RU2783225C1 - Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов - Google Patents

Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов Download PDF

Info

Publication number
RU2783225C1
RU2783225C1 RU2022100313A RU2022100313A RU2783225C1 RU 2783225 C1 RU2783225 C1 RU 2783225C1 RU 2022100313 A RU2022100313 A RU 2022100313A RU 2022100313 A RU2022100313 A RU 2022100313A RU 2783225 C1 RU2783225 C1 RU 2783225C1
Authority
RU
Russia
Prior art keywords
piezoelectric sensor
sensor
ciprofloxacin
determination
coating
Prior art date
Application number
RU2022100313A
Other languages
English (en)
Inventor
Екатерина Вячеславовна Бизина
Ольга Вячеславовна Фарафонова
Татьяна Николаевна Ермолаева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет"
Application granted granted Critical
Publication of RU2783225C1 publication Critical patent/RU2783225C1/ru

Links

Abstract

Изобретение относится к области аналитической химии и может быть рекомендовано для селективного определения ципрофлоксацина в пищевых продуктах и биологических жидкостях с помощью пьезоэлектрического иммуносенсора. Определение антибиотика проводится в конкурентном формате иммуноанализа с помощью пьезоэлектрического сенсора, рецепторное покрытие которого сформировано за счет применения магнитного углеродного нанокомпозита. Карбоксильные группы на поверхности магнитного углеродного нанокомпозита активировали смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100 путем выдерживания в течение 20 мин. Затем производили иммобилизацию белкового конъюгата ципрофлоксацина на поверхности нанокомпозита, после чего осуществляли модификацию пьезоэлектрического сенсора. Для этого 2 мкл нанокомпозита наносили на поверхность кварцевого резонатора, закрепление материала происходило за счет внешнего магнитного поля, создаваемого неодимовым магнитом. Выдерживали сенсор с покрытием 90 минут при комнатной температуре. Перед определением фторхинолона в пробу вводили фиксированное количество антител, полученную смесь выдерживали 20 минут, после чего наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электродов. Аналитический сигнал обратно пропорционален концентрации определяемого фторхинолона в анализируемой пробе, концентрацию определяли по градуировочному графику, регенерацию рецепторного покрытия осуществляли нанесением на поверхность 0,003 М раствора роданида калия. Технический результат - упрощение процедуры формирования покрытия пьезоэлектрического сенсора, сокращение времени подготовки к анализу, продление срока службы пьезоэлектрического сенсора, проведение измерений с возможностью регенерации распознающего слоя. 6 пр.

Description

Изобретение относится к области аналитической химии и может быть рекомендовано для селективного определения ципрофлоксацина в пищевых продуктах и биологических жидкостях с помощью пьезоэлектрического иммуносенсора.
В настоящее время для определения ципрофлоксацина применяют методы: хроматографические [Vella J. A simple HPLC-UV method for the determination of ciprofloxacin in human plasma / J. Vella, F. Busuttil, N.S. Bartolo, C. Sammut, V. Ferrito, A. Serracino-Inglott, L.M. Azzopardi, G. LaFerla // Journal of Chromatography B. - 2015. - V. 989. - P. 80-85; Scherer R. Determination of Ciprofloxacin in Pharmaceutical Formulations Using HPLC Method with UV Detection / R. Scherer, J. Pereira, J. Firme, M. Lemos, M. Lemos // Indian Journal of Pharmaceutical Sciences. - 2014. - V. 76(6). - P. 541-544; Sirisha T. Simultaneous Determination of Ciprofloxacin and Tinidazole in Tablet Dosage Form by Reverse Phase High Performance Liquid Chromatography / T. Sirisha, B.M. Gurupadayya, S. Sridhar // Tropical Journal of Pharmaceutical Research. - 2014. - V. 13(6). - P. 981-987; Chen B. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples / B. Chen, J. Han, Y. Wang, C. Sheng, Y. Liu, G. Zhang, Y. Yan // Food Chemistry. - 2014. - V. 148. - P. 105-111], недостатками таких методов является достаточно длительная процедура пробоподготовки, необходимость дорогостоящего оборудования и присутствия высококвалифицированных специалистов; спектрофотометрические [Cazedey E.C.L. A First-Derivative Spectrophotometric Method for the Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution / E.C.L. Cazedey, R. Bonfilio, M.B.
Figure 00000001
, H.R.N. Salgado // Physical Chemistry. - 2012. - V. 2(6). - P. 116-122; Dung N.T. Extractive spectrophotometric methods for determination of ciprofloxacin in pharmaceutical formulations using sulfonephthalein acid dyes / N.T. Dung, L.H. Bau, L.Q. Thao, N.Q. Dat. // Vietnam Journal of Chemistry, International Edition. - 2017. - V. 55(6). - P. 767-774], данные методы отличаются небольшим диапазоном определяемых концентраций (50-100 мкг/мл и 0,5-25 мкг/мл), а также низкой чувствительностью (>100 нг/мл).
Наиболее близким по технике выполнения, является метод [Garrido J.M.P.J. β-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection / J.M.P.J. Garrido, M. Melle-Franco, K.
Figure 00000002
, F. Borges, C.M.A. Brett, E.M.P.J. Garrido. // Journal Of Environmental Science And Health, Part A. - 2016. - V. 52(4). P. - 313-319], основанный на электрохимическом сенсоре, электрод которого модифицирован многостенными углеродными нанотрубками. Метод характеризуется стабильностью и экспрессностью, а также продолжительным сроком службы сенсора, однако чувствительность данного метода не высока, диапазон определяемых содержания составляет 3,3-26,5 мг/мл, а предел обнаружения равен 16,6 мкг/мл.
Задачами данного изобретения являются упрощение процедуры формирования рецепторного покрытия пьезоэлектрического сенсора, сокращение времени подготовки к анализу, продление срока службы пьезоэлектрического сенсора, проведение измерений с возможностью регенерации распознающего слоя.
Поставленные задачи решаются тем, что определение антибиотика проводится в конкурентном формате иммуноанализа с помощью пьезоэлектрического сенсора, рецепторное покрытие которого сформировано за счет применения магнитного углеродного нанокомпозита. Карбоксильные группы на поверхности магнитного углеродного нанокомпозита активировали смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100, путем выдерживания в течение 20 мин. Затем производили иммобилизацию белкового конъюгата ципрофлоксацина на поверхности нанокомпозита, после чего осуществляли модификацию пьезоэлектрического сенсора. Для этого 2 мкл нанокомпозита наносили на поверхность кварцевого резонатора, закрепление материала происходило за счет внешнего магнитного поля, создаваемого неодимовым магнитом. Выдерживали сенсор с покрытием 90 минут при комнатной температуре.
Перед определением фторхинолона, в пробу вводили фиксированное количество антител, полученную смесь выдерживали 20 минут, после чего наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электродов.
Аналитический сигнал обратно пропорционален концентрации определяемого фторхинолона в анализируемой пробе, концентрацию определяли по градуировочному графику, регенерацию рецепторного покрытия осуществляли нанесением на поверхность 0,003 М раствора роданида калия.
Отличительными признаками предложенного способа являются:
• Высокая чувствительность способа, позволяющая осуществить определение ципрофлоксацина в жидких средах в интервале концентраций 5-400 нг/мл, при этом предел обнаружения равен 2 нг/мл;
• Многократное (более 33 раз) использование иммуносенсора вследствие устойчивого покрытия, сформированного под действием внешнего магнитного поля, а также регенерации биорецепторного покрытия после каждого цикла измерения;
• Высокая селективность определения тетрациклинов в сложных по составу смесях (ПР%<4,50%);
• Относительно невысокая продолжительность анализа (15-20 мин).
Предложенный состав покрытия пьезоэлектрического сенсора позволяет проводить определение ципрофлоксацина в жидких средах в интервале концентраций 5-400 нг/мл. Высокая селективность обеспечивается использованием групп-специфичных иммунореагентов - поликлональных антител к ципрофлоксацину (ПР, % - 95,5-98,4). Легкость формирования распознающего слоя, и многократное (более 33 раз) использование иммуносенсора после регенерации биорецепторного покрытия обеспечивает снижение затрат на осуществление анализа.
Формирование рецепторного покрытия пьезоэлектрического сенсора осуществляли следующим образом:
В качестве физического преобразователя применяли пьезокварцевые резонаторы АТ-среза с собственной частотой колебаний 10±1 МГц с золотыми электродами диаметром 8 мм, полученными методом магнетронного напыления.
Предварительно активировали карбоксильные группы на поверхности магнитного углеродного нанокомпозита смесью, содержащей N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимид в 1%-ном водном растворе Triton Х-100.
Для иммобилизации белковых молекул конъюгата ципрофлоксацина на поверхности магнитного углеродного нанокомпозита к 10 мкл дисперсии композита в 1%-ном водном растворе Triton Х-100 добавляли 10 мкл активационной смеси и оставляли на 20 мин при комнатной температуре. Далее в систему вводили 10 мкл раствора с фиксированной концентрацией конъюгата ципрофлоксацина с бычьим сывороточным альбумином (0,25 мМ) и оставляли на 10-12 ч при температуре 4°С для формирования устойчивых связей.
Перед формированием рецепторного слоя поверхность электрода сенсора последовательно очищали 1 М раствором соляной кислоты, ацетоном и этанолом. Сенсор помещался в ячейку детектирования над неодимовым магнитом, наносили 2 мкл раствора магнитной углеродной композиции с белковым конъюгатом ципрофлоксацина, оставляли на 90 мин на воздухе при комнатной температуре, после чего промывали сенсор 200 мкл дистиллированной воды для удаления не связавшихся компонентов и высушивали в потоке теплого воздуха.
В пробу, объемом 5 мкл, содержащую фторхинолон, вводили фиксированное количество антител (5 мкл), соответствующее 50%-ному связыванию и выдерживали в течение 15 минут до завершения образования гомогенного иммунного комплекса определяемого соединения с антителами. Затем пробу наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электрода, выжидали 15 минут, после чего измеряли аналитический сигнал, вызванный образованием гетерогенного иммунного комплекса между несвязавшимися антителами и белковым конъюгатом ципрофлоксацина, иммобилизованном на поверхности электрода сенсора.
После измерения аналитического сигнала сенсора осуществляли разрушение образовавшегося иммунокомплекса и регенерацию биослоя. Частота колебаний сенсора при этом возвращается к исходному значению. После предварительной пробоподготовки, описанной выше, определяли концентрацию ципрофлоксацина в пробе по предварительно построенному градуировочному графику.
Для построения градуировочной зависимости использовали стандартные растворы фторхинолонов, содержащие 1, 2, 5, 10, 50, 100, 200, 300, 350, 400, 450 нг/мл ципрофлоксацина в количестве 5 мкл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживали 15 мин до завершения реакции.
Значение аналитического сигнала обратно пропорционально содержанию аналита в пробе.
Градуировочный график для определения ципрофлоксацина линеен в диапазоне концентраций 5-400 нг/мл: Δƒ=[2234±316]-[3.5±1.5]С, где Δƒ - аналитический сигнал, Гц; С - концентрация тетрациклина в пробе, нг/мл.
Примеры применения предлагаемого рецепторного покрытия пьезоэлектрического сенсора:
Пример 1. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 10 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=2200 Гц.
Пример 2. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 25 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=2148 Гц.
Пример 3. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 50 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=2062 Гц.
Пример 4. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 100 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=1889 Гц.
Пример 5. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 250 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=1370 Гц.
Пример 6. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 300 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=1197 Гц.
Figure 00000003

Claims (1)

  1. Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов, отличающееся тем, что поверхность магнитного углеродного нанокомпозита, представляющего собой карбоксилированные углеродные нанотрубки с иммобилизованными на поверхности магнитными наночастицами, активируют смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100, иммобилизуют белковый конъюгат ципрофлоксацина, после чего полученную композицию фиксируют на поверхности пьезоэлектрического сенсора под действием внешнего магнитного поля, создаваемого неодимовым магнитом, далее проводят иммунохимическую реакцию.
RU2022100313A 2022-01-11 Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов RU2783225C1 (ru)

Publications (1)

Publication Number Publication Date
RU2783225C1 true RU2783225C1 (ru) 2022-11-10

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916876A1 (en) * 2012-11-06 2015-09-16 Imbed Biosciences, Inc. Methods and compositions for wound healing
KR20160006374A (ko) * 2014-07-09 2016-01-19 전북대학교산학협력단 Cnt-pzt 나노 복합체 박막의 제조방법 및 그로부터 제조되는 cnt-pzt 나노 복합체 박막
WO2019079882A1 (en) * 2017-10-27 2019-05-02 National Research Council Of Canada NANOTUBES OF MODIFIED BORON NITRIDE AND THEIR SOLUTIONS
RU2706362C1 (ru) * 2018-06-19 2019-11-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" Композиция покрытия пьезоэлектрического сенсора для определения фторхинолонов в жидких средах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916876A1 (en) * 2012-11-06 2015-09-16 Imbed Biosciences, Inc. Methods and compositions for wound healing
KR20160006374A (ko) * 2014-07-09 2016-01-19 전북대학교산학협력단 Cnt-pzt 나노 복합체 박막의 제조방법 및 그로부터 제조되는 cnt-pzt 나노 복합체 박막
WO2019079882A1 (en) * 2017-10-27 2019-05-02 National Research Council Of Canada NANOTUBES OF MODIFIED BORON NITRIDE AND THEIR SOLUTIONS
RU2706362C1 (ru) * 2018-06-19 2019-11-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" Композиция покрытия пьезоэлектрического сенсора для определения фторхинолонов в жидких средах

Similar Documents

Publication Publication Date Title
Salek-Maghsoudi et al. Recent advances in biosensor technology in assessment of early diabetes biomarkers
Stevens et al. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system
Liu et al. A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins
Bryan et al. The robust electrochemical detection of a Parkinson's disease marker in whole blood sera
Kataoka et al. Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications
Orlov et al. Magnetic immunoassay for detection of staphylococcal toxins in complex media
Lin et al. Determination of albumin concentration by MIP-QCM sensor
Huang et al. Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug
Zhang et al. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC
Messina et al. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples
Aberl et al. HIV serology using piezoelectric immunosensors
Lord et al. Development of immunoaffinity solid phase microextraction probes for analysis of sub ng/mL concentrations of 7-aminoflunitrazepam in urine
US20160291010A1 (en) Immunochromatography strip sensor capable of measuring biomaterial concentration over broad concentration range
JP2017524137A (ja) 非侵襲性体液ストレスセンシング
Ding et al. Reusable gold nanoparticle enhanced QCM immunosensor for detecting C-reactive protein
CN102725637B (zh) 在自组装单层上固定a蛋白的方法
CN102692504A (zh) D-二聚体荧光免疫定量测定试纸条及其制备方法
Çalışır et al. HbA1c detection via high-sensitive boronate based surface plasmon resonance sensor
Chen et al. Magnetic beads based immunoaffinity capillary electrophoresis of total serum IgE with laser-induced fluorescence detection
Clarke et al. Analysis of free drug fractions by ultrafast immunoaffinity chromatography
Matsuda et al. Chromatographic immunoassays: strategies and recent developments in the analysis of drugs and biological agents
Ohnmacht et al. Analysis of free drug fractions using near-infrared fluorescent labels and an ultrafast immunoextraction/displacement assay
Tomassetti et al. Lactoferrin determination using flow or batch immunosensor surface plasmon resonance: Comparison with amperometric and screen-printed immunosensor methods
Siew et al. A graphene-based dengue immunosensor using plant-derived envelope glycoprotein domain III (EDIII) as the novel probe antigen
Kim et al. Caco-2 cell-derived biomimetic electrochemical biosensor for cholera toxin detection