RU2783353C1 - Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры - Google Patents
Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры Download PDFInfo
- Publication number
- RU2783353C1 RU2783353C1 RU2022106469A RU2022106469A RU2783353C1 RU 2783353 C1 RU2783353 C1 RU 2783353C1 RU 2022106469 A RU2022106469 A RU 2022106469A RU 2022106469 A RU2022106469 A RU 2022106469A RU 2783353 C1 RU2783353 C1 RU 2783353C1
- Authority
- RU
- Russia
- Prior art keywords
- hbr
- manufacturing
- etching
- mesa structure
- kmno
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- CPELXLSAUQHCOX-UHFFFAOYSA-N hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- VZJVWSHVAAUDKD-UHFFFAOYSA-N Potassium permanganate Chemical compound [K+].[O-][Mn](=O)(=O)=O VZJVWSHVAAUDKD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 12
- 238000003486 chemical etching Methods 0.000 claims abstract description 11
- 229910000673 Indium arsenide Inorganic materials 0.000 claims abstract description 10
- 238000001771 vacuum deposition Methods 0.000 claims abstract description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000005755 formation reaction Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 5
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000003595 spectral Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000005530 etching Methods 0.000 description 52
- 239000010410 layer Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000004544 DC2 Anatomy 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 230000002530 ischemic preconditioning Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910000807 Ga alloy Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 229910005542 GaSb Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N Potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N Silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000002427 irreversible Effects 0.000 description 1
- 238000001307 laser spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052904 quartz Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Images
Abstract
Изобретение относится к технологии изготовления фоточувствительных элементов на основе полупроводниковых гетероструктур и может использоваться для создания ИК фотоприемников для спектрального диапазона 1.5-3.8 мкм. Способ изготовления фотоэлектрических преобразователей включает изготовление многослойной полупроводниковой гетероструктуры, InAs/InAsSb/InAsSbP, нанесение на фронтальную поверхность полупроводниковой гетероструктуры маски фоторезиста, подготовку поверхности для формирования омических контактов, напыление в вакууме омических контактов и формирование по меньшей мере одной меза-структуры и разделительной сетки. Химическое травление подконтактной области, боковой поверхности меза-структуры и разделительной сетки проводят в травителе, содержащем бромистоводородную кислоту (HBr), перманганат калия (KMnO4) и воду согласно предложенному соотношению компонентов. Изобретение обеспечивает упрощение процесса изготовления фотоэлектрических преобразователей, создание гладкой боковой поверхности фоточувствительной меза-структуры с высокой точностью и воспроизводимостью глубины вытравленного рельефа. 2 ил.
Description
Изобретение относится к технологии изготовления фоточувствительных элементов на основе полупроводниковых гетероструктур и может использоваться для создания ИК фотоприемников для спектрального диапазона 1.5-3.8 мкм. ИК фотоприемники применяют в различных областях науки и техники, в промышленности: в диодно-лазерной спектроскопии, в медицине, в системах экологического мониторинга, в оптических системах связи и передачи информации.
Для постростовой обработки пластин эпитаксиальных полупроводниковых гетероструктур травление является критической стадией, поскольку в ходе реакций травления происходит необратимое удаление полупроводникового материала. Таким образом, от подбора травителя и корректного определения оптимальных условий проведения процесса травления для каждого конкретного полупроводникового материала зависят основные параметры прибора.
Известен способ изготовления фотоэлектрических преобразователей на основе многослойной структуры GaInP/Ga(In)As/Ge, выращенной на германиевой подложке (см. RU 2354009, МПК H01L 31/18, опубл. 27.04.2009), включающий нанесение омических контактов на тыльную и фронтальную поверхности структуры, разделение структуры на чипы, пассивацию боковой поверхности чипов диэлектриком, удаление части фронтального контактного слоя структуры методом химического травления и нанесение антиотражающего покрытия на фронтальную поверхность структуры. Разделение структуры на чипы проводят через маску фоторезиста со стороны фронтальной поверхности структуры на глубину 15-50 мкм травлением структуры до германиевой подложки химическим травлением при температуре 19-23°С в травителе, содержащем компоненты при следующем их соотношении, мас. ч.:
K2Cr2O7 | 80-110 |
HBr | 60-110 |
H3PO4 | 150-180 |
вода | остальное, |
а затем травлением германиевой подложки методом электрохимического травления при температуре 19-23°С в электролите, содержащем компоненты при следующем их соотношении, мас. ч.:
глицерин | 30-50 |
KOH | 1-4 |
вода | остальное. |
Известный способ изготовления фотоэлектрических преобразователей требует двухстадийного травления из-за различия скоростей травления эпитаксиальных слоев структуры и германиевой подложки в травителе K2Cr2O7:HBr:Н3РО4:Н2О. К недостаткам этого травителя также можно отнести сложность высокоточного контроля процесса травления в многокомпонентной системе и, как следствие, меньшую воспроизводимость параметров изготавливаемых приборов.
Известен способ изготовления фотоэлектрических преобразователей (см. CN 103474501, МПК H01L 25/04; H01L 31/0216, опубл. 25.12.2013), включающий нанесение на подложку n-GaSb диэлектрической маски диоксида кремния для локальной диффузии Zn, многоступенчатую откачку кварцевого реактора с использованием аргона, проведение диффузии в GaSb из сплава Zn-Ga при давлении 5-10 Па в течение 1-3 часов при температуре 450-500°С (предварительно посредством отжига в течение 24 часов при 600°С формируют сплав Zn-Ga), удаление тыльного р-n перехода, нанесение тыльного и лицевого контактов, разделительное травление структуры на чипы и нанесение антиотражающего покрытия из нитрида кремния.
Недостатками известного способа изготовления фотоэлектрических преобразователей является конструктивная сложность аппаратурной части процесса диффузии вследствие использования многоступенчатой откачки кварцевого реактора с целью предотвращения окисления поверхности GaSb, а также длительность формирования источника диффузии (сплава Zn-Ga).
Известен способ изготовления чипов наногетероструктуры (см. RU 2485628, МПК H01L 31/18, В82В 3/00, H01L 21/306, опубл. 20.06.2013), включающий нанесение омических контактов на тыльную и фронтальную поверхности наногетероструктуры, удаление части фронтального контактного слоя наногетероструктуры химическим травлением и нанесение антиотражающего покрытия на фронтальную поверхность наногетероструктуры, разделение наногетероструктуры на чипы и пассивацию боковой поверхности чипов диэлектриком. Разделение структуры на чипы проводят травлением через маску фоторезиста со стороны фронтальной поверхности наногетероструктуры на глубину 10-30 мкм наногетероструктуры и германиевой подложки в едином процессе в травителе, содержащем компоненты при следующем их соотношении компонентов, мас. ч.:
бромистый водород | 8,0-12,0 |
перекись водорода | 0,98-1,10 |
вода | остальное. |
Недостатком известного способа является относительно высокая скорость травления и ее изменение со временем при травлении меза-структуры, при этом нормальная и тангенциальная составляющие скорости травления выравниваются в течение длительного времени - в течение 180 минут при комнатной температуре или 90 минут при повышенной температуре 36°С.
Известен способ изготовления фотоэлектрических преобразователей на основе многослойной структуры (см. RU 2599905, МПК 1/18, H01L 33/40, опубл. 20.10.2016), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает изготовление многослойной полупроводниковой гетероструктуры, InAs/InAsSb/InAsSbP, содержащей подложку из полупроводникового материала А3В5 и разделенные р-n переходом р- и n-области, нанесение на фронтальную поверхность полупроводниковой гетероструктуры маски фоторезиста, подготовку поверхности для формирования омических контактов, напыление в вакууме омических контактов и формирование, по меньшей мере, одной меза-структуры и разделительной сетки. Подготовку поверхности для формирования омических контактов проводят мокрым химическим травлением на глубину 0.2-0.4 мкм в травителе, содержащем компоненты при следующем их соотношении, мас. ч.:
KBrO3 | 0.86-1.72 |
H3PO4 | 107.4-135.3 |
СН3СОСН3 | 0.001-0.1, |
вода | остальное. |
а формирование меза-структуры и разделительной сетки осуществляют травлением на глубину 20-60 мкм в травителе, содержащем компоненты при следующем их соотношении, мас. ч.:
HBr | 35.8-68.0 |
H2O2 | 1.6-16.6, |
вода | остальное. |
Недостатком известного способа-прототипа является использование двух различных травителей при подготовке поверхности для формирования омических контактов и при формировании меза-структуры: четырех-компонентного травителя KBrO3:H3PO4:СН3СОСН3:H2O и HBr:H2O2:H2O, соответственно. Кроме того, травитель HBr:H2O2:H2O демонстрирует достаточно высокую и непостоянную во времени скорость травления при формировании меза-структуры, что ведет к невозможности получения необходимой глубины меза-структуры с высокой точностью.
Задачей настоящего технического решения является разработка способа изготовления фотоэлектрических преобразователей на основе многослойной структуры с использованием в нем травителя, который обеспечивает упрощение процесса изготовления фотоэлектрических преобразователей, создание гладкой боковой поверхности фоточувствительной меза-структуры с высокой точностью и воспроизводимостью глубины вытравленного рельефа.
Поставленная задача решается тем, что способ изготовления фотоэлектрических преобразователей на основе многослойной структуры изготовление многослойной полупроводниковой гетероструктуры, InAs/InAsSb/InAsSbP, содержащей подложку из полупроводникового материала А3В5 и разделенные р-n переходом р- и n-области, нанесение на фронтальную поверхность полупроводниковой гетероструктуры маски фоторезиста, подготовку поверхности для формирования омических контактов, напыление в вакууме омических контактов и формирование, по меньшей мере, одной меза-структуры и разделительной сетки, отличающийся тем, что химическое травление подконтактной области, боковой поверхности меза-структуры и разделительной сетки проводят в травителе, содержащем бромистоводородную кислоту (HBr), перманганат калия (KMnO4) и воду, при следующем соотношении компонентов, мас. ч:
HBr | 13,2-67,1 |
KMnO4 | 1,2-9,7 |
вода | остальное. |
Используемый в настоящем способе новый травитель, содержащий HBr, KMnO4 и H2O, где перманганат калия выступает в качестве окислителя, имеет при различных концентрациях данного окислителя скорость травления от 0.1 до 0.7 мкм/мин, которая постоянна во время травления, как показано на фиг. 1. Это позволяет проводить обработку фронтальной и тыльной поверхности гетероструктуры InAs/InAsSb/InAsSbP перед напылением контактов, травление меза-структуры и травление разделительной сетки. В результате использования данного травителя достигается высокая воспроизводимость, и токи фотоэлектрических преобразователей, изготовленных настоящим способом, не превышают значений, полученных в случае использования известных травителей.
Настоящий способ изготовления фотоэлектрических преобразователей на основе многослойной структуры поясняется чертежом, где:
на фиг. 1 приведена зависимость скорости травления от времени травления (1 - травление в известном травителе состава №1: HBr - 10,0 мас. ч., H2O2 - 1,06 мас. ч., вода остальное; 2 - травление в настоящем травителе HBr:KMnO4:H2O состава №2: HBr - 66,4 мас. ч., KMnO4 - 2,4 мас. ч., вода остальное; 3 - травление в настоящем травителе состава №3: HBr - 67.1 мас. ч., KMnO4 - 1,2 мас. ч., вода остальное);
на фиг. 2 показана зависимость величины темнового тока фотоэлектрического преобразователя от напряжения смещения, подаваемого на него (4 - для лучших образцов на пластине, 5 - для типичных образцов на пластине).
В настоящем способе фотоэлектрические преобразователи изготавливают на основе полупроводниковой гетероструктуры InAs/InAsSb/InAsSbP. Для улучшения адгезии контакта к полупроводнику проводят обработку фронтальной поверхности полупроводниковой гетероструктуры методом ионно-лучевого травления перед напылением омических контактов. Преимуществом настоящего способа является возможность использования для обработки фронтальной поверхности полупроводниковой гетероструктуры со стороны слоя InAsSbP метода жидкостного химического травления перед напылением контакта за счет использования травителя HBr:KMnO4:H2O с низкой постоянной скоростью травления. Для повышения механической прочности омического контакта при сборке осуществляют утолщение омических контактов путем электрохимического осаждения золота через маску фоторезиста. Проводят удаление части фронтального слоя InAsSbP методом жидкостного химического травления в травителе HBr:KMnO4:H2O для формирования меза-структуры. Проводят травление через маску фоторезиста разделительной сетки на фронтальной поверхности структуры в травителе HBr:KMnO4:H2O для удобства разделения пластины на отдельные фотоэлектрические преобразователи. Для удаления приповерхностного нарушенного слоя со стороны подложки InAs проводят утонение полупроводниковой подложки в травителе состава HCl:HNO3:H2O2:H2O. Преимуществом настоящего способа является возможность использования для обработки тыльной поверхности гетероструктуры со стороны подложки InAs метода жидкостного химического травления перед напылением контакта за счет использования травителя HBr:KMnO4:H2O с низкой постоянной скоростью травления. Далее осуществляют напыление сплошного тыльного омического контакта методом высоковакуумного термического испарения с последующим его утолщением путем дополнительного напыления контактной системы на установке ВУП-5М. Очистку фронтальной поверхности перед напылением контактов, травление меза-структуры и травление разделительной сетки проводят в травителе, содержащем HBr, KMnO4 и воду при следующем соотношении компонентов в мас. ч.:
HBr | 13,2-67,1 |
KMnO4 | 1,2-9,7 |
вода | остальное. |
Скорость травления определяется соотношением компонентов в растворе в рамках указанного диапазона и составляет 0,1-0,7 мкм/мин.
При увеличении количества HBr в растворе более 67.1 мас. ч. скорость травления становится менее 0.1 мкм/мин, что приводит к значительному увеличению времени процесса без какого-либо преимущества в качестве получаемой поверхности гетероструктуры, а также увеличивает риск влияния случайных факторов. При уменьшении концентрации HBr в растворе менее 13.2 мас. ч. ухудшается качество поверхности гетероструктуры, а также происходит выпадение нерастворимого осадка продуктов восстановления марганца.
При увеличении количества KMnO4 в растворе более 9.7 мас. ч. ухудшается качество поверхности гетороструктуры, а также происходит выпадение нерастворимого осадка продуктов восстановления марганца. При уменьшении концентрации KMnO4 в растворе менее 1.2 мас. ч. скорость травления становится менее 0.1 мкм/мин, что приводит к значительному увеличению времени процесса без какого-либо преимущества в качестве получаемой поверхности гетероструктуры, а также увеличивает риск влияния случайных факторов.
Зависимость скорости травления от времени травления для настоящего травителя состава 1 и состава 2, входящих в указанный рабочий диапазон, и для известного травителя HBr:H2O2:H2O показана на фиг. 1, скорость травления в травителе HBr:KMnO4:H2O остается постоянной во времени, в отличие от скорости травления в известном травителе HBr:H2O2:H2O.
Пример 1. Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры включал следующие последовательные стадии. Наносили маску фоторезиста на фронтальную поверхность полупроводниковой гетероструктуры InAs/InAsSb/InAsSbP со стороны слоя InAsSbP. Проводили жидкостное химическое травление фронтальной поверхности полупроводниковой гетероструктуры InAs/InAsSb/InAsSbP на глубину 0.2 мкм через маску фоторезиста с последующим напылением фронтального омического контакта толщиной 0.2 мкм методом высоковакуумного термического испарения. Выполняли утолщение омических контактов путем электрохимического осаждения золота через маску фоторезиста до суммарной толщины 2,0-3,0 мкм. Проводили удаление части фронтального слоя InAsSbP методом жидкостного химического травления в травителе HBr:KMnO4:H2O для формирования меза-структуры глубиной 2-5 мкм. Проводили травление через маску фоторезиста разделительной сетки на фронтальной поверхности структуры в травителе HBr:KMnO4:H2O для удобства разделения пластины на отдельные фотоэлектрические преобразователи на глубину около 10 мкм. Выполняли утонение полупроводниковой подложки в травителе состава HCl:HNO3:H2O2:H2O на 30 мкм. Далее перед напылением контакта тыльную поверхность гетероструктуры обрабатывали методом жидкостного химического травления в травителе HBr:KMnO4:H2O с низкой постоянной скоростью травления на глубину 0.2 мкм. Далее осуществляли напыление сплошного тыльного омического контакта методом высоковакуумного термического испарения с последующим его утолщением до 0,4-0,5 мкм путем дополнительного напыления контактной системы на установке ВУП-5М. Обработку фронтальной и тыльной поверхности гетероструктуры InAs/InAsSb/InAsSbP перед напылением омических контактов проводили при комнатной температуре 23°С в травителе HBr:KMnO4:H2O, содержащем компоненты при следующем их соотношении, мас. ч.:
HBr | 67,1 |
KMnO4 | 1,2 |
вода | остальное. |
Травитель HBr:KMnO4:H2O при указанном соотношении компонентов имеет низкую 0,1 мкм/мин и постоянную во времени скорость травления, что позволяет проводить травление гетероструктуры на необходимую малую глубину 0.2 мкм с высокой точностью.
Травление меза-структуры проводили при комнатной температуре 23°С в травителе HBr:KMnO4:H2O, содержащем компоненты при следующем их соотношении, мас. ч.:
HBr | 31,3 |
KMnO4 | 6,9 |
вода | остальное. |
Травитель в указанном соотношении компонентов имеет постоянную во времени скорость травления 0,4 мкм/мин, что позволяет формировать меза-структуру с гладкими зеркальными стенками без уступов глубиной 2-5 мкм.
Травление разделительной сетки проводили при комнатной температуре 23°С в травителе HBr:KMnO4:H2O, содержащем компоненты при следующем их соотношении, мас. ч.:
HBr | 13,2 |
KMnO4 | 9,7 |
вода | остальное. |
Травитель в указанном соотношении компонентов имеет постоянную во времени скорость травления 0,7 мкм/мин, что позволяет формировать разделительную сетку с гладкими стенками глубиной более глубины мезы. Токи созданных фотоэлементов, составляли 0.3-1.8 мкА при обратном смещении 0.9 В (см. фиг. 2), что не превышает значений, полученных в случае использования известных травителей.
Пример 2. Были изготовлены фотоэлектрические преобразователи способом, описанном в примере 1, со следующими отличиями: травление разделительной сетки проводили при комнатной температуре 23°С в травителе HBr:KMnO4:H2O, содержащем компоненты при следующем их соотношении, мас. ч.:
HBr | 31,3 |
KMnO4 | 6,9 |
вода | остальное. |
Травитель в указанном соотношении компонентов имеет постоянную во времени скорость травления 0,4 мкм/мин. Время травления разделительной сетки увеличивается почти в 2 раза по сравнению с примером 1, что приводит к увеличению длительности процесса без улучшения качества получаемой поверхности гетероструктуры, а также увеличивает риск влияния случайных факторов.
Пример 3. Были изготовлены фотоэлектрические преобразователи способом, описанном в примере 1, со следующими отличиями: травление меза-структуры проводили при комнатной температуре 23°С в травителе HBr:KMnO4:H2O, содержащем компоненты при следующем их соотношении, мас. ч.:
HBr | 13,2 |
KMnO4 | 9,7 |
вода | остальное. |
Травитель в указанном соотношении компонентов имел постоянную во времени скорость травления 0,7 мкм/мин. Травление меза-структуры со скоростью выше, чем в примере 1, приводит к снижению точности контроля процесса травления меза-структуры, что усложняет формирование меза-структуры требуемой малой глубины.
Настоящий способ позволяет изготовить фотоэлектрические преобразователи с гладкой зеркальной поверхностью меза-структуры и стенок разделительных канавок с помощью прецизионного травления с постоянной скоростью 0.1-1.0 мкм/мин на заданную глубину, а также удалить тонкий слой полупроводника в подконтактной области перед напылением омических контактов. Скорости травления слоев гетероструктуры и подложки значительно не отличаются, что делает возможным получение вертикальной (без уступов) боковой стенки меза-структуры. Было исследовано влияние компонентов данного травителя на токи утечки получаемых фотоэлектрических преобразователей при их изготовлении настоящим способом. Показано, что ухудшения электрических параметров не происходит.
Claims (2)
- Способ изготовления фотоэлектрических преобразователей, включающий изготовление многослойной полупроводниковой гетероструктуры, InAs/InAsSb/InAsSbP, содержащей подложку из полупроводникового материала А3В5 и разделенные р-n-переходом р- и n-области, нанесение на фронтальную поверхность полупроводниковой гетероструктуры маски фоторезиста, подготовку поверхности для формирования омических контактов, напыление в вакууме омических контактов и формирование по меньшей мере одной меза-структуры и разделительной сетки, отличающийся тем, что химическое травление подконтактной области, боковой поверхности меза-структуры и разделительной сетки проводят в травителе, содержащем бромистоводородную кислоту (HBr), перманганат калия (KMnO4) и воду при следующем соотношении компонентов, мас. ч.:
-
HBr 13,2-67,1 KMnO4 1,2-9,7 вода остальное
Publications (1)
Publication Number | Publication Date |
---|---|
RU2783353C1 true RU2783353C1 (ru) | 2022-11-11 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU220600U1 (ru) * | 2023-08-04 | 2023-09-25 | федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" | Гетероструктурный фотодиод для ближнего и среднего ИК-диапазона на основе нитевидных нанокристаллов арсенида-фосфида-висмутида индия на подложках кремния |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2897158A4 (en) * | 2012-09-14 | 2016-08-31 | Ltd Liability Company Led Microsensor Nt | PREPARATION OF HETEROSTRUCTURES (VARIANTS) FOR THE MEDIUM INFRARED AREA |
RU2599905C2 (ru) * | 2012-05-11 | 2016-10-20 | Общество с ограниченной ответственностью "ИоффеЛЕД" | Способ изготовления диодов средневолнового ик диапазона спектра |
RU2726903C1 (ru) * | 2019-11-19 | 2020-07-16 | Общество с ограниченной ответственностью "ИоффеЛЕД" | Способ изготовления фотодиодов средневолнового ик-диапазона спектра |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2599905C2 (ru) * | 2012-05-11 | 2016-10-20 | Общество с ограниченной ответственностью "ИоффеЛЕД" | Способ изготовления диодов средневолнового ик диапазона спектра |
EP2897158A4 (en) * | 2012-09-14 | 2016-08-31 | Ltd Liability Company Led Microsensor Nt | PREPARATION OF HETEROSTRUCTURES (VARIANTS) FOR THE MEDIUM INFRARED AREA |
RU2726903C1 (ru) * | 2019-11-19 | 2020-07-16 | Общество с ограниченной ответственностью "ИоффеЛЕД" | Способ изготовления фотодиодов средневолнового ик-диапазона спектра |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU220600U1 (ru) * | 2023-08-04 | 2023-09-25 | федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" | Гетероструктурный фотодиод для ближнего и среднего ИК-диапазона на основе нитевидных нанокристаллов арсенида-фосфида-висмутида индия на подложках кремния |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4007104A (en) | Mesa fabrication process | |
EP0053513B1 (en) | Avalanche photodiodes | |
US6437425B1 (en) | Semiconductor devices which utilize low K dielectrics | |
US3805376A (en) | Beam-lead electroluminescent diodes and method of manufacture | |
US4634474A (en) | Coating of III-V and II-VI compound semiconductors | |
EP0007667B1 (en) | Infra-red detector elements and their manufacture | |
RU2354009C1 (ru) | Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры | |
US4310583A (en) | Manufacture of a group of infra-red detector elements, and a group so manufactured | |
RU2368038C1 (ru) | Способ изготовления чипов многослойных фотопреобразователей | |
RU2783353C1 (ru) | Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры | |
US3447235A (en) | Isolated cathode array semiconductor | |
JP2928433B2 (ja) | 光電変換素子の製造方法 | |
RU2575974C1 (ru) | Способ изготовления гетероструктурного солнечного элемента | |
RU2687501C1 (ru) | Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием | |
US4959328A (en) | Method for manufacturing a semiconductor component contactable on both sides | |
EP0303390B1 (en) | Manufacture of diodes | |
RU2781508C1 (ru) | Способ изготовления фотоэлектрического преобразователя на утоняемой германиевой подложке | |
KR900008408B1 (ko) | Iii-v족 화합물 반도체소자의 전극 형성방법 | |
US3935328A (en) | Method for providing dielectric isolation in an epitaxial layer of a compound semiconductor using the plasma oxidation | |
EP0442203B1 (en) | A method of making ohmic low resistance w-sb contacts to iii-v semiconductor materials | |
RU2391744C1 (ru) | Способ изготовления чипов фотоэлектрических преобразователей | |
RU2493634C1 (ru) | Способ изготовления чипов каскадных фотоэлементов | |
US5075756A (en) | Low resistance contacts to semiconductor materials | |
UA149983U (uk) | Спосіб виготовлення фотодіодів на антимоніді індію | |
CN117542929A (zh) | 一种低温实现欧姆接触的工艺方法 |