06-24 2016-09-21 江苏太湖锅炉股份有限公司 立式补燃式余热锅炉
CN108954374A (zh) * 2018-08-16 2018-12-07 哈尔滨锅炉厂有限责任公司 联合循环余热锅炉补燃风系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2420664C2 (ru) * 2009-05-18 2011-06-10 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Многорежимная теплофикационная установка

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953201A (zh) * 2016-06-24 2016-09-21 江苏太湖锅炉股份有限公司 立式补燃式余热锅炉
CN108954374A (zh) * 2018-08-16 2018-12-07 哈尔滨锅炉厂有限责任公司 联合循环余热锅炉补燃风系统
CN108954374B (zh) * 2018-08-16 2023-05-30 哈尔滨锅炉厂有限责任公司 联合循环余热锅炉补燃风系统

Also Published As

Publication number Publication date
WO2015187064A3 (ru) 2016-01-28

Similar Documents

Publication Publication Date Title
RU2532635C2 (ru) Аккумуляция электроэнергии тепловым аккумулятором и обратное получение электроэнергии посредством термодинамического кругового процесса
RU2595192C2 (ru) Электростанция с встроенным предварительным нагревом топливного газа
US20180223699A1 (en) Gas-steam combined cycle centralized heat supply device and heat supply method
CN105026731A (zh) 燃气涡轮机用燃料的预热装置、具有该预热装置的燃气涡轮机设备、以及燃气涡轮机用燃料的预热方法
KR20150050443A (ko) 개선된 효율을 갖는 조합형 순환 발전소
RU2650232C1 (ru) Теплофикационная парогазовая установка
RU2549743C1 (ru) Теплофикационная газотурбинная установка
US9074491B2 (en) Steam cycle system with thermoelectric generator
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
RU101090U1 (ru) Энергетическая надстроечная парогазовая установка (варианты)
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
WO2015187064A2 (ru) Всережимная парогазовая установка
RU2280768C1 (ru) Теплоэлектроцентраль с газотурбинной установкой
RU2326246C1 (ru) Парогазовая установка для комбинированного производства тепловой и электрической энергии
CN104594964A (zh) 一种新型单轴天然气联合循环供热机组系统
RU149975U1 (ru) Всережимная парогазовая установка
RU2528190C2 (ru) Парогазовая установка
RU2727274C1 (ru) Когенерационная газотурбинная энергетическая установка
RU2561770C2 (ru) Способ работы парогазовой установки
RU126373U1 (ru) Парогазовая установка
RU2476690C2 (ru) Способ работы парогазовой установки
RU2015149555A (ru) Способ работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройство для его осуществления
RU167924U1 (ru) Бинарная парогазовая установка
RU2656769C1 (ru) Способ работы газотурбодетандерной энергетической установки тепловой электрической станции
JP2009180101A (ja) エネルギー回収機能を備えた減圧設備

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802643

Country of ref document: EP

Kind code of ref document: A2