RU2788554C1 - Способ переработки тяжелых нефтей - Google Patents

Способ переработки тяжелых нефтей Download PDF

Info

Publication number
RU2788554C1
RU2788554C1 RU2022105206A RU2022105206A RU2788554C1 RU 2788554 C1 RU2788554 C1 RU 2788554C1 RU 2022105206 A RU2022105206 A RU 2022105206A RU 2022105206 A RU2022105206 A RU 2022105206A RU 2788554 C1 RU2788554 C1 RU 2788554C1
Authority
RU
Russia
Prior art keywords
amorphous aluminosilicate
oil
cracking
temperature
minutes
Prior art date
Application number
RU2022105206A
Other languages
English (en)
Inventor
Никита Николаевич Свириденко
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН)
Application granted granted Critical
Publication of RU2788554C1 publication Critical patent/RU2788554C1/ru

Links

Abstract

Изобретение относится к области нефтепереработки, а именно к переработке тяжелой нефти, и может быть использовано для получения бензиновой и дизельной фракций. Изобретение касается способа переработки тяжелых нефтей в бензиновые и дизельные фракции путем каталитического крекинга при температуре 450°С в течение 100 минут проводят в присутствии аморфного алюмосиликата и модификатора, состоящего из смеси нихрома и карбида вольфрама при соотношении 3:1, взятых в количестве - аморфного алюмосиликата от 0,1 до 3,0% мас. от массы нефти и модификатора 0,5-2,0% мас. от массы аморфного алюмосиликата. Технический результат - увеличение выхода бензиновой (НК-200°С) и дизельной (200-360°С) фракций до 27,2 и 45,9% мас. соответственно, и замедление закоксовывания аморфного алюмосиликата в 2,5-3 раза с помощью предварительного модифицирования. 2 табл., 12 пр.

Description

Изобретение относится к области нефтепереработки, а именно к переработке тяжелой нефти, и может быть использовано для получения бензиновой и дизельной фракций.
Поскольку тяжелые нефти и природные битумы отличаются повышенным содержанием асфальтенов, смол (до 50% мае), гетероатомных сера-, азот-, кислородсодержащих соединений, а также металлокомплексов ванадила и никеля, то переработка природных битумов с использованием обычных технологий невозможна без использования предварительного облагораживания и получения т.н. «синтетической нефти». При этом используется ряд процессов, термический, каталитический крекинг и гидрокрекинг.При термическом крекинге тяжелого сырья, чтобы получить дополнительные количества легких фракций приходится проводить процесс при высоких температурах, что приводит к высоким выходам кокса и газа.
Гидропроцессы для переработки тяжелых нефтей на сегодняшний день является весьма затратным, поскольку требуется дорогостоящее оборудование, высокоактивные катализаторы, устойчивые к дезактивации, и необходимо присутствие большого количества в реакционной зоне водородсодержащего газа и создание повышенного давления. Каталитический крекинг экономичнее и проще гидрокрекинга. Однако каталитическая переработка тяжелых нефтей может осложняться конденсацией смолисто-асфальтеновых компонентов с образованием продуктов уплотнения и, как следствие, быстрой дезактивацией катализаторов.
Известен способ каталитического крекинга тяжелых нефтей в присутствии катализатора цеолита Y в активной водородной форме (HY) с диаметром пор 7,4 А с добавкой нанопо-рошка никеля, взятого в количестве 2,0% мас. (ЖУРНАЛ СИБИРСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА. СЕРИЯ: ХИМИЯ. Красноярск: Изд-во: Сибирский федеральный университет, 2012 г. №2 (5) с. 224-235). Недостатком данного способа является высокое содержание никеля в катализаторе и высоком коксообразовании при каталитическом крекинге.
Известен способ получения легкокипящих продуктов из тяжелого углеводородного сырья, входящего в контакт с катализатором ряда ZSM и/или цеолитов ZRP при 450-600°С, и отношение катализатор/исходное сырье в пределах от 1 до 30 (Патент РФ №2464298). Недостатком данного способа является высокая рабочая температура процесса, содержание катализатора в процессе и значительный выход побочный продуктов в процессе каталитического крекинга.
Наиболее близким по технической сущности и достигаемому техническому результату является способ каталитического крекинга природного битума по патенту РФ №2600448 («Способ переработки природных битумов» Патент на изобретение №2600448, Головко А.К., Свириденко Н.Н., Кривцов Е.Б., Восмериков А.В., Восмерикова Л.Н., Аглиуллин М.Р., Куте-пов Б.И., Харассов Р.У.) в присутствии мезопористого катализатора с диаметром пор 50 А взятого в количестве 5-10% мас. и модифицированного наноразмерным порошком (НРП) никеля. Данный НРП характеризуется средним размером 20 нм и был получен полученного методом газофазного синтеза. Количество никеля на катализаторе варьировали от 0,5 до 5,0% при температуре 450°С в течение 100 мин. Недостатком данного способа является высокое содержание никеля и мезопористого катализатора при каталитическом крекинге.
Задачей изобретения является углубление процесса переработки тяжелых нефтей с замедлением дезактивации носителя (аморфного алюмосиликата).
Техническим результатом изобретения будет увеличение выхода бензиновой (НК-200°С) и дизельной (200-360°С) фракций до 27,2 и 45,9% мас. соответственно, и замедлением закоксовывания аморфного алюмосиликата в 2,5-3 раза с помощью предварительного модифицирования.
Технический результат достигается проведением каталитического крекинга тяжелых нефтей в автоклавах в среде воздуха в присутствии аморфного алюмосиликата с диаметром пор 70 Å взятого в количестве 0,1 до 3% мас. и модифицированного смесью нихрома и карбида вольфрама (взятых в соотношение 3 к 1) в количестве 0,5-2,0% при температуре крекинга 450°С в течение 100 мин.
Больший диаметр пор катализатора способствует более глубокому крекингу крупных молекул масел и смол нефти, что позволяет получить дополнительные количества легкоки-пящих продуктов без образования значительных количеств газа и кокса. Модификация катализатора нихромом и карбидом вольфрама способствует диспропорционированию водорода в составе сырье и переносу его из высокомолекулярных соединений в компоненты бензиновые и дизельные фракции, а также отложению кокса не на поверхности алюмосиликата, а на частицах нихрома и карбида вольфрама.
Количественную оценку выхода фракций определяли термографиметрическим методом.
Примеры конкретного выполнения
Эксперименты проводились в автоклавах объемом 12 см3. Смешение порошков аморфного алюмосиликата и смеси нихрома и карбида вольфрама (в отношение 3:1) проводят в вибрационной мельнице КМ-1 в течение 4 ч, затем полученную смесь прокаливают в муфельной печи в атмосфере воздуха при температуре 500°С в течение 2 ч. Использовались две тяжелых нефти - Ашальчинского и Кармальского месторождений. Нефть кармальская содержит в своем составе фракций нк-200°С - 6,7 и 200-360°С - 34,6% мас, а ашальчинская 4,6 и 27,9% мас. соответственно. Количественную оценку выхода фракций определяли термографиметрическим методом.
Примеры конкретного выполнения.
Пример 1. Исходную кармальскую нефть подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 2. К 7 г. исходной кармальской нефти добавляют 0,5% мас. аморфного алюмосиликата (0,035 г. ) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 3. К 7 г. исходной кармальской нефти добавляют 0,5% мас. аморфного алюмосиликата (0,035 г. ) модифицированного 0,5% мас. смеси нихрома и карбида вольфрама (соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 4. К 7 г. исходной кармальской нефти добавляют 0,5% мас. аморфного алюмосиликата (0,035 г. ) модифицированного 0,75% мас. смеси нихрома и карбида вольфрама (соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 5. К 7 г. исходной кармальской нефти добавляют 0,5% мас. аморфного алюмосиликата (0,035 г. ) модифицированного 1,5% мас. смеси нихрома и карбида вольфрама(соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 6. К 7 г. исходной кармальской нефти добавляют 0,5% мас. аморфного алюмосиликата (0,035 г. ) модифицированного 2,0% мас. смеси нихрома и карбида вольфрама(соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 7. Исходную ашальчинскую нефть подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 8. К 7 г. исходной ашальчинской нефти добавляют 1,0% мас. аморфного алюмосиликата (0,07 г. ) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 9. К 7 г. исходной ашальчинской нефти добавляют 1,0% мас. аморфного алюмосиликата (0,07 г. ) модифицированного 0,5% мас. смеси нихрома и карбида вольфрама (соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 10. К 7 г. исходной ашальчинской нефти добавляют 1,0% мас. аморфного алюмосиликата (0,07 г. ) модифицированного 0,75% мас. смеси нихрома и карбида вольфрама (соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 11. К 7 г. исходной ашальчинской нефти добавляют 1,0% мас. аморфного алюмосиликата (0,07 г. ) модифицированного 1,5% мас. смеси нихрома и карбида вольфрама (соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Пример 12. К 7 г. исходной ашальчинской нефти добавляют 1,0% мас. аморфного алюмосиликата (0,07 г. ) модифицированного 2,0% мас. смеси нихрома и карбида вольфрама (соотношение 3:1) и подвергают крекингу в автоклаве при температуре 450°С в среде воздуха в течение 100 минут. Показатели процесса приведены в таблице 1.
Исходный аморфный алюмосиликат имел удельную поверхность (Sуд) - 600 м2/г, размер пор - 7 нм и Vмезопор - 0,74 см3/г. В таблице 2 представлены катализаторы после процесса (№ примера из таблицы 2, 4, 8 и 10). Видно, что предварительная модификация способствует замедлению дезактивации катализатора по Sуд приблизительно в 2,5 раза.
Таким образом, предлагаемый способ позволяет увеличить выход бензиновых и дизельных фракций при меньшем содержании никеля в катализаторе на 1% мас. и выходе кокса на 1,6% мас. по сравнению с прототипом.
Figure 00000001
Figure 00000002

Claims (1)

  1. Способ переработки тяжелых нефтей в бензиновые и дизельные фракции путем каталитического крекинга при температуре 450°С в течение 100 минут в присутствии каталитической системы на основе алюмосиликата, отличающийся тем, что процесс проводят в присутствии аморфного алюмосиликата и модификатора, состоящего из смеси нихрома и карбида вольфрама при соотношении 3:1, взятых в количестве - аморфного алюмосиликата от 0,1 до 3,0% мас. от массы нефти и модификатора 0,5-2,0% мас. от массы аморфного алюмосиликата.
RU2022105206A 2022-02-25 Способ переработки тяжелых нефтей RU2788554C1 (ru)

Publications (1)

Publication Number Publication Date
RU2788554C1 true RU2788554C1 (ru) 2023-01-23

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140251A (en) * 1961-12-21 1964-07-07 Socony Mobil Oil Co Inc Process for cracking hydrocarbons with a crystalline zeolite
RU2464298C2 (ru) * 2007-08-09 2012-10-20 Чайна Петролеум & Кемикал Корпорейшн Способ каталитической конверсии (варианты)
RU2600448C1 (ru) * 2015-10-20 2016-10-20 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) Способ переработки природных битумов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140251A (en) * 1961-12-21 1964-07-07 Socony Mobil Oil Co Inc Process for cracking hydrocarbons with a crystalline zeolite
RU2464298C2 (ru) * 2007-08-09 2012-10-20 Чайна Петролеум & Кемикал Корпорейшн Способ каталитической конверсии (варианты)
RU2600448C1 (ru) * 2015-10-20 2016-10-20 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) Способ переработки природных битумов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N.N. Sviridenko, A.V. Vosmerikov, M.R. Agliullin, B.I. Kutepov, General Features of Catalytic Upgrading of Karmalskoe Heavy Oil in the Presence of Amorphous Aluminosilicates, Petroleum Chemistry, 2020, Vol. 60, No 3, pp. 384-391. Nikita N. Sviridenko, Anatoly K. Golovko, Nadezhda P. Kirik, Alexander G. Anshits, Upgrading of heavy crude oil by thermal and catalytic cracking in the presence of NiCr/WC catalyst, Journal of the Taiwan Institute of chemical Engineers, 112, 2020, p.97-105. *

Similar Documents

Publication Publication Date Title
Reddy et al. Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of petroleum resids
US8691079B2 (en) Compression reactor and process for hydroprocessing
CA1142117A (en) Process for the preparation of gas oil
US4698147A (en) Short residence time hydrogen donor diluent cracking process
RU2024586C1 (ru) Способ переработки тяжелого асфальтенсодержащего углеводородного сырья
RU2788554C1 (ru) Способ переработки тяжелых нефтей
CA1036527A (en) Catalytic hydrodewaxing gas oils and other selective hydrocracking
RU2186090C2 (ru) Способ получения жидких нефтепродуктов гидрогенизацией и деметаллизацией тяжелого нефтяного сырья
US2098400A (en) Process for hydrogenating distillable carbonaceous materials
US3216922A (en) Hydrocarbon conversion catalysts and process for use of the same
CA1198387A (en) Process for the production of low-asphaltenes hydrocarbon mixtures
US4498976A (en) Suppression of light gas production in cracking processes by the addition of highly siliceous materials having high surface area and low acidity
WO2011087877A2 (en) Compression reactor and process for hydroprocessing
US1944236A (en) Process for simultaneously producing high grade motor fuels and lubricants from heavy hydrocarbons by the action of hydrogen
US2301322A (en) Chemical process
US2574449A (en) Process of catalytic desulfurization of naphthenic petroleum hydrocarbons followed by catalytic cracking
US2028348A (en) Process for hydrogenating distillable carbonaceous materials
RU2241022C1 (ru) Способ переработки высокомолекулярного углеводородного сырья
US1921477A (en) Production of valuable hydrocarbons
JPH03163194A (ja) 重質油の変換方法
US1950309A (en) Improved method for the production of hydrocarbon oils from solid carbonaceous material
US2100353A (en) Production of hydrocarbons of low boiling point
RU2600448C1 (ru) Способ переработки природных битумов
US2193772A (en) Conversion of hydrocarbon oils and gases
JPH0617057A (ja) 重質油の軽質化方法